Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Basic Microbiol ; : e2400108, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239913

RESUMEN

Sixteen isolates of bacteria obtained from the entomopathogenic nematode (Heterorhabditis sp.) infected cadavers of Galleria mellonella larvae were identified following phenotypic characterization and molecular analysis of 16S rRNA. Two isolates were identified as the symbiotic bacterium, Photothabdus luminescens, while 14 other isolates were represented by nine species of nonsymbiotic bacteria viz., Stenotrophomonas maltophilia, Alcaligenes aquatilis, Brevundimonas diminuta, Brucella pseudointermedia, Ochrobactrum sp., Brucella pseudogrignonensis, Brucella anthropic, Pseudomonas azatoformans and Pseudomonas lactis. The phylogenetic analysis confirmed the evolutionary relationship between P. luminescens and Pseudomonas spp. The study also found a close relationship among the nonsymbiotic bacteria such as A. aquatilis, B. diminuta, Ochrobactrum sp., and Brucella spp. P. luminescens has been documented for its insecticidal effects against a wide range of insects. The two local isolates obtained in this study may be explored for their biocontrol potential against major pests of the region. Further, the association of nonsymbiotic bacteria with the EPN may be investigated.

2.
Appl Environ Microbiol ; : e0146624, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291985

RESUMEN

Many insects are obligatorily associated with and dependent on specific microbial species as essential mutualistic partners. In the host insects, such microbial mutualists are usually maintained in specialized cells or organs, called bacteriocytes or symbiotic organs. Hence, potentially exponential microbial growth cannot be realized but must be strongly constrained by spatial and resource limitations within the host cells or tissues. How such endosymbiotic bacteria grow, divide, and proliferate is important for understanding the interactions and dynamics underpinning intimate host-microbe symbiotic associations. Here we report that Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits unexpectedly high rates of cell division (20%-58%) and, in addition, the cell division is asymmetric (average asymmetry index >1.5) when isolated from the German cockroach Blattella germanica. The asymmetric division of endosymbiont cells at high frequencies was observed irrespective of host tissues (fat bodies vs ovaries) or developmental stages (adults vs nymphs vs embryos) of B. germanica, and also observed in several different cockroach species. By contrast, such asymmetric and frequent cell division was observed neither in Buchnera, the obligatory bacterial endosymbiont of aphids, nor in Pantoea, the obligatory bacterial gut symbiont of stinkbugs. Comparative genomics of cell division-related genes uncovered that the Blattabacterium genome lacks the Min system genes that determine the cell division plane, which may be relevant to asymmetric cell division. These observations combined with comparative symbiont genomics provide insight into what processes and regulations may underpin the growth, division, and proliferation of such bacterial mutualists continuously constrained under within-host conditions.IMPORTANCEDiverse insects are dependent on specific bacterial mutualists for their survival and reproduction. Due to the long-lasting coevolutionary history, such symbiotic bacteria tend to exhibit degenerative genomes and suffer uncultivability. Because of their microbiological fastidiousness, the cell division patterns of such uncultivable symbiotic bacteria have been poorly described. Here, using fine microscopic and quantitative morphometric approaches, we report that, although bacterial cell division usually proceeds through symmetric binary fission, Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits frequent and asymmetric cell division. Such peculiar cell division patterns were not observed with other uncultivable essential symbiotic bacteria of aphids and stinkbugs. Gene repertoire analysis revealed that the molecular machinery for regulating the bacterial cell division plane are lost in the Blattabacterium genome, suggesting the possibility that the general trend toward the reductive genome evolution of symbiotic bacteria may underpin their bizarre cytological/morphological traits.

3.
J Hazard Mater ; 479: 135670, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39213769

RESUMEN

Microalgae-bacteria consortia (MBC) system has been shown to enhance the efficiency of microalgae in wastewater treatment, yet its effectiveness in treating levofloxacin (LEV) wastewater remains unexplored. This study compared the treatment of LEV wastewater using pure Chlorella pyrenoidosa (PA) and its MBC constructed with activated sludge bacteria. The results showed that MBC improved the removal efficiency of LEV from 3.50-5.41 % to 33.62-57.20 % by enhancing the growth metabolism of microalgae. The MBC increased microalgae biomass and extracellular polymeric substance (EPS) secretion, yet reduced photosynthetic pigment content compared to the PA. At the phylum level, Proteobacteria and Actinobacteriota are the major bacteria in MBC. Furthermore, the transcriptome reveals that the growth-promoting effects of MBC are associated with the up-regulation of genes encoding the glycolysis, the citrate cycle (TCA cycle), and the pentose phosphate pathway. Enhanced carbon fixation, coupled with down-regulation of photosynthetic electron transfer processes, suggests an energy allocation mechanism within MBC. The up-regulation of porphyrin and arachidonic acid metabolism, along with the expression of genes encoding LEV-degrading enzymes, provides evidence of MBC's superior tolerance to and degradation of LEV. Overall, these findings lead to a better understanding of the underlying mechanisms through which MBC outperforms PA in treating LEV wastewater.


Asunto(s)
Antibacterianos , Chlorella , Levofloxacino , Microalgas , Transcriptoma , Aguas Residuales , Chlorella/metabolismo , Chlorella/genética , Chlorella/crecimiento & desarrollo , Chlorella/efectos de los fármacos , Levofloxacino/farmacología , Microalgas/metabolismo , Microalgas/genética , Microalgas/crecimiento & desarrollo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Eliminación de Residuos Líquidos/métodos , Consorcios Microbianos/genética , Biodegradación Ambiental , Aguas del Alcantarillado/microbiología , Fotosíntesis
4.
J Invertebr Pathol ; 206: 108181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39178983

RESUMEN

The use of biocontrol agents, such as predators and entomopathogenic nematodes, is a promising approach for the effective control of the tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidaean), an oligophagous insect feeding mainly on Solanaceae species and a major pest of field- and greenhouse-grown tomatoes globally. In this context, the effects of two entomopathogenic nematode species Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae), as well as their respective bacterial symbionts, Xenorhabdus nematophila and Photorhabdus luminescens (Enterobacterales: Morganelaceae), which were applied as bacterial cell suspensions and as crude cell-free liquid filtrates on T. absoluta larvae, were investigated. The results showed that of all treatments, the nematodes S. carpocapsae and H. bacteriophora were the most effective, causing up to 98 % mortality of T. absoluta larvae. Regarding bacteria and their filtrates, the bacterium X. nematophila was the most effective (69 % mortality in young larvae), while P. luminescens and both bacterial filtrates showed similar potency (ca. 48-55 % mortality in young larvae). To achieve a holistic approach of controlling this important pest, the impact of these factors on the beneficial predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) was also studied. The results demonstrated that although nematodes and especially S. carpocapsae, caused significant mortality on N. tenuis (87 %), the bacterial cell suspensions of X. nematophila and P. luminescens and crude cell-free liquid filtrates had minimum impact on this beneficial predator (∼11-30 % mortality).


Asunto(s)
Control Biológico de Vectores , Rabdítidos , Simbiosis , Xenorhabdus , Animales , Rabdítidos/fisiología , Rabdítidos/microbiología , Xenorhabdus/fisiología , Photorhabdus/fisiología , Mariposas Nocturnas/parasitología , Mariposas Nocturnas/microbiología , Solanum lycopersicum/parasitología , Solanum lycopersicum/microbiología , Larva/microbiología , Larva/parasitología , Heterópteros/microbiología , Heterópteros/parasitología
5.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062822

RESUMEN

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Asunto(s)
Flagelos , Simbiosis , Sistemas de Secreción Tipo III , Flagelos/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Xenorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/fisiología , Regulación Bacteriana de la Expresión Génica , Photorhabdus/metabolismo , Photorhabdus/patogenicidad , Photorhabdus/genética , Photorhabdus/fisiología , Nematodos/microbiología , Nematodos/metabolismo , Biopelículas/crecimiento & desarrollo
6.
Harmful Algae ; 137: 102680, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39003030

RESUMEN

High levels of environmental H2O2 represent a threat to many freshwater bacterial species, including toxic-bloom-forming Microcystis aeruginosa, particularly under high-intensity light conditions. The highest extracellular catalase activity-possessing Pseudoduganella aquatica HC52 was chosen among 36 culturable symbiotic isolates from the phycosphere in freshly collected M. aeruginosa cells. A zymogram for catalase activity revealed the presence of only one extracellular catalase despite the four putative catalase genes (katA1, katA2, katE, and srpA) identified in the newly sequenced genome (∼6.8 Mb) of P. aquatica HC52. Analysis of secreted catalase using liquid chromatography-tandem mass spectrometry was identified as KatA1, which lacks a typical signal peptide, although the underlying mechanism for its secretion is unknown. The expression of secreted KatA1 appeared to be induced in the presence of H2O2. Proteomic analysis also confirmed the presence of KatA1 inside the outer membrane vesicles secreted by P. aquatica HC52 following exposure to H2O2. High light intensities (> 100 µmol m-2 s-1) are known to kill catalase-less axenic M. aeruginosa cells, but the present study found that the presence of P. aquatica cells supported the growth of M. aeruginosa, while the extracellular catalases in supernatant or purified form also sustained the growth of M. aeruginosa under the same conditions. Our results suggest that the extracellular catalase secreted by P. aquatica HC52 enhances the tolerance of M. aeruginosa to H2O2, thus promoting the formation of M. aeruginosa blooms under high light intensities.


Asunto(s)
Proteínas Bacterianas , Catalasa , Peróxido de Hidrógeno , Microcystis , Peróxido de Hidrógeno/metabolismo , Microcystis/genética , Catalasa/metabolismo , Catalasa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
7.
Mar Life Sci Technol ; 6(2): 298-314, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38827136

RESUMEN

Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their successful survival in the ocean, but little is known about their metabolic relationships. Here, bacterial communities in the algal sphere (AS) and bulk solution (BS) of nine marine red algal cultures were analyzed, and Roseibium and Phycisphaera were identified significantly more abundantly in AS than in BS. The metabolic features of Roseibium RMAR6-6 (isolated and genome-sequenced), Phycisphaera MAG 12 (obtained by metagenomic sequencing), and a marine red alga, Porphyridium purpureum CCMP1328 (from GenBank), were analyzed bioinformatically. RMAR6-6 has the genetic capability to fix nitrogen and produce B vitamins (B1, B2, B5, B6, B9, and B12), bacterioferritin, dimethylsulfoniopropionate (DMSP), and phenylacetate that may enhance algal growth, whereas MAG 12 may have a limited metabolic capability, not producing vitamins B9 and B12, DMSP, phenylacetate, and siderophores, but with the ability to produce bacitracin, possibly modulating algal microbiome. P. purpureum CCMP1328 lacks the genetic capability to fix nitrogen and produce vitamin B12, DMSP, phenylacetate, and siderophore. It was shown that the nitrogen-fixing ability of RMAR6-6 promoted the growth of P. purpureum, and DMSP reduced the oxidative stress of P. purpureum. The metabolic interactions between strain RMAR6-6 and P. purpureum CCMP1328 were also investigated by the transcriptomic analyses of their monoculture and co-culture. Taken together, potential metabolic relationships between Roseibium and P. purpureum were proposed. This study provides a better understanding of the metabolic relationships between marine algae and algae-associated bacteria for successful growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00227-z.

8.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930979

RESUMEN

Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.


Asunto(s)
Antibacterianos , Cromatografía de Gases y Espectrometría de Masas , Simbiosis , Cromatografía Líquida de Alta Presión/métodos , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolismo Secundario , Photorhabdus/química , Photorhabdus/metabolismo , Xenorhabdus/química , Xenorhabdus/metabolismo , Pruebas de Sensibilidad Microbiana , Animales
9.
BMC Ecol Evol ; 24(1): 58, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720266

RESUMEN

BACKGROUND: Karst caves serve as natural laboratories, providing organisms with extreme and constant conditions that promote isolation, resulting in a genetic relationship and living environment that is significantly different from those outside the cave. However, research on cave creatures, especially Opiliones, remains scarce, with most studies focused on water, soil, and cave sediments. RESULTS: The structure of symbiotic bacteria in different caves were compared, revealing significant differences. Based on the alpha and beta diversity, symbiotic bacteria abundance and diversity in the cave were similar, but the structure of symbiotic bacteria differed inside and outside the cave. Microorganisms in the cave play an important role in material cycling and energy flow, particularly in the nitrogen cycle. Although microbial diversity varies inside and outside the cave, Opiliones in Beijing caves and Hainan Island exhibited a strong similarity, indicating that the two environments share commonalities. CONCLUSIONS: The karst cave environment possesses high microbial diversity and there are noticeable differences among different caves. Different habitats lead to significant differences in the symbiotic bacteria in Opiliones inside and outside the cave, and cave microorganisms have made efforts to adapt to extreme environments. The similarity in symbiotic bacteria community structure suggests a potential similarity in host environments, providing an explanation for the appearance of Sinonychia martensi in caves in the north.


Asunto(s)
Bacterias , Cuevas , Ecosistema , Simbiosis , Cuevas/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , China , Microbiota/fisiología , Biodiversidad
10.
Microbiol Res ; 285: 127748, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38735241

RESUMEN

The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.


Asunto(s)
Biopelículas , Quimiotaxis , GMP Cíclico , Raíces de Plantas , Plantas , Simbiosis , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Biopelículas/crecimiento & desarrollo , Plantas/microbiología , Raíces de Plantas/microbiología , Bacterias/metabolismo , Bacterias/genética , Rizosfera , Nodulación de la Raíz de la Planta , Sistemas de Mensajero Secundario , Fenómenos Fisiológicos Bacterianos , Microbiología del Suelo
11.
Microorganisms ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38792717

RESUMEN

Bemisia tabaci is distributed globally and incurs considerable economic and ecological costs as an agricultural pest and viral vector. The entomopathogenic fungus Metarhizium anisopliae has been known for its insecticidal activity, but its impacts on whiteflies are understudied. We investigated how infection with the semi-persistently transmitted Cucurbit chlorotic yellows virus (CCYV) affects whitefly susceptibility to M. anisopliae exposure. We discovered that viruliferous whiteflies exhibited increased mortality when fungus infection was present compared to non-viruliferous insects. High throughput 16S rRNA sequencing also revealed significant alterations of the whitefly bacterial microbiome diversity and structure due to both CCYV and fungal presence. Specifically, the obligate symbiont Portiera decreased in relative abundance in viruliferous whiteflies exposed to M. anisopliae. Facultative Hamiltonella and Rickettsia symbionts exhibited variability across groups but dominated in fungus-treated non-viruliferous whiteflies. Our results illuminate triangular interplay between pest insects, their pathogens, and symbionts-dynamics which can inform integrated management strategies leveraging biopesticides This work underscores the promise of M. anisopliae for sustainable whitefly control while laying the groundwork for elucidating mechanisms behind microbe-mediated shifts in vector competence.

12.
Sci Rep ; 14(1): 11306, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760487

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most important rice pests in Asia rice regions. BPH has monophagy, migration, rapid reproduction and strong environmental adaptability, and its control is a major problem in pest management. Adult BPH exhibit wing dimorphism, and the symbiotic microbiota enriched in the gut can provide energy for wing flight muscles as a source of nutrition. In order to study the diversity of symbiotic microbiota in different winged BPHs, this paper takes female BPH as the research object. It was found that the number of symbiotic microbiota of different winged BPHs would change at different development stages. Then, based on the 16S rRNA and ITS sequences, a metagenomic library was constructed, combined with fluorescent quantitative PCR and high-throughput sequencing, the dominant symbiotic microbiota flora in the gut of different winged BPHs was found, and the community structure and composition of symbiotic microbiota in different winged BPHs were further determined. Together, our results preliminarily revealed that symbiotic microbiota in the gut of BPHs have certain effects on wing morphology, and understanding the mechanisms underlying wing morph differentiation will clarify how nutritional factors or environmental cues alter or regulate physiological and metabolic pathways. These findings also establish a theoretical basis for subsequent explorations into BPH-symbiont interplay.


Asunto(s)
Microbioma Gastrointestinal , Hemípteros , ARN Ribosómico 16S , Simbiosis , Alas de Animales , Animales , Hemípteros/microbiología , Hemípteros/fisiología , Alas de Animales/microbiología , Femenino , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética
13.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38618721

RESUMEN

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a los Insecticidas , Piretrinas , Especies Reactivas de Oxígeno , Tephritidae , Animales , Especies Reactivas de Oxígeno/metabolismo , Piretrinas/farmacología , Piretrinas/metabolismo , Resistencia a los Insecticidas/genética , Tephritidae/microbiología , Tephritidae/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efectos de los fármacos , Lactobacillales/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efectos de los fármacos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo
14.
Insects ; 15(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667404

RESUMEN

Acetamiprid is a broad-spectrum neonicotinoid insecticide used in agriculture to control aphids. While recent studies have documented resistance to acetamiprid in several aphid species, the underlying mechanisms are still not fully understood. In this study, we analyzed the transcriptome and metatranscriptome of a laboratory strain of the pea aphid, Acyrthosiphon pisum (Harris, 1776), with reduced susceptibility to acetamiprid after nine generations of exposure to identify candidate genes and the microbiome involved in the adaptation process. Sequencing of the transcriptome of both selected (RS) and non-selected (SS) strains allowed the identification of 14,858 genes and 4938 new transcripts. Most of the differentially expressed genes were associated with catalytic activities and metabolic pathways involving carbon and fatty acids. Specifically, alcohol-forming fatty acyl-CoA reductase (FAR) and acyl-CoA synthetase (ACSF2), both involved in the synthesis of epidermal wax layer components, were significantly upregulated in RS, suggesting that adaptation to acetamiprid involves the synthesis of a thicker protective layer. Metatranscriptomic analyses revealed subtle shifts in the microbiome of RS. These results contribute to a deeper understanding of acetamiprid adaptation by the pea aphid and provide new insights for aphid control strategies.

15.
Pestic Biochem Physiol ; 201: 105891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685253

RESUMEN

The fall armyworm (Spodoptera frugiperda) was found to have invaded China in December 2018, and in just one year, crops in 26 provinces were heavily affected. Currently, the most effective method for emergency control of fulminant pests is to use of chemical pesticides. Recently, most fall armyworm populations in China were begining to exhibite low level resistance to chlorantraniliprole. At present, it is not possible to sensitively reflect the low level resistance of S. frugiperda by detecting target mutation and detoxification enzyme activity. In this study we found that 12 successive generations of screening with chlorantraniliprole caused S. frugiperda to develop low level resistance to this insecticide, and this phenotype was not attribute to genetic mutations in S. frugiperda, but rather to a marked increase in the relative amount of the symbiotic bacteria Sphingomonas. Using FISH and qPCR assays, we determined the amount of Sphingomonas in the gut of S. frugiperda and found Sphingomonas accumulation to be highest in the 3rd-instar larvae. Additionally, Sphingomonas was observed to provide a protective effect to against chlorantraniliprole stress to S. frugiperda. With the increase of the resistance to chlorantraniliprole, the abundance of bacteria also increased, we propose Sphingomonas monitoring could be adapted into an early warning index for the development of chlorantraniliprole resistance in S. frugiperda populations, such that timely measures can be taken to delay or prevent the widespread propagation of resistance to this highly useful agricultural chemical in S. frugiperda field populations.


Asunto(s)
Insecticidas , Larva , Sphingomonas , Spodoptera , ortoaminobenzoatos , Animales , Spodoptera/efectos de los fármacos , Spodoptera/microbiología , ortoaminobenzoatos/farmacología , Insecticidas/farmacología , Insecticidas/toxicidad , Larva/efectos de los fármacos , Sphingomonas/efectos de los fármacos , Sphingomonas/genética , Resistencia a los Insecticidas/genética
16.
Pest Manag Sci ; 80(7): 3640-3649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456555

RESUMEN

BACKGROUND: The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS: The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION: The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Cobre , Fertilidad , Insecticidas , Nanopartículas del Metal , Piretrinas , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Tephritidae/fisiología , Cobre/farmacología , Fertilidad/efectos de los fármacos , Insecticidas/farmacología , Femenino , Piretrinas/farmacología , Simbiosis , Nitrilos/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Resistencia a los Insecticidas
17.
Int J Biol Macromol ; 262(Pt 2): 130057, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340940

RESUMEN

A series of carboxymethyl chitosan-N-alkylimine derivatives with side chain length of 4 to 10 carbons (CMCS-n, n = 4, 6, 8, 10) was prepared in a one-step solvent-free synthesis using Schiff base chemistry. The modified polysaccharides were characterized by their spectral, thermal and physical properties. The prepared polymers demonstrated an ability to spontaneous self-assembly with a clear correlation between critical aggregation concentration and the chain length of the alkyl substituent. N-alkylimine-CMCS derivatives were found to deliver hydrophobic (curcumin) and hydrophilic (ascorbic acid) active agents in unfavorable environments of water and oil, respectively. Then, N-alkylimine-CMCS derivatives were used as a platform for the delivery of symbiotic gram-positive bacteria Bacillus subtilis CJ onto chickpea seeds. These bacteria demonstrated a significantly higher survival rate (106 CFU/mL) in dried CMCS-6 derivative film than in other films tested. The seeds treated with N-alkylimine-CMCS coatings that contained B. subtilis CJ demonstrated up to 100-fold increase of this bacterial population on the seedlings in comparison to the pristine CMCS.


Asunto(s)
Quitosano , Cicer , Curcumina , Quitosano/química , Agua , Curcumina/química , Bacterias
18.
Parasit Vectors ; 17(1): 69, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368353

RESUMEN

Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Malaria , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores/microbiología , Sistema Inmunológico , Bacterias
19.
J Environ Manage ; 352: 120124, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38244412

RESUMEN

Iron is recognized as a physiological requirement for anammox bacteria (AnAOB), with Fe(II) considered to be the most effective form. However, Fe(III), instead of Fe(II) is the common iron form in natural and artificial ecosystems. In this study, the nitrogen removal performance and metabolic mechanisms in anammox consortia with soluble and non-soluble Fe(III) as the sole iron element were investigated. After the 150-day operation, the soluble (FeCl3) and insoluble (Fe2O3) Fe(III)-fed anammox systems reached nitrogen removal rates of 71.84 ± 0.80% and 50.20 ± 0.98%, respectively. AnAOB could survive with soluble (FeCl3) or insoluble (Fe2O3) Fe(III) as the sole iron element, reaching relative abundances of 18.49% and 13.16%, respectively. The results show that the formation of anammox core consortia can enable AnAOB's survival to adverse external conditions of Fe(II) deficiency. Metagenomic and metatranscriptomic analysis reveal that Ca. Kuenenia can only uptake Fe(II) into the cell for metabolisms either independently through the extracellular electron transfer or with the cross-feeding of symbiotic microbes. This study provides insight into the utilization and metabolic mechanisms of Fe(III) in Ca. Kuenenia-dominated consortia, and deepens the understanding of anammox core consortia in the nitrogen, carbon, and iron cycling, further promoting the practical applications of anammox processes.


Asunto(s)
Cloruros , Compuestos Férricos , Hierro , Oxidación-Reducción , Oxidación Anaeróbica del Amoníaco , Ecosistema , Multiómica , Bacterias/genética , Bacterias/metabolismo , Compuestos Ferrosos , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , Anaerobiosis , Aguas del Alcantarillado
20.
J Hazard Mater ; 463: 132848, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37924702

RESUMEN

In this study, two strains of symbiotic bacteria (SOB-1 and SOB-2) were isolated from Scenedesmus obliquus, and various algal-bacterial mutualistic systems were established under acetochlor (ACT) stress conditions. Following exposure to varying ACT concentrations from 2.0 to 25.0 µg/L, the capacity for co-cultured bacteria to degrade ACT was enhanced in 7 days by up to 226.9% (SOB-1) and 193.0% (SOB-2), compared with axenic algae, although bacteria exposed to higher ACT concentrations exacerbated algal metabolic stress, oxidative states, apoptosis and cellular lysis. ACT reduced carbohydrates in the phycosphere by up to 31.5%; compensatory nutrient plunder and structural damage by bacteria were the potential exploitation pathways determined based on the inhibition of bacterial infection using a glucanase inhibitor. The ACT-induced reduction in algal antimicrobial substances, including fatty acids and phenolics (by up to 58.1% and 56.6%, respectively), also facilitated bacterial exploitation of algae. ACT-dependent interspecific interaction coefficients between algae and bacteria generated from long-term symbiosis cultures implied that bacteria moved from mutualism (0 and 2.0 µg/L ACT) to exploitation (7.9 and 25.0 µg/L ACT). The population dynamic model under incremental ACT-concentration scenarios inferred that theoretical systematic extinction may occur in algal-bacterial systems earlier than in axenic algae. These outcomes provide interspecific insights into the distortion of algal-bacterial reciprocity due to the ecotoxicological effects of ACT.


Asunto(s)
Chlorophyceae , Microalgas , Microalgas/metabolismo , Simbiosis , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA