Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Front Plant Sci ; 15: 1441649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372859

RESUMEN

The combination of biochar and nitrogen (N) fertilization in agricultural salt-affected soils is an effective strategy for amending the soil and promoting production. To investigate the effect of nitrogen reduction combined with biochar application on a soda saline soil and soybean growth in black soil areas, a pot experiment was set up with two biochar application levels, 0 (B0) and 4.5 t/hm2 (B1); two biochar application depths, 0-20 cm (H1) and 0-40 cm (H2); and two nitrogen application levels, conventional nitrogen application (N0) and nitrogen reduction of 15% (N1). The results showed that the application of biochar improved the saline soil status and significantly increased soybean yield under lower nitrogen application. Moreover, increasing the depth of biochar application enhanced the effectiveness of biochar in reducing saline soil barriers to crop growth, which promoted soybean growth. Increasing the depth of biochar application increased the K+ and Ca2+ contents, soil nitrogen content, N fertilizer agronomic efficiency, leaf total nitrogen, N use efficiency, AN, Tr, gs, SPAD, leaf water potential, water content and soybean yield and its components. However, the Na+ content, SAR, ESP, Na+/K+, Ci and water use efficiency decreased with increasing biochar depth. Among the treatments with low nitrogen input and biochar, B1H1N1 resulted in the greatest soil improvement in the 0-20 cm soil layer compared with B0N0; for example, K+ content increased by 61.87%, Na+ content decreased by 44.80%, SAR decreased by 46.68%, and nitrate nitrogen increased by 26.61%. However, in the 20-40 cm soil layer, B1H2N1 had the greatest effect on improving the soil physicochemical properties, K+ content increased by 62.54%, Na+ content decreased by 29.76%, SAR decreased by 32.85%, and nitrate nitrogen content increased by 30.77%. In addition, compared with B0N0, total leaf nitrogen increased in B1H2N1 by 25.07%, N use efficiency increased by 6.7%, N fertilizer agronomic efficiency increased by 32.79%, partial factor productivity of nitrogen increased by 28.37%, gs increased by 22.10%, leaf water potential increased by 27.33% and water content increased by 6.44%. In conclusion, B1H2N1 had the greatest effect on improving the condition of saline soil; it not only effectively regulated the distribution of salt in soda saline soil and provided a low-salt environment for crop growth but also activated deep soil resources. Therefore, among all treatments investigated in this study, B1H2N1 was considered most suitable for improving the condition of soda saline soil in black soil areas and enhancing the growth of soybean plants.

2.
Chemosphere ; 366: 143390, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39332583

RESUMEN

Silicon (Si) and selenium (Se), two environmental protection materials, which are beneficial to plant growth and stress resistance, can also alleviate crop stress induced by heavy metals. However, the effects of Si, Se and their interactions in reducing cadmium (Cd) toxicity and the related mechanisms require further elucidation. Hence, this study implemented a foliar application of Si and Se on soybean (Glycine max L.) that subjected to Cd-induced stress with four treatments (sole/combined application of Si, Se, no fertilizer treatment). The results demonstrated that Si and Se showed effective mitigation of Cd toxicity on soybeans mainly by promoting growth, enhancing photosynthesis, maintaining root vigor, improving antioxidant capacity, alleviating oxidative damage, altering the storage form, subcellular distribution of Cd in soybeans, and was more noticeable when combined overall (Si + Se>Se>Si). Si + Se increased root activity by 28% and CAT activity in leaves by 130.65%. Overall, the combined application of Si and Se exhibited a pronounced synergistic effect in enhancing the healthy growth of soybean plants under Cd pollution, with a more prominent impact observed following the second fertilization.

3.
Sci Rep ; 14(1): 22239, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333199

RESUMEN

The black soldier fly larvae (BSF) are used as a substitute for soybean meal due to their high crude protein content. This experiment aims to assess the impact of heat treatment on the rumen degradability of BSF and protein digestion in the small intestine using the in situ nylon bag method and the three-step in vitro method. This study comprises a total of 8 groups (n = 6). The negative control group includes only full-fat soybeans (FFS) and BSF (FF group and BS group). The positive control groups consist of a 95% BSF or 95% FFS mixed with 5% cassava (FFC and BSC groups). The treatment groups involve adding 75% water to the positive control mixture, followed by vigorous kneading to achieve uniform mixing. The resulting mixture was then pressed to a thickness of approximately 5 cm, placed in an oven, and dried for 120 min at temperatures of 120 °C and 140 °C (12FFC, 14FFC, 12BSC, and 14BSC groups). Nylon bags will be incubated in the rumen for 0, 2, 4, 8, 12, 24, and 48 h, and the small intestine protein digestion rate will be analyzed at 16 h. Compared to the BS group, heat-treated BSF showed increased (P < 0.05) rumen DM degradability and effective degradability. The 14BSC group increased (P < 0.05) rumen CP degradability and degradation kinetic parameters, while the 12BSC group decreased (P < 0.05) these parameters. The CP degradability of BSF was significantly higher (P < 0.05) than that of full-fat soybeans. The Idg and IDCP of heat-treated full-fat soybeans were significantly higher (P < 0.05) than those of other treatment groups. At the same time, heat treatment was beneficial for increasing (P < 0.05) the Idg and IDCP of BSF, and the 14BSC treatment effect was significantly better (P < 0.05) than that of the 12BSC group. Therefore, based on the results of this experiment, it is recommended to supplement BSF with cassava and subject them to heat treatment at 140 °C.


Asunto(s)
Digestión , Cabras , Calor , Rumen , Animales , Rumen/metabolismo , Digestión/fisiología , Alimentación Animal/análisis , Glycine max/metabolismo , Simuliidae/metabolismo , Simuliidae/fisiología , Larva/metabolismo , Dípteros/metabolismo , Dípteros/fisiología , Intestino Delgado/metabolismo
4.
Front Pharmacol ; 15: 1392325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246658

RESUMEN

Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.

5.
Front Plant Sci ; 15: 1407506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109061

RESUMEN

The global food system faces a challenge of sustainably producing enough food, and especially protein, to meet the needs of a growing global population. In developed countries, approximately 2/3 of protein comes from animal sources and 1/3 from plants. For an assortment of reasons, dietary recommendations call for populations in these countries to replace some of their animal protein with plant protein. Because it is difficult to substantially change dietary habits, increasing plant protein may require the creation of novel foods that meet the nutritional, orosensory, and functional attributes consumers desire. In contrast to plant-based milks, plant-based cheeses have not been widely embraced by consumers. The existing plant-based cheeses do not satisfactorily mimic dairy cheese as plant proteins are unable to replicate the functional properties of casein, which plays such a key role in cheese. One possible solution to overcome current constraints that is currently being explored, is to produce hybrid products containing soy protein and soybean-derived casein. Producing soybean-derived casein is possible by utilizing traditional genetic engineering tools, like Agrobacterium-mediated plant transformation, to express genes in soybeans that produce casein. If a cheese containing soy protein and soybean-derived casein satisfactorily mimics dairy, it presents an opportunity for increasing plant protein intake since US dairy cheese consumption has been steadily increasing. Soybeans are an excellent choice of crop for producing casein because soybeans are widely available and play a large role in the US and world food supply. Additionally, because a casein-producing soybean offers soybean farmers the opportunity to grow a value-added crop, expectations are that it will be welcomed by the agricultural community. Thus, there are benefits to both the consumer and farmer.

6.
Animals (Basel) ; 14(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39199900

RESUMEN

On a global scale, the poultry industry expands its wings in terms of meat and egg production to the masses. However, this industry itself requires a sustainable and permanent supply of different inputs, one of which is poultry feed and nutrition. Soybean is a versatile protein that is offered to poultry in different inclusion rates in commercial diets after being processed using various thermal and mechanical processing methods. Conventional commercial soybean meal is usually prepared by the extraction of oil from whole soybeans using solvents, producing a meal that has approximately 1% crude fat. Without oil extraction, full-fat soybean (FFSBM) is produced, and it is an excellent source of dietary energy and protein for poultry with a nutritional profile of 38-40% protein and 18-20% crude fat, on average. FFSBM has less crude protein (CP) than solvent-extracted soybean meal (SE SBM) but higher metabolizable energy due to higher fat content. Alternatively, extruded expeller processing produces defatted soybean meal containing approximately 6-7% crude fat. Studies have demonstrated that FFSBM can be used in poultry diets to improve poultry nutrition, performance, and quality of the poultry meat and eggs produced. This review aims to evaluate the nutrition and use of meals prepared from conventional and high-oleic soybeans using various feed processing methods.

7.
Front Plant Sci ; 15: 1434778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962242

RESUMEN

Bulk commodity row crop production in the United States is frequently subject to narrow profit margins, often complicated by weather, supply chains, trade, and other factors. Farmers seeking to increase profits and hedge against market volatility often seek to diversify their operations, including producing more lucrative or productive crop varieties. Recombinant plants producing animal or other non-native proteins (commonly referred to as plant molecular farming) present a value-added opportunity for row crop farmers. However, these crops must be produced under robust identity preserved systems to prevent comingling with bulk commodities to maintain the value for farmers, mitigate against market disruptions, and minimize any potential food, feed, or environmental risks.

8.
Food Chem X ; 23: 101526, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38933989

RESUMEN

Most phenolic compounds in beans exist in complex, insoluble binding forms that bind to cell wall components via ether, ester, or glucoside bonds. In the process of solid-state fermentation, Eurotium Cristatum can produce many hydrolase enzymes, such as α-amylase, pectinase, cellulase and ß-glucosidase, which can effectively hydrolyze ether, ester or glucoside bond, release bound polyphenols, and increase polyphenol content in soybeans. When the fermentation conditions of soybean were fermentation time 12 days, inoculation amount 15% and initial pH 2, the content of free polyphenols in fermented soybean was 2.79 mg GAE/g d.w, which was 4.98 times that of unfermented soybean. The contents of bound polyphenols and total phenols in fermented soybean were 0.62 mg GAE/g d.w and 3.41 mg GAE/g d.w, respectively, which were 2.38 times and 4.16 times of those in unfermented soybean. At the same time, the inhibitory effect of free polyphenols in fermented soybean on acetylcholinesterase reached 91.51%. Thus, our results demonstrated that solid state fermentation and Eurotium Cristatum can be used as an effective way to increase soybean polyphenol content and combat Alzheimer's disease.

9.
Anim Biosci ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38938022

RESUMEN

Objective: The objective of this work was to determine the energetic values of 14 full-fat deactivated soybeans samples, the effect of partial removal of the hull, and to develop equations for predicting digestible (DE), metabolizable (ME), and ME corrected for nitrogen balance (MEn) for pigs. Methods: Ten metabolism experiments were conducted over a two-year period to evaluate 14 batches of full-fat deactivated soybeans, following the method of the total collection of feces and urine. One hundred and ninety-two pigs with an average initial body weight of 51.4±5.4 kg were assigned to dietary treatments. Results: Partial dehulling of soybeans did not affect DE, ME, and MEn values. The variables that best explained the variations (p<0.05) in DE were ureatic activity (UA) and crude fiber. The variables that showed the greatest association (p<0.05) with ME and MEn were UA, protein solubility, and processing pressure. The observed effect of UA on energy values was quadratic (p<0.05). Phosphorus also showed association (p<0.05) with DE and ME and the energy applied per kg of sample showed association (p<0.05) with ME and MEn. Conclusion: The overall mean values of DE, ME, and MEn were 4,558, 4,457, and 4,344 kcal/kg, respectively. The partial removal of the hull prior to soy deactivation did not affect the digestibility or the energy values. This study shows that the processing conditions are the main factors affecting the energetic value of full-fat deactivated soybeans for pigs, which can be accurately predicted using a combination of chemical composition, quality indicators, and processing parameters.

10.
Front Nutr ; 11: 1399687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854165

RESUMEN

The concept of inflammation encompasses beneficial and detrimental aspects, which are referred to as infectious and sterile inflammations, respectively. Infectious inflammation plays a crucial role in host defense, whereas sterile inflammation encompasses allergic, autoimmune, and lifestyle-related diseases, leading to detrimental effects. Dendritic cells and macrophages, both of which are representative mononuclear phagocytes (MNPs), are essential for initiating immune responses, suggesting that the regulation of MNPs limits excessive inflammation. In this context, dietary components with immunomodulatory properties have been identified. Among them, soybean-derived compounds, including isoflavones, saponins, flavonoids, and bioactive peptides, act directly on MNPs to fine-tune immune responses. Notably, some soybean-derived compounds have demonstrated the ability to alleviate the symptom of allergy and autoimmunity in mouse models. In this review, we introduce and summarize the roles of soybean-derived compounds on MNP-mediated inflammatory responses. Understanding the mechanism by which soybean-derived molecules regulate MNPs could provide valuable insights for designing safe immunomodulators.

11.
J Agric Food Chem ; 72(20): 11782-11793, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717295

RESUMEN

Soybeans are the number one source of plant proteins for food and feed, but the natural presence of protein protease inhibitors (PIs), namely, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), exerts antinutritional effects. This communication describes a new methodology for simultaneously quantitating all parameters of PIs in soybeans. It consists of seven steps and featured enzymatically measuring trypsin and chymotrypsin inhibitory activities, respectively, and subsequently determining the contents of reactive KTI and BBI and the contributions of each toward total PI mass and total trypsin or chymotrypsin inhibition by solving a proposed system of linear equations with two variables (C = dB + eK and T = xB + yK). This enzymatic and algebraic (EA) methodology was based on differential inhibitions of KTI and BBI toward trypsin and chymotrypsin and validated by applications to a series of mixtures of purified KTI and BBI, two KTI-null and two conventional soybeans, and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The EA methodology allowed calculations of PI composition and the contributions of individual inhibitors toward total inhibition with ease. It was first found that although BBI constituted only about 30% of the total PI mass in conventional raw soybeans, it contributed about 80% toward total chymotrypsin inhibitor activity and about 45% toward trypsin inhibitor activity. Therefore, BBI caused more total protease inhibitions than those of KTI. Furthermore, the so-called KTI-null soybean mutants still contained measurable KTI content and thus should be named KTI-low soybeans.


Asunto(s)
Quimotripsina , Glycine max , Inhibidor de la Tripsina de Soja de Bowman-Birk , Inhibidor de la Tripsina de Soja de Kunitz , Tripsina , Quimotripsina/antagonistas & inhibidores , Quimotripsina/química , Quimotripsina/metabolismo , Glycine max/química , Glycine max/enzimología , Tripsina/química , Tripsina/metabolismo , Inhibidor de la Tripsina de Soja de Bowman-Birk/análisis , Inhibidor de la Tripsina de Soja de Kunitz/análisis , Inhibidores de Tripsina/análisis
12.
J Environ Manage ; 359: 120951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669877

RESUMEN

Atrazine, a widely used herbicide in modern agriculture, can lead to soil contamination and adverse effects on specific crops. To address this, we investigated the efficacy of biochar loaded with Paenarthrobacter sp. AT5 (an atrazine-degrading bacterial strain) in mitigating atrazine's impact on soybeans in black soil. Bacterially loaded biochar (BBC) significantly enhanced atrazine removal rates in both unplanted and planted soil systems. Moreover, BBC application improved soybean biomass, photosynthetic pigments, and antioxidant systems while mitigating alterations in metabolite pathways induced by atrazine exposure. These findings demonstrate the effectiveness of BBC in reducing atrazine-induced oxidative stress on soybeans in black soil, highlighting its potential for sustainable agriculture.


Asunto(s)
Atrazina , Carbón Orgánico , Glycine max , Estrés Oxidativo , Contaminantes del Suelo , Suelo , Atrazina/toxicidad , Glycine max/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Suelo/química , Carbón Orgánico/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Herbicidas/toxicidad
13.
Plant Physiol Biochem ; 210: 108667, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678946

RESUMEN

This study aims to investigate the quality changes of germinated soybeans during refrigerated storage (4 °C), with an emphasis on the stimulatory effect of refrigeration on their special functional compounds. After germinating for two days, germinated soybeans were stored at 4 °C for seven days, while the germinated soybeans stored at 25 °C served as control group. The results showed that refrigerated storage significantly affected the physiological changes in germinated soybeans. The weight loss rate, browning rate, malondialdehyde (MDA) content and H2O2 content all decreased dramatically during refrigerated storage compared to the control group. The total phenolic and total flavonoid contents of germinated soybeans under refrigeration exhibited a trend of increasing and then decreasing over time. Additionally, during refrigerated storage, the total isoflavone content reached a peak of 8.72 g/kg on the fifth day, in which the content of daidzein and glycitin increased by 45% and 49% respectively, when compared with the control group. Moreover, the content of γ-aminobutyric acid (GABA) peaked on the first day, and kept a high level during storage. In which, the refrigerated group was 2.35-, 2.88-, 1.67-fold respectively after storage for three to seven days. These results indicated that refrigeration stimulated the biosynthesis of isoflavones and GABA in germinated soybeans during storage. More importantly, there was a sequential difference in the timing of the stimulation of the two functional components under refrigeration.


Asunto(s)
Almacenamiento de Alimentos , Germinación , Glycine max , Isoflavonas , Refrigeración , Ácido gamma-Aminobutírico , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Isoflavonas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Almacenamiento de Alimentos/métodos , Malondialdehído/metabolismo , Peróxido de Hidrógeno/metabolismo
14.
J Insect Sci ; 24(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573061

RESUMEN

Soybean (Glycine max (L.) Merr.) is an important agricultural crop around the world, and previous studies suggest that honey bees (Apis mellifera Linnaeus) can be a component for optimizing soybean production through pollination. Determining when bees are present in soybean fields is critical for assessing pollination activity and identifying periods when bees are absent so that bee-toxic pesticides may be applied. There are currently several methods for detecting pollinator activity, but these existing methods have substantial limitations, including the bias of pan trappings against large bees and the limited duration of observation possible using manual techniques. This study aimed to develop a new method for detecting honey bees in soybean fields using bioacoustics monitoring. Microphones were placed in soybean fields to record the audible wingbeats of foraging bees. Foraging activity was identified using the wingbeat frequency of honey bees (234 ±â€…14 Hz) through a combination of algorithmic and manual approaches. A total of 243 honey bees were detected over 10 days of recording in 4 soybean fields. Bee activity was significantly greater in blooming fields than in non-blooming fields. Temperature had no significant effect on bee activity, but bee activity differed significantly between soybean varieties, suggesting that soybean attractiveness to honey bees is heavily dependent on varietal characteristics. Refinement of bioacoustics methods, particularly through the incorporation of machine learning, could provide a practical tool for measuring the activity of honey bees and other flying insects in soybeans as well as other crops and ecosystems.


Asunto(s)
Himenópteros , Abejas , Animales , Glycine max , Ecosistema , Productos Agrícolas , Polinización
15.
Front Biosci (Elite Ed) ; 16(1): 3, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38538520

RESUMEN

Tempeh is an Indonesian traditional food made from fermented soybeans, which offers wide culinary use in East Asian countries. Similar to all fermented foods, its preparation offers the purpose of food preservation. However, preclinical studies have highlighted that microbial action leads to a modification in the nutritional composition of the food's matrix. Although there is a wide availability of data on the beneficial effect of soy, tempeh remains relatively unexplored, perhaps due to its limited diffusion in the world, which limits its research availability. However, available data suggest that tempeh may confer beneficial health effects due to the high bioavailability of nutrients and phytochemicals, showing ameliorative action on oxidative stress, glycaemic control, and blood lipid levels. Furthermore, the high biological value of tempeh means it can be used to optimize protein and caloric intake in athletes, vegetarians, and children. Moreover, the microbial fermentation used in the production of tempeh, in addition to improving the bioavailability of minerals, proteins, fibre, vitamins, and isoflavones, produces biopeptides whose biological effect is currently of great interest. Tempeh can be employed in traditional preparations as well as second-generation foods, such as plant-based meat substitutes, to provide functional and nutritional properties and a higher eco-friendly option compared to animal foods. This review aims to provide an overview of tempeh's properties, regarding human data and future research perspectives.


Asunto(s)
Isoflavonas , Alimentos de Soja , Animales , Niño , Humanos , Alimentos Funcionales , Isoflavonas/metabolismo , Glycine max
16.
An. Fac. Med. (Perú) ; 85(1): 21-27, ene.-mar. 2024. tab
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1556796

RESUMEN

RESUMEN Introducción. El consumo de alimentos industrializados que contienen organismos genéticamente modificados (OGM) se ha incrementado notablemente. Desde su inicio ha generado crecientes controversias debido a que se considera de riesgo para la salud. En Perú se carece de información científica sobre los OGM en alimentos industrializados. Objetivo. Detectar y cuantificar molecularmente los indicadores de transgenicidad P35S y TNOS, y la soya transgénica Roundup Ready en alimentos industrializados de soya; y verificar su mención en la etiqueta. Métodos. Analizamos 30 muestras, para extraer el ADN utilizamos los kits Dneasy Mericon Food y Dneasy Power Soil. Para la detección y cuantificación de las secuencias transgénicas usamos la técnica PCR en tiempo real con los kits Mericon. Resultados. Detectamos transgenicidad en el 100% de las muestras y soya Roundup Ready en el 66,7%. El número de copias/mL o g de muestra osciló entre 1,21E+0 y 8,88E+7. En el etiquetado del 93,3% de las muestras no hubo referencia a componentes transgénicos. Conclusión. Los hallazgos evidencian la urgente necesidad de que la legislación vigente se actualice de acuerdo con los conocimientos científicos y el desarrollo socioeconómico del país, protegiendo la salud y el derecho a la información de la población.


ABSTRACT Introduction. The consumption of industrialized foods that contain genetically modified organisms (GMOs) has increased significantly. Since its inception, it has generated growing controversies because it is considered a health risk. In Peru there is a lack of scientific information on GMOs in industrialized foods. Objetive. Molecularly detect and quantify transgenicity indicators P35S and TNOS, and of Roundup Ready transgenic soybeans in industrialized soy foods and verify their mention on the label. Methods. 30 samples were analyzed; To extract the DNA, the Dneasy Mericon Food and Dneasy Power Soil Kits were used, and for the detection and quantification of the transgenic sequences, the real-time PCR technique with the Mericon kits. In addition, the labeling was reviewed. Results. Transgenicity was detected in 100% of the samples and Soy RR in 66,67%; The number of copies/mL or g of sample ranged between 1,21E+0 and 8,88E+7 and in the labeling of 93,3% of the samples there was no reference to transgenic components. Conclusion. The findings show the urgent need for current legislation to be updated in accordance with the scientific knowledge and the socioeconomic development of the country, protecting health and the right to population information.

17.
J Dairy Sci ; 107(6): 3642-3650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38216039

RESUMEN

We evaluate the potential economic impact of using high-oleic soybeans (HOS) in dairy rations based on a synthesis of results from 5 prior feeding trials. Milk income less feed costs (MILFC) per cow per day is calculated based on assumed increases in milkfat production and increased cost of rations including HOS. The effects of changes in MILFC are evaluated for herds with different numbers of milking cows, and the total volume of HOS required to support different proportions of US dairy cows is calculated. A dynamic supply-chain model assesses the potential market impacts of increases in butterfat supply. The increase in milkfat from the substitution of 5% of ration dry matter with whole HOS (1.4 kg/cow per day) has the potential to increase MILFC by up to $0.27/cow per day or increase the average value of milk by $0.29/45.4 kg for a cow producing 41 kg/d. Changes in MILFC are highly correlated with the price of butter but were positive for butter prices observed from January 2014 to September 2020. The effects of HOS on MILFC suggest the potential for increases in farm profitability of $33,000/yr for a dairy feeding 500 milking cows. Scaled-up use of HOS by US dairy farmers would increase butterfat supplies and lower the butterfat price to a small extent, but these aggregated effects do not offset the positive effects of MILFC at the farm level.


Asunto(s)
Alimentación Animal , Industria Lechera , Dieta , Glycine max , Lactancia , Leche , Animales , Bovinos , Leche/economía , Femenino , Alimentación Animal/economía , Industria Lechera/economía , Dieta/veterinaria
18.
Plant Foods Hum Nutr ; 79(1): 1-11, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38117392

RESUMEN

Soybean-based fermented foods are commonly consumed worldwide, especially in Asia. These fermented soy-products are prepared using various strains of Bacillus, Streptococcus, Lactobacillus, and Aspergillus. The microbial action during fermentation produces and increases the availability of various molecules of biological significance, such as isoflavones, bioactive peptides, and dietary fiber. These dietary bio active compounds are also found to be effective against the metabolic disorders such as obesity, diabetes, and cardiovascular diseases (CVD). In parallel, soy isoflavones such as genistein, genistin, and daidzin can also contribute to the anti-obesity and anti-diabetic mechanisms, by decreasing insulin resistance and oxidative stress. The said activities are known to lower the risk of CVD, by decreasing the fat accumulation and hyperlipidemia in the body. In addition, along with soy-isoflavones fermented soy foods such as Kinema, Tempeh, Douchi, Cheonggukjang/Chungkukjang, and Natto are also rich in dietary fiber (prebiotic) and known to be anti-dyslipidemia, improve lipolysis, and lowers lipid peroxidation, which further decreases the risk of CVD. Further, the fibrinolytic activity of nattokinase present in Natto soup also paves the foundation for the possible cardioprotective role of fermented soy products. Considering the immense beneficial effects of different fermented soy products, the present review contextualizes their significance with respect to their anti-obesity, anti-diabetic and cardioprotective roles.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Alimentos Fermentados , Isoflavonas , Alimentos de Soja , Enfermedades Cardiovasculares/prevención & control , Isoflavonas/farmacología , Obesidad/prevención & control , Diabetes Mellitus/prevención & control , Fibras de la Dieta , Fermentación
19.
Poult Sci ; 102(12): 103152, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37967503

RESUMEN

High-oleic (HO) soybean may serve as a value-added feed ingredient to enrich poultry meat due to its fatty acid content. However, the amino acid (AA) nutrient digestibility of soybean meal (SBM) made from these soybeans has yet to be determined. The objective of this study was to determine apparent ileal AA digestibility (AID) and standardized ileal AA digestibility (SID) of high-oleic full-fat (HO-FF) SBM compared to normal oleic full-fat (NO-FF), normal oleic extruded expeller (NO-EE), and solvent-extracted SBM (SE-SBM) in broilers. A nitrogen-free basal diet (NFD) was fed to 1 treatment group with 10 chicks/cage to determine basal endogenous losses (BEL). Titanium dioxide was used as an inert marker. The test diets contained 57.5% of the basal NFD and 42.5% of 1 of the 4 soybean sources. A total of 272 Ross-708 male broilers were placed in 40 battery cages with 5 treatments and 8 replicates per treatment. A common starter diet was provided to all the chickens for 14 d. Experimental diets were provided as a mash for 9 d before sample collection. Chickens were euthanized with CO2 on d 23, and contents of the distal ileum were collected, frozen, and freeze-dried. The BEL were similar to the values found in the literature. At d 23, broilers fed the SE-SBM had the highest body weight gain and best FCR compared to chickens fed the HO-FF and NO-FF treatments (P < 0.001). Broilers fed the SE-SBM and NO-EE experimental diets had (P < 0.001) higher apparent ileal AA digestibility and AA SID than broilers fed the HO-FF and NO-FF treatments. In conclusion, the SID of AA from HO-FF is similar to the digestibilities of other full-fat soybeans found in the literature and is lower than that of NO-EE and SE-SBM.


Asunto(s)
Aminoácidos , Glycine max , Animales , Masculino , Aminoácidos/metabolismo , Pollos/metabolismo , Harina , Digestión , Dieta/veterinaria , Nutrientes , Íleon/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
20.
Plants (Basel) ; 12(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570942

RESUMEN

Salinization is a global agricultural problem with many negative effects on crops, including delaying germination, inhibiting growth, and reducing crop yield and quality. This study compared the salt tolerance of 20 soybean varieties at the germination stage to identify soybean germplasm with a high salt tolerance. Germination tests were conducted in Petri dishes containing 0, 50, 100, 150, and 200 mmol L-1 NaCl. Each Petri dish contained 20 soybean seeds, and each treatment was repeated five times. The indicators of germination potential, germination rate, hypocotyl length, and radicle length were measured. The salt tolerance of 20 soybean varieties was graded, and the theoretical identification concentration was determined by cluster analysis, the membership function method, one-way analysis of variance, and quadratic equation analysis. The relative germination rate, relative germination potential, relative root length, and relative bud length of the 20 soybean germplasms decreased when the salt concentration was >50 mmol L-1, compared with that of the Ctrl. The half-lethal salt concentration of soybean was 164.50 mmol L-1, and the coefficient of variation was 18.90%. Twenty soybean varieties were divided into three salt tolerance levels following cluster analysis: Dongnong 254, Heike 123, Heike 58, Heihe 49, and Heike 68 were salt-tolerant varieties, and Xihai 2, Suinong 94, Kenfeng 16, and Heinong 84 were salt-sensitive varieties, respectively. This study identified suitable soybean varieties for planting in areas severely affected by salt and provided materials for screening and extracting parents or genes to breed salt-tolerant varieties in areas where direct planting is impossible. It assists crop breeding at the molecular level to cope with increasingly serious salt stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA