Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
J Hazard Mater ; 480: 136034, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366041

RESUMEN

An eight-compartment physiologically based pharmacokinetic (PBPK) model was used to simulate the bioaccumulation and distribution of arsenic (As) within the apple snail (Pomacea canaliculata) following the ingestion of As-contaminated lettuce. The bioaccumulation results revealed that the shell contained the majority (67.21 %) of the total As content, with the liver and the head-foot containing approximately 11.14 % and 10.45 % of the total As content in the snail, respectively. Modeling quantified the process of intestine-stomach absorption of dietborne As and revealed its crucial role in the subsequent distribution of As within the body. The liver is the primary metabolic site, whereas the shell is the primary storage site. Exposure to dietborne As leads to pronounced physiological and biochemical alterations in apple snails. Total protein levels decreased by 24.06 %, superoxide dismutase (SOD) activity decreased by 24.43 %, malondialdehyde (MDA) content increased by 47.51 %, glutathione (GSH) content decreased by 46.99 %, and glutathione S-transferase (GST) activity decreased by 42.22 %. Furthermore, the subcellular-level results indicated that dietborne As exposure altered subcellular distribution in the liver. Additionally, dietborne As exposure significantly reduced the abundance of gut microbiota in apple snails.

2.
Plant Physiol Biochem ; 216: 109177, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39393279

RESUMEN

Biochar can reduce Cd uptake by plants, thereby reducing its biotoxicity, but the mechanisms involved at the subcellular level have not been thoroughly elucidated. In this work, we explored the effect of maize straw biochar on Cd accumulation by Bidens pilosa L. and its mechanism at subcellular levels. After 90 days of potting experiment, the subcellular fractions were extracted by differential centrifugation, and the polysaccharide fractions of root cell walls were extracted by leaching centrifugation, and then the Cd content of each fraction was determined. Results showed that Cd was preferentially distributed in cell walls of three organs. Additionally, biochar addition resulted in a greater distribution of Cd from cell wall to soluble fractions and organelles in stems. These results suggested that cell wall immobilization and intracellular compartmentalization were critical detoxification mechanisms tackling Cd stress with biochar addition of Bidens pilosa L. Pectin was the main sink where Cd was stored. And galacturonic acid content in pectin occupied the highest ratio among the three polysaccharide fractions. After biochar addition, in hemicellulose the change of Cd content was consistent with the change of galacturonic acid content. These results suggested that the galacturonic acid in hemicellulose played an important role in Cd binding. Biochar addition reduced the bioavailability of soil Cd and improved the growth environment, thus inducing Bidens pilosa L. to change the composition of root cell wall in response to Cd stress.

3.
Plants (Basel) ; 13(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39339613

RESUMEN

Although previous studies have demonstrated that methane (CH4) can mitigate the toxicity of cadmium (Cd) in alfalfa seedlings, the CH4-rich water used in these studies may create hypoxic conditions, potentially influencing the experimental outcomes. Therefore, this study aimed to investigate whether CH4 can reduce Cd toxicity in alfalfa seedlings without the interference of hypoxia and to analyze its underlying mechanisms. Here, it was observed that supplementing oxygen with saturated CH4-rich water can significantly alleviate the inhibition of 75 µM CdCl2 on the growth of alfalfa (Medicago sativa L.) seedlings. Less Cd accumulation was also observed in both root and shoot parts, which could be explained by the CH4-altered cell wall components in alfalfa seedling roots, including covalent and ionic soluble pectin, and the degree of demethylation in pectin, thus enabling a higher proportion of Cd binding to the cell walls and reducing the entry of Cd into the cells. The above actions of CH4 were accompanied by an increase in hydrogen peroxide (H2O2) content and NADPH oxidase activity, which could be blocked by the addition of the NADPH oxidase inhibitor diphenylene iodonium (DPI). Taken together, these results implied that exogenously applied CH4 could alleviate Cd toxicity in alfalfa seedlings by enhancing Cd chelation onto the root cell walls, which might be closely associated with NADPH oxidase-dependent H2O2 signals. These findings could provide insight into the mechanism through which CH4 alleviates Cd toxicity in alfalfa plants.

4.
Front Plant Sci ; 15: 1457694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258293

RESUMEN

Boron (B), an essential micronutrient for fruit development, also plays a crucial role in maintaining the shelf life of strawberries (Fragaria ananassa Duch.) by affecting cell wall structure and components. We investigated the distribution pattern of B within cells and cell walls in strawberry fruits under different B levels and revealed the relationship between the B distribution in cell walls and fruit firmness after harvesting. Foliar spraying of 0.1% H3BO3 promoted the growth of strawberry seedlings and improved fruit yield and flesh firmness by 45.7% and 25.6%. During the fruit softening and decay process, the content of bound B and cell wall-B decreased while more B was allocated to the protoplast and apoplast. The changes in B distribution in cells were attributed to cell damage during fruit decay, and B extended the freshness period of the fruits by alleviating the decrease of B distribution in cell walls. After leaving the fruits at room temperature for 10 h, the B content in different cell wall components significantly decreased, while foliar spraying of B alleviated the reduction of B content in covalently bound pectin (CBP), cellulose, and hemicellulose. Meanwhile, B spraying on fruit decreased the activity of cell wall degradation enzymes, including polygalacturonase (PG) and pectin lyase (PL), by 20.2% and 38.1%, while enhancing the demethylation of pectin by increasing pectin methylesterase (PME) activity from 21.6 U/g to 25.7 U/g. Thus, foliar spraying of 0.1% H3BO3 enhances the cross-linking of B with cell wall components and maintains cell wall structure, thereby prolonging the shelf life of strawberry fruits.

5.
Pestic Biochem Physiol ; 204: 106018, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277354

RESUMEN

The biological behavior of flusulfinam, a potential commercial chiral herbicide for rice, has not been well explored. Herein, the uptake of chiral flusulfinam by rice and its transport, degradation, and subcellular distribution in rice (Oryza sativa L.) were investigated. The enantiomeric fraction (EF) in roots was 0.54 during 0 d to 7 d in hydroponic laboratory conditions. The bioconcentration factor of flusulfinam enantiomers was 2.1, suggesting an absence of observed enantioselectivity in the absorption process. Notably, the EF in the shoots decreased to 0.35 on the 7th day. The translocation factors of R- and S-flusulfinam were 0.12 and 0.27, respectively, indicating a preferential transfer of the S-flusulfinam from the root to the shoot. Flusulfinam was identified in the root after spraying. The translocation factors of R- and S-flusulfinam were consistently similar, signifying the capacity for downward movement without enantioselectivity. Interestingly, the degradation half-lives of R- and S-flusulfinam in the total plant were 5.50 and 5.06 d (p < 0.05), respectively, supporting the preferential degradation of S-flusulfinam throughout the total plant. Flusulfinam primarily entered the roots via the apoplastic pathway and was subsequently transported within the plant through aquaporins and ion channels. The subcellular distribution experiment revealed the predominant accumulation of flusulfinam enantiomers in soluble components (84%) with no enantioselectivity in these processes. There was upregulation lipid transfer protein-2 and carboxylesterases15 genes, which could explain the preferential transport and degradation of S-flusulfinam. This study is important in assessing the environmental risk associated with flusulfinam and ensuring food safety.


Asunto(s)
Herbicidas , Oryza , Oryza/metabolismo , Herbicidas/metabolismo , Estereoisomerismo , Transporte Biológico , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
6.
Environ Pollut ; 362: 124956, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278560

RESUMEN

The hard-shell mussels Mytilus coruscus have been extensively employed in pollution biomonitoring. Earlier studies indicated that metal concentrations in Mytilus coruscus may not accurately reflect the true metal contamination levels in the sampling areas, possibly due to their modified metal uptake and efflux. Given the likelihood of mussels in the field being exposed to intermittent metal contaminants, this study investigated whether different Cu pre-exposures significantly affected its uptake and efflux upon Cu exposure. We found significant reduction in Cu uptake rate constant (ku) and efflux rate constant (ke) in the mussels with varying Cu pre-exposure regimes. Specifically, the ku decreased from 1.55 ± 0.37 L g-1 d-1 in the control group to 0.65 ± 0.19 after 5 days and 0.53 ± 0.28 after 15 days of exposure to 20 µg L-1 Cu, respectively, and then was further reduced to as low as 0.096 ± 0.046 L g-1 d-1 following a 5-day exposure at 50 µg L-1 Cu. Similarly, the ke decreased from 0.18 ± 0.020 to 0.15 ± 0.015 d-1 following 5-15 days of exposure to 20 µg L-1 Cu, and further decreased to 0.081 ± 0.023 d-1 after a 5-day exposure at 50 µg L-1 Cu. Our subcellular distribution analysis underscored the critical role of the metallothionein-like protein (MTLP) fraction in modifying both Cu ku and ke during the rapid-depuration phase (ke1), whereas the metal-rich granule (MRG) fraction influenced the ke during the second depuration phase (ke2). This study demonstrated that environmental assessments utilizing biomonitoring species should consider the exposure of these organisms to ensure accurate interpretations of metal contamination in marine ecosystems and enhance the effectiveness of these species in environmental monitoring. This crucial factor is often overlooked, potentially skewing data and leading to misinterpretations of environmental health and pollution levels.

7.
Ecotoxicol Environ Saf ; 285: 117089, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39332204

RESUMEN

The effect of calcium (Ca)-cadmium (Cd) interactions on the plant Cd bioaccumulation process may be closely related to the ecological Ca/Cd stoichiometry in the substrate. However, owing to the complexity of plant absorption, accumulation mechanisms and influencing factors, the mechanism of Ca-mediated Cd bioaccumulation and Cd tolerance in Capsicum is still unclear. In this study, the bioaccumulation, subcellular distribution and chemical forms of Cd in Capsicum were analysed via pot experiments to reveal the Ca-mediated Cd bioaccumulation process and its detoxification mechanism under different Ca/Cd stoichiometric ratios. The results revealed that an increase in the substrate Ca/Cd ratio promoted the accumulation of Cd in the roots; restricted the transport of Cd to the stems, leaves and peppers; and promoted the accumulation of Cd in the aboveground leaves but decreased its accumulation in edible parts. Cd was enriched mainly in the cell wall and cell-soluble fraction in each tissue and was enriched in only 1 %-13 % of the organelles. The accumulation of Cd in the cell wall and cell-soluble fractions of roots treated with different Ca concentrations increased by 56.57 %-236.98 % and 64.41 %-442.14 %, respectively. The carboxyl, hydroxyl and amino groups on the root cell wall play important roles in binding and fixing Cd2+. Moreover, the increase in the Ca content also increased the proportion of pectin and protein-bound Cd (F-NaCl), insoluble phosphate-bound Cd (F-C) and insoluble oxalate-bound Cd (F-HCl) in the roots, stems and leaves and reduced the proportion of highly active chemical forms such as inorganic acid salt-bound Cd (F-E) and water-soluble phosphate-bound Cd (F-W). Our study revealed that the bioaccumulation of Cd in Capsicum was influenced by the Ca/Cd ratio and that Ca could alleviate Cd stress by regulating the subcellular distribution and chemical form ratio of Cd in different tissues where the cell wall plays an important role in Cd tolerance and detoxification.


Asunto(s)
Cadmio , Calcio , Capsicum , Hojas de la Planta , Raíces de Plantas , Capsicum/efectos de los fármacos , Capsicum/química , Cadmio/toxicidad , Calcio/metabolismo , Hojas de la Planta/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/química , Contaminantes del Suelo/toxicidad , Bioacumulación , Pared Celular/química , Pared Celular/efectos de los fármacos
8.
J Hazard Mater ; 480: 135837, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288520

RESUMEN

The substitutions of alternatives to legacy per- and polyfluoroalkyl substances (PFASs) may lead to unknown and variational joint toxicity on ecosystems. To comprehensively understand the effects of substitutions on aquatic ecosystems, the single and joint effects of perfluorooctanoic acid (PFOA) and its alternatives (perfluorobutanoic acid, PFBA; 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3,heptafluoropropoxy)propanoic acid, GenX) with various concentrations and compositions on a primary producer, coontail (Ceratophyllum demersum), were investigated at cellular level. Results showed that the substitutions of PFBA/GenX could alleviate the inhibition of PFOA on plant length, hydrogen peroxide accumulation, and chlorophyll b, due to the shifts of reactive oxygen species and their less toxicity to antioxidants. Significant up-regulations of superoxide dismutase, glutathione, and carotenoid implied their primary roles in defensing against PFASs (p < 0.05). Catalase/peroxidase was significantly up-regulated in PFBA/GenX substitutions (p < 0.05) to help alleviate stress. PFBA substitutions reduced 23.9 % of PFOA in organelle and GenX reduced the subcellular concentrations of PFOA by 1.8-17.4 %. Redundancy analysis suggested that PFOA, PFBA, and GenX in cell wall and organelle, as well as GenX in soluble fractions, were responsible for the cellular responses. These findings were helpful to understand the integrated effects on aquatic ecosystems during the substitutions to legacy PFASs by alternatives.

9.
BMC Biol ; 22(1): 205, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267057

RESUMEN

BACKGROUND: MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, and the same for all isoforms of a sncRNA. RESULTS: We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biological replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast (MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contamination and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abundances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend on each sncRNA's exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose sequences differ by a few nucleotides (nts) can have different subcellular distributions. CONCLUSIONS: SncRNAs with similar sequences have different subcellular distributions within and across cell lines, suggesting that each isoform could have a different function. Future computational and experimental studies of isomiRs, tRFs, and rRFs will need to distinguish among each molecule's various isoforms and account for differences in each isoform's subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed to exclude alternative explanations for the observed subcellular distribution of sncRNAs.


Asunto(s)
MicroARNs , ARN Ribosómico , ARN de Transferencia , MicroARNs/genética , MicroARNs/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Humanos , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Secuencia de Bases , Isoformas de ARN/genética , Línea Celular Tumoral , Línea Celular
10.
Environ Pollut ; 359: 124725, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142427

RESUMEN

Cadmium (Cd) and arsenic (As) have contrasting biogeochemical behaviors in paddy soil, which posed an obstacle for reducing their accumulation in rice (Oryza sativa L.) simultaneously. In this study, selenate exhibited a more effective ability than selenite on simultaneous alleviation of Cd and As accumulation in rice under Cd-As co-exposure, and the mechanisms need to be further investigated. The results showed that selenate significantly decreased the root Cd and As contents by 59%-83% and 43%-72% compared to Cd-As compound exposure, respectively. Correspondingly, it significantly down-regulated the expression of uptake-related genes OsNramp5 (87.1%) and OsLsi1 (95.5%) in rice roots. Decreases in Cd (64.5%) and As (16.2%) contents in shoots were also found after selenate addition. Moreover, selenate may promoted the reduction of As(V) to As(Ⅲ) and As(III) efflux to the external medium, resulting in decreased As accumulation and As(Ⅲ) proportion in rice shoots and roots. In addition, selenate could promote the binding of Cd (by 14%-24%) and As (by 9%-15%) in the cell wall, and significantly reduced the oxidative stress by elevating levels of antioxidant enzymes (by 10%-105%) and thiol compounds (by 6%-210%). Additionally, selenate significantly down-regulated the expression of OsNramp1 (49.3%) and OsLsi2 (82.1%) associated with Cd and As transport in rice. These findings suggest selenate has the potential to be an effective material for the simultaneous reduction of Cd and As accumulation in rice under Cd-As co-contamination.


Asunto(s)
Arsénico , Cadmio , Oryza , Ácido Selénico , Contaminantes del Suelo , Oryza/genética , Oryza/metabolismo , Cadmio/metabolismo , Arsénico/metabolismo , Ácido Selénico/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126047

RESUMEN

Plants communicate underground by secreting multiple amino acids (AAs) through their roots, triggering defense mechanisms against cadmium (Cd) stress. However, the specific roles of the individual AAs in Cd translocation and detoxification remain unclear. This study investigated how exogenous AAs influence Cd movement from the roots to the shoots in Cd-resistant and Cd-sensitive Chinese cabbage cultivars (Jingcui 60 and 16-7 cultivars). The results showed that methionine (Met) and cysteine (Cys) reduced Cd concentrations in the shoots of Jingcui 60 by approximately 44% and 52%, and in 16-7 by approximately 43% and 32%, respectively, compared to plants treated with Cd alone. However, threonine (Thr) and aspartic acid (Asp) did not show similar effects. Subcellular Cd distribution analysis revealed that AA supplementation increased Cd uptake in the roots, with Jingcui 60 preferentially storing more Cd in the cell wall, whereas the 16-7 cultivar exhibited higher Cd concentrations in the organelles. Moreover, Met and Cys promoted the formation of Cd-phosphate in the roots of Jingcui 60 and Cd-oxalate in the 16-7 cultivar, respectively. Further analysis showed that exogenous Cys inhibited Cd transport to the xylem by downregulating the expression of HMA2 in the roots of both cultivars, and HMA4 in the 16-7 cultivar. These findings provide insights into the influence of exogenous AAs on Cd partitioning and detoxification in Chinese cabbage plants.


Asunto(s)
Aminoácidos , Brassica , Cadmio , Raíces de Plantas , Cadmio/toxicidad , Cadmio/metabolismo , Brassica/metabolismo , Brassica/efectos de los fármacos , Aminoácidos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Transporte Biológico , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
12.
Sci Total Environ ; 947: 174765, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004362

RESUMEN

Widely-used C60 fullerene nanoparticles (C60) result in their release into the aquatic environment, which may affect the distribution and toxicity of pollutants such as arsenic (As), to aquatic organism. In this study, arsenate (As(V)) accumulation, speciation and subcellular distribution was determined in Danio rerio (zebrafish) intestine, head and muscle tissues in the presence of C60. Meanwhile we compared how single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and graphene (GN) nanoparticles alter the behaviors of As(V). Results showed that C60 significantly inhibited As accumulation and toxicity in D. rerio, due to a decrease in total As and monomethylarsonic acid (MMA) and As(V) species concentrations, a lower relative distribution in the metal-sensitive fraction (MSF). It was attributed that C60 may coat As(V) ion channels and consequently, affect the secretion of digestive enzymes in the gut, favoring As excretion and inhibiting As methylation. Similarly, MWCNTs reduced the species concentration of MMA and As(V) in the intestines, low GSH (glutathione) contents in the intestine. Due to the disparity of other carbon-based nanomaterial morphologies, SWCNTs, GO and GN exhibited the various effects on the toxicity of As(V). In addition, the possible pathway of arsenobetaine (AsB) biosynthesis included migration from the intestine to muscle in D. rerio, with the precursor of AsB likely to be 2-dimethylarsinylacetic acid (DMAA). The results of this study suggest that C60 is beneficial for controlling As(V) pollution and reducing the impact of As(V) biogeochemical cycles throughout the ecosystem.


Asunto(s)
Arseniatos , Fulerenos , Nanopartículas , Contaminantes Químicos del Agua , Pez Cebra , Fulerenos/toxicidad , Animales , Arseniatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Nanotubos de Carbono/toxicidad , Grafito/toxicidad
13.
J Hazard Mater ; 476: 135155, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38991637

RESUMEN

The gap between serious soil heavy metals pollution and inefficient soil remediation threatens human health. This study proposed a method to improve the phytoremediation efficiency using bamboo vinegar (BV) solution and the potential mechanism was discussed. The results demonstrated that the application of BV increases the content of cadmium (Cd) in vacuole and cell wall hemicellulose 2 in leaves of Perilla frutescens. Simultaneously, it enhanced enzyme activities of superoxide dismutase and catalase in leaves. Therefore, this process alleviated the damage of Cd to functional tissues of Perilla frutescens, thus improving the tolerance of plants to Cd. Moreover, the BV application reduced the Cd content bound by root cell wall pectin fractions and insoluble phosphate, subsequently improving the ability of oxalic acids to carry Cd to the aerial parts. Consequently, the aerial parts obtained a larger amount of Cd enrichment. Overall, the Transfer Factor of Cd from roots to stems and enrichment of Cd in Perilla frutescens were maximally increased by 57.70 % and 54.03 % with the application of 50-fold and 300-fold diluted BV under 2 mg·L-1 Cd stress, respectively. The results can provide a theoretical basis for the promotion of phytoremediation of Cd-contaminated soil treatment technology.


Asunto(s)
Ácido Acético , Biodegradación Ambiental , Cadmio , Perilla frutescens , Contaminantes del Suelo , Cadmio/metabolismo , Cadmio/toxicidad , Ácido Acético/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Perilla frutescens/metabolismo , Perilla frutescens/química , Lípidos de la Membrana/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Polisacáridos/metabolismo
14.
J Environ Manage ; 364: 121428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879966

RESUMEN

The use of wetland plants in the context of phytoremediation is effective in the removal of antibiotics from contaminated water. However, the effectiveness and efficiency of many of these plants in the removal of antibiotics remain undetermined. In this study, the effectiveness of two plants-Phragmites australis and Iris pseudacorus-in the removal of tetracycline (TC) in hydroponic systems was investigated. The uptake of TC at the roots of I. pseudacorus and P. australis occurred at concentrations of 588.78 and 106.70 µg/g, respectively, after 7-day exposure. The higher uptake of TC in the root of I. pseudacorus may be attributed to its higher secretion of root exudates, which facilitate conditions conducive to the reproduction of microorganisms. These rhizosphere-linked microorganisms then drove the TC uptake, which was higher than that in the roots of P. australis. By elucidating the mechanisms underlying these uptake-linked outcomes, we found that the uptake of TC for both plants was significantly suppressed by metabolic and aquaporin inhibition, suggesting uptake and transport of TC were active (energy-dependent) and passive (aquaporin-dominated) processes, respectively. The subcellular distribution patterns of I. pseudacorus and P. australis in the roots were different, as expressed by differences in organelles, cell wall concentration levels, and transport-related dynamics. Additionally, the microbe-driven enhancement of the remediation capacities of the plants was studied comprehensively via a combined microbial-phytoremediation hydroponic system. We confirmed that the microbial agents increased the secretion of root exudates, promoting the variation of TC chemical speciation and thus enhancing the active transport of TC. These results contribute toward the improved application of wetland plants in the context of antibiotic phytoremediation.


Asunto(s)
Biodegradación Ambiental , Raíces de Plantas , Tetraciclina , Humedales , Tetraciclina/metabolismo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Rizosfera , Hidroponía
15.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928353

RESUMEN

The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the thioredoxin (Trx)/thioredoxin reductase (TrxR) proteins, capable of linking the protein thiol and pyridine nucleotide pools in different compartments. It was shown that specific activity of TrxR in the ER is undetectable, whereas higher activities were measured in the cytoplasm and mitochondria. None of the Trx/TrxR isoforms were expressed in the ER by Western blot analysis. Co-localization studies of various isoforms of Trx and TrxR with ER marker Grp94 by immunofluorescent analysis further confirmed their absence from the lumen. The probability of luminal localization of each isoform was also predicted to be very low by several in silico analysis tools. ER-targeted transient transfection of HeLa cells with Trx1 and TrxR1 significantly decreased cell viability and induced apoptotic cell death. In conclusion, the absence of this electron transfer chain may explain the uncoupling of the redox systems in the ER lumen, allowing parallel presence of a reduced pyridine nucleotide and a probably oxidized protein pool necessary for cellular viability.


Asunto(s)
Retículo Endoplásmico , Oxidación-Reducción , Reductasa de Tiorredoxina-Disulfuro , Tiorredoxinas , Humanos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Mitocondrias/metabolismo , Apoptosis , Supervivencia Celular
16.
Environ Int ; 188: 108765, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810495

RESUMEN

Pyrrolizidine alkaloids (PAs) and their N-oxide (PANOs), as emerging environmental pollutants and chemical hazards in food, have become the focus of global attention. PAs/PANOs enter crops from soil and reach edible parts, but knowledge about their uptake and transport behavior in crops is currently limited. In this study, we chose tea (Camellia sinensis L.) as a representative crop and Sp/SpNO as typical PAs/PANOs to analyze their root uptake and transport mechanism. Tea roots efficiently absorbed Sp/SpNO, utilizing both passive and active transmembrane pathways. Sp predominantly concentrated in roots and SpNO efficiently translocated to above-ground parts. The prevalence of SpNO in cell-soluble fractions facilitated its translocation from roots to stems and leaves. In soil experiment, tea plants exhibited weaker capabilities for the uptake and transport of Sp/SpNO compared to hydroponic conditions, likely due to the swift degradation of these compounds in the soil. Moreover, a noteworthy interconversion between Sp and SpNO in tea plants indicated a preference for reducing SpNO to Sp. These findings represent a significant stride in understanding the accumulation and movement mechanisms of Sp/SpNO in tea plants. The insights garnered from this study are pivotal for evaluating the associated risks of PAs/PANOs and formulating effective control strategies.


Asunto(s)
Camellia sinensis , Alcaloides de Pirrolicidina , Contaminantes del Suelo , Camellia sinensis/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Transporte Biológico , Hojas de la Planta/metabolismo , Suelo/química
17.
Adv Mater ; 36(25): e2400425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574376

RESUMEN

Active transcytosis-mediated nanomedicine transport presents considerable potential in overcoming diverse delivery barriers, thereby facilitating tumor accumulation and penetration. Nevertheless, the persistent challenge lies in achieving a nuanced equilibrium between intracellular interception for drug release and transcytosis for tumor penetration. In this study, a comprehensive exploration is conducted involving a series of polyglutamine-paclitaxel conjugates featuring distinct hydrophilic/hydrophobic ratios (HHR) and tertiary amine-oxide proportions (TP) (OPGA-PTX). The screening process, meticulously focused on delineating their subcellular distribution, transcytosis capability, and tumor penetration, unveils a particularly promising candidate denoted as OPPX, characterized by an HHR of 10:1 and a TP of 100%. OPPX, distinguished by its rapid cellular internalization through multiple endocytic pathways, selectively engages in trafficking to the Golgi apparatus for transcytosis to facilitate accumulation within and penetration throughout tumor tissues and simultaneously sorted to lysosomes for cathepsin B-activated drug release. This study not only identifies OPPX as an exemplary nanomedicine but also underscores the feasibility of modulating subcellular distribution to optimize the active transport capabilities and intracellular release mechanisms of nanomedicines, providing an alternative approach to designing efficient anticancer nanomedicines.


Asunto(s)
Paclitaxel , Transcitosis , Humanos , Paclitaxel/farmacología , Paclitaxel/química , Animales , Liberación de Fármacos , Línea Celular Tumoral , Portadores de Fármacos/química , Ratones , Espacio Intracelular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lisosomas/metabolismo
18.
Front Plant Sci ; 15: 1362804, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567129

RESUMEN

Calcium plays a crucial role in plant growth and development, yet little is known about its function in endodormancy regulation. Tree peony (Paeonia suffruticosa), characterized by compound buds and large flowers, is well-known for its ornamental and medicinal value. To break bud dormancy release is a prerequisite of flowering and forcing culture, particularly during the Spring Festival. In this study, the Ca2+ chelator EGTA and Ca2+ channel blocker LaCl3 were applied, resulting in a significant delay in budburst during both chilling- and gibberellin (GA)- induced dormancy release in a dosage-dependent manner. As expected, the retardation of bud break was recovered by the supplementation of 30 mM CaCl2, indicating a facilitating role of calcium in dormancy release. Accordingly, several calcium-sensor-encoding genes including Calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs) were significantly up-regulated by prolonged chilling and exogenous GAs. Ultrastructure observations revealed a decline in starch grains and the reopening of transport corridors following prolonged chilling. Calcium deposits were abundant in the cell walls and intercellular spaces at the early dormant stage but were enriched in the cytosol and nucleus before dormancy release. Additionally, several genes associated with dormancy release, including EBB1, EBB3, SVP, GA20ox, RGL1, BG6, and BG9, were differentially expressed after calcium blocking and recovery treatments, indicating that calcium might partially modulate dormancy release through GA and ABA pathways. Our findings provide novel insights into the mechanism of dormancy release and offer potential benefits for improving and perfecting forcing culture technology in tree peonies.

19.
J Hazard Mater ; 470: 134172, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569340

RESUMEN

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Asunto(s)
Boehmeria , Cadmio , Pared Celular , Vacuolas , Cadmio/toxicidad , Cadmio/metabolismo , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Boehmeria/metabolismo , Boehmeria/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/efectos de los fármacos , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucanos/metabolismo , Xilanos/metabolismo , Estrés Fisiológico/efectos de los fármacos
20.
Food Chem ; 448: 139169, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569412

RESUMEN

The accumulation and transportation of pesticides in plants can provide valuable insights to assess potential risks and ensure food safety. The uptake and downward translocation of mandipropamid were examined in hydroponic and soil-cultivated cherry radishes. The uptake of mandipropamid in cherry radish was rapid (bioconcentration factors of 1.1-10.7), whereas the downward translocation was limited (translocation factors of 0.1-0.9). The subcellular distribution results indicated a predominant accumulation in solid fractions of cherry radish (proportions of 52.9-98.7%), potentially because of the hydrophobicity (log Kow of 3.2) of mandipropamid. Owing to the decrease in half-life (>10%), the cultivation of cherry radish enhanced the dissipation of mandipropamid in both nutrient solutions (without stereoselectivity) and soils (with stereoselectivity). In addition, eleven metabolites and three pathways are proposed. This study provides valuable insights for the varying extent of translocation and proper utilization and safety evaluation of mandipropamid in crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA