Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Ethnopharmacol ; 333: 118425, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38848974

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Anshen Dingzhi prescription (ADP), documented in "Yi Xue Xin Wu", is a famous prescription for treating panic-related mental disorders such as post-traumatic stress disorder (PTSD). However, the underlying mechanism remains unclear. AIM OF THE STUDY: This study aimed to investigate the mechanisms by which ADP intervened in PTSD-like behaviors. METHODS: A mouse model of single prolonged stress (SPS) was established to evaluate the ameliorative effects and mechanisms of ADP on PTSD. Behavioral tests were used to assess PTSD-like behaviors in mice; transmission electron microscopy was used to observe changes in the ultrastructure of hippocampal synapses, and western blot, immunofluorescence, and ELISA were used to detect the expression of hippocampal deleted in colorectal cancer (DCC) and downstream Ras-related C3 botulinum toxin substrate 1 (Rac1) - P21-activated kinase 1 (PAK1) signal, as well as levels of synaptic proteins and inflammatory factors. Molecular docking technology simulated the binding of potential brain-penetrating components of ADP to DCC. RESULTS: SPS induced PTSD-like behaviors in mice and increased expression of hippocampal netrin-1 (NT-1) and DCC on the 14th day post-modeling, with concurrent elevation in serum NT-1 levels. Simultaneously, SPS also decreased p-Rac1 level and increased p-PAK1 level, the down-stream molecules of DCC. Lentiviral overexpression of DCC induced or exacerbated PTSD-like behaviors in control and SPS mice, respectively, whereas neutralization antibody against NT-1 reduced DCC activation and ameliorated PTSD-like behaviors in SPS mice. Interestingly, downstream Rac1-PAK1 signal was altered according to DCC expression. Moreover, DCC overexpression down-regulated N-methyl-d-aspartate (NMDA) receptor 2A (GluN2A) and postsynaptic density 95 (PSD95), up-regulated NMDA receptor 2B (GluN2B) and increased neuroinflammatory responses. Administration of ADP (36.8 mg/kg) improved PTSD-like behaviors in the SPS mice, suppressed hippocampal DCC, and downstream Rac1-PAK1 signal, upregulated GluN2A and PSD95, downregulated GluN2B, and reduced levels of inflammatory factors NOD-like receptor protein 3 (NLRP3), nuclear factor kappa-B (NF-κB) and interleukin-6 (IL-6). Importantly, DCC overexpression could also reduce the ameliorative effect of ADP on PTSD. Additionally, DCC demonstrated a favorable molecular docking pattern with the potential brain-penetrating components of ADP, further suggesting DCC as a potential target of ADP. CONCLUSION: Our data indicate that DCC is a key target for the regulation of synaptic function and inflammatory response in the onset of PTSD, and ADP likely reduces DCC to prevent PTSD via modulating downstream Rac1-PAK1 pathway. This study provides a novel mechanism for the onset of PTSD and warrants the clinical application of ADP.


Asunto(s)
Receptor DCC , Medicamentos Herbarios Chinos , Hipocampo , Receptores de N-Metil-D-Aspartato , Trastornos por Estrés Postraumático , Sinapsis , Animales , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/metabolismo , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Medicamentos Herbarios Chinos/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Receptor DCC/metabolismo , Modelos Animales de Enfermedad , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Homólogo 4 de la Proteína Discs Large/metabolismo , Transducción de Señal/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación/tratamiento farmacológico , Interleucina-6/metabolismo , Neuropéptidos
2.
Chin J Integr Med ; 30(8): 692-700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733455

RESUMEN

OBJECTIVE: To explore the rapid antidepressant potential and the underlying mechanism of Chaihu Shugan San (CSS) in female mice. METHODS: Liquid chromatography mass spectrometry (LC-MS)/MS was used to determine the content of main components in CSS to determine its stability. Female C57BL/6J mice were randomly divided into 4 groups, including control (saline), vehicle (saline), CSS (4 g/kg) and ketamine (30 mg/kg) groups. Mice were subjected to irregular stress stimulation for 4 weeks to establish the chronic mild stress (CMS) model, then received a single administration of drugs. Two hours later, the behavioral tests were performed, including open field test, tail suspension test (TST), forced swimming test (FST), novelty suppression feeding test (NSF), and sucrose preference test (SPT). Western blot analysis was used to detect the expression levels of N-methyl-D-aspartate receptor (NMDA) subtypes [N-methyl-D-aspartate receptor 1 (NR1), NR2A, NR2B], synaptic proteins [synapsin1 and post synaptic density protein 95 (PSD95)], and brain-derived neurotrophic factor (BDNF). Moreover, the rapid antidepressant effect of CSS was tested by pharmacological technologies and optogenetic interventions that activated glutamate receptors, NMDA. RESULTS: Compared with the vehicle group, a single administration of CSS (4 g/kg) reversed all behavioral defects in TST, FST, SPT and NSF caused by CMS (P<0.05 or P<0.01). CSS also significantly decreased the expressions of NMDA subtypes (NR1, NR2A, NR2B) at 2 h in hippocampus of mice (all P<0.01). In addition, similar to ketamine, CSS increased levels of synaptic proteins and BDNF (P<0.05 or P<0.01). Furthermore, the rapid antidepressant effects of CSS were blocked by transient activation of NMDA receptors in the hippocampus (all P<0.01). CONCLUSION: Rapid antidepressant effects of CSS by improving behavioral deficits in female CMS mice depended on rapid suppression of NMDA receptors and activation of synaptic proteins.


Asunto(s)
Antidepresivos , Ácido Glutámico , Hipocampo , Ratones Endogámicos C57BL , Transmisión Sináptica , Animales , Femenino , Antidepresivos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ácido Glutámico/metabolismo , Transmisión Sináptica/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Conducta Animal/efectos de los fármacos , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Extractos Vegetales/farmacología , Estrés Psicológico/tratamiento farmacológico , Depresión/tratamiento farmacológico
3.
Cell Rep ; 43(3): 113906, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38451812

RESUMEN

Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Ratones , Espinas Dendríticas/metabolismo , Extinción Psicológica , Miedo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal
4.
Am J Hum Genet ; 111(1): 96-118, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181735

RESUMEN

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Asunto(s)
Proteínas de Drosophila , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Adulto , Animales , Humanos , Alelos , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intracelular , Trastornos del Neurodesarrollo/genética , Proteínas Tirosina Fosfatasas
5.
Traffic ; 25(1): e12930, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272450

RESUMEN

Neuroligins are synaptic cell adhesion proteins with a role in synaptic function, implicated in neurodevelopmental disorders. The autism spectrum disorder-associated substitution Arg451Cys (R451C) in NLGN3 promotes a partial misfolding of the extracellular domain of the protein leading to retention in the endoplasmic reticulum (ER) and the induction of the unfolded protein response (UPR). The reduced trafficking of R451C NLGN3 to the cell surface leads to altered synaptic function and social behavior. A screening in HEK-293 cells overexpressing NLGN3 of 2662 compounds (FDA-approved small molecule drug library), led to the identification of several glucocorticoids such as alclometasone dipropionate, desonide, prednisolone sodium phosphate, and dexamethasone (DEX), with the ability to favor the exit of full-length R451C NLGN3 from the ER. DEX improved the stability of R451C NLGN3 and trafficking to the cell surface, reduced the activation of the UPR, and increased the formation of artificial synapses between HEK-293 and hippocampal primary neurons. The effect of DEX was validated on a novel model system represented by neural stem progenitor cells and differentiated neurons derived from the R451C NLGN3 knock-in mouse, expressing the endogenous protein. This work shows a potential rescue strategy for an autism-linked mutation affecting cell surface trafficking of a synaptic protein.


Asunto(s)
Trastorno del Espectro Autista , Animales , Humanos , Ratones , Trastorno del Espectro Autista/genética , Glucocorticoides , Células HEK293 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo
6.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372946

RESUMEN

The synaptic protein-DNA complexes, formed by specialized proteins that bridge two or more distant sites on DNA, are critically involved in various genetic processes. However, the molecular mechanism by which the protein searches for these sites and how it brings them together is not well understood. Our previous studies directly visualized search pathways used by SfiI, and we identified two pathways, DNA threading and site-bound transfer pathways, specific to the site-search process for synaptic DNA-protein systems. To investigate the molecular mechanism behind these site-search pathways, we assembled complexes of SfiI with various DNA substrates corresponding to different transient states and measured their stability using a single-molecule fluorescence approach. These assemblies corresponded to specific-specific (synaptic), non-specific-non-specific (non-specific), and specific-non-specific (pre-synaptic) SfiI-DNA states. Unexpectedly, an elevated stability in pre-synaptic complexes assembled with specific and non-specific DNA substrates was found. To explain these surprising observations, a theoretical approach that describes the assembly of these complexes and compares the predictions with the experiment was developed. The theory explains this effect by utilizing entropic arguments, according to which, after the partial dissociation, the non-specific DNA template has multiple possibilities of rebinding, effectively increasing the stability. Such difference in the stabilities of SfiI complexes with specific and non-specific DNA explains the utilization of threading and site-bound transfer pathways in the search process of synaptic protein-DNA complexes discovered in the time-lapse AFM experiments.


Asunto(s)
ADN , Desoxirribonucleasas de Localización Especificada Tipo II , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , ADN/química , Proteínas/metabolismo , Unión Proteica , Replicación del ADN
7.
Mol Cell Neurosci ; 126: 103862, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37236414

RESUMEN

The pre- and post-synaptic compartments contain a variety of molecules that are known to recycle between the plasma membrane and intracellular organelles. The recycling steps have been amply described in functional terms, with, for example, synaptic vesicle recycling being essential for neurotransmitter release, and postsynaptic receptor recycling being a fundamental feature of synaptic plasticity. However, synaptic protein recycling may also serve a more prosaic role, simply ensuring the repeated use of specific components, thereby minimizing the energy expenditure on the synthesis of synaptic proteins. This type of process has been recently described for components of the extracellular matrix, which undergo long-loop recycling (LLR), to and from the cell body. Here we suggest that the energy-saving recycling of synaptic components may be more widespread than is generally acknowledged, potentially playing a role in both synaptic vesicle protein usage and postsynaptic receptor metabolism.


Asunto(s)
Neuronas , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Membrana Celular/metabolismo , Plasticidad Neuronal
8.
Prog Neurobiol ; 226: 102449, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37011806

RESUMEN

Alterations in upper motor neuron excitability are one of the earliest phenomena clinically detected in ALS, and in 97 % of cases, the RNA/DNA binding protein, TDP-43, is mislocalised in upper and lower motor neurons. While these are two major pathological hallmarks in disease, our understanding of where disease pathology begins, and how it spreads through the corticomotor system, is incomplete. This project used a model where mislocalised TDP-43 was expressed in the motor cortex, to determine if localised cortical pathology could result in widespread corticomotor system degeneration. Mislocalised TDP-43 caused layer V excitatory neurons in the motor cortex to become hyperexcitable after 20 days of expression. Following cortical hyperexcitability, a spread of pathogenic changes through the corticomotor system was observed. By 30 days expression, there was a significant decrease in lower motor neuron number in the lumbar spinal cord. However, cell loss occurred selectively, with a significant loss in lumbar regions 1-3, and not lumbar regions 4-6. This regional vulnerability was associated with alterations in pre-synaptic excitatory and inhibitory proteins. Excitatory inputs (VGluT2) were increased in all lumbar regions, while inhibitory inputs (GAD65/67) were increased in lumbar regions 4-6 only. This data indicates that mislocalised TDP-43 in upper motor neurons can cause lower motor neuron degeneration. Furthermore, cortical pathology increased excitatory inputs to the spinal cord, to which local circuitry compensated with an upregulation of inhibition. These findings reveal how TDP-43 mediated pathology may spread through corticofugal tracts in ALS and identify a potential pathway for therapeutic intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Médula Espinal/metabolismo , Proteínas de Unión al ADN/metabolismo
9.
Cell Rep ; 42(5): 112430, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37099425

RESUMEN

The complex functions of neuronal synapses depend on their tightly interconnected protein network, and their dysregulation is implicated in the pathogenesis of autism spectrum disorders and schizophrenia. However, it remains unclear how synaptic molecular networks are altered biochemically in these disorders. Here, we apply multiplexed imaging to probe the effects of RNAi knockdown of 16 autism- and schizophrenia-associated genes on the simultaneous joint distribution of 10 synaptic proteins, observing several protein composition phenotypes associated with these risk genes. We apply Bayesian network analysis to infer hierarchical dependencies among eight excitatory synaptic proteins, yielding predictive relationships that can only be accessed with single-synapse, multiprotein measurements performed simultaneously in situ. Finally, we find that central features of the network are affected similarly across several distinct gene knockdowns. These results offer insight into the convergent molecular etiology of these widespread disorders and provide a general framework to probe subcellular molecular networks.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Esquizofrenia , Humanos , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Teorema de Bayes , Sinapsis/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo
10.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902234

RESUMEN

BG45 is a class Ⅰ histone deacetylase inhibitor (HDACI) with selectivity for HDAC3. Our previous study demonstrated that BG45 can upregulate the expression of synaptic proteins and reduce the loss of neurons in the hippocampus of APPswe/PS1dE9 (APP/PS1) transgenic mice (Tg). The entorhinal cortex is a pivotal region that, along with the hippocampus, plays a critical role in memory in the Alzheimer's disease (AD) pathology process. In this study, we focused on the inflammatory changes in the entorhinal cortex of APP/PS1 mice and further explored the therapeutic effects of BG45 on the pathologies. The APP/PS1 mice were randomly divided into the transgenic group without BG45 (Tg group) and the BG45-treated groups. The BG45-treated groups were treated with BG45 at 2 months (2 m group), at 6 months (6 m group), or twice at 2 and 6 months (2 and 6 m group). The wild-type mice group (Wt group) served as the control. All mice were killed within 24 h after the last injection at 6 months. The results showed that amyloid-ß (Aß) deposition and IBA1-positive microglia and GFAP-positive astrocytes in the entorhinal cortex of the APP/PS1 mice progressively increased over time from 3 to 8 months of age. When the APP/PS1 mice were treated with BG45, the level of H3K9K14/H3 acetylation was improved and the expression of histonedeacetylase1, histonedeacetylase2, and histonedeacetylase3 was inhibited, especially in the 2 and 6 m group. BG45 alleviated Aß deposition and reduced the phosphorylation level of tau protein. The number of IBA1-positive microglia and GFAP-positive astrocytes decreased with BG45 treatment, and the effect was more significant in the 2 and 6 m group. Meanwhile, the expression of synaptic proteins synaptophysin, postsynaptic density protein 95, and spinophilin was upregulated and the degeneration of neurons was alleviated. Moreover, BG45 reduced the gene expression of inflammatory cytokines interleukin-1ß and tumor necrosis factor-α. Closely related to the CREB/BDNF/NF-kB pathway, the expression of p-CREB/CREB, BDNF, and TrkB was increased in all BG45 administered groups compared with the Tg group. However, the levels of p-NF-kB/NF-kB in the BG45 treatment groups were reduced. Therefore, we deduced that BG45 is a potential drug for AD by alleviating inflammation and regulating the CREB/BDNF/NF-kB pathway, and the early, repeated administration of BG45 can play a more effective role.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Corteza Entorrinal , Inhibidores de Histona Desacetilasas , Inflamación , Microglía , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Microglía/metabolismo , FN-kappa B/metabolismo , Presenilina-1/genética , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico
11.
Mol Neurobiol ; 60(6): 3299-3310, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36847937

RESUMEN

Malformation of cortical development (MCD) is one of the main causes of intractable epilepsy in childhood. We explored a treatment based on molecular changes using an infant rat model of methylazoxymethanol (MAM)-induced MCD established by injecting MAM at gestational day 15. The offspring were sacrificed on postnatal day (P) 15 for proteomic analysis, which revealed significant downregulation in the synaptogenesis signaling pathway in the cortex of MCD rats. Recombinant human insulin-growth factor-1 (rhIGF-1) was injected from P12 to P14 twice daily and the effect of IGF1 on N-methyl-D-aspartate (NMDA)-induced spasms (15 mg/kg of NMDA, i.p.) was tested; the onset of P15 single spasm was significantly delayed (p = 0.002) and the number of spasms decreased (p < 0.001) in rhIGF1-pretreated rats (n = 17) compared to those in VEH-treated rats (n = 18). Electroencephalographic monitoring during spasms showed significantly reduced spectral entropy and event-related spectral dynamics of fast oscillation in rhIGF-1 treated rats. Magnetic resonance spectroscopy of the retrosplenial cortex showed decreased glutathione (GSH) (p = 0.039) and significant developmental changes in GSH, phosphocreatine (PCr), and total creatine (tCr) (p = 0.023, 0.042, 0.015, respectively) after rhIGF1 pretreatment. rhIGF1 pretreatment significantly upregulated expression of cortical synaptic proteins such as PSD95, AMPAR1, AMPAR4, NMDAR1, and NMDAR2A (p < 0.05). Thus, early rhIGF-1 treatment could promote synaptic protein expression, which was significantly downregulated by prenatal MAM exposure, and effectively suppress NMDA-induced spasms. Early IGF1 treatment should be further investigated as a therapeutic strategy in infants with MCD-related epilepsy.


Asunto(s)
Epilepsia , N-Metilaspartato , Embarazo , Lactante , Femenino , Ratas , Animales , Humanos , Factor I del Crecimiento Similar a la Insulina , Proteómica , Espasmo , Modelos Animales de Enfermedad
12.
Alzheimers Dement ; 19(5): 2095-2116, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36370135

RESUMEN

INTRODUCTION: Synaptic failure, a hallmark of Alzheimer's disease (AD), is correlated with reduced levels of synaptic proteins. Though people with Down syndrome (DS) are at markedly increased risk for AD (AD-DS), few studies have addressed synapse dysfunction. METHODS: Synaptic proteins were measured in the frontal cortex of DS, AD-DS, sporadic AD cases, and controls. The same proteins were examined in the Dp16 model of DS. RESULTS: A common subset of synaptic proteins were reduced in AD and AD-DS, but not in DS or a case of partial trisomy 21 lacking triplication of APP gene. Pointing to compromised synaptic function, the reductions in AD and AD-DS were correlated with reduced SNARE complexes. In Dp16 mice reductions in syntaxin 1A, SNAP25 and the SNARE complex recapitulated findings in AD-DS; reductions were impacted by both age and increased App gene dose. DISCUSSION: Synaptic phenotypes shared between AD-DS and AD point to shared pathogenetic mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Ratones , Animales , Síndrome de Down/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas SNARE
13.
Genes Brain Behav ; 21(7): e12817, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35985692

RESUMEN

Latrophilin-3 (LPHN3) is a brain specific G-protein coupled receptor associated with increased risk of attention deficit hyperactivity disorder (ADHD) and cognitive deficits. CRISPR/Cas9 was used to generate a constitutive knockout (KO) rat of Lphn3 by deleting exon 3, based on human data that LPHN3 variants are associated with some cases of ADHD. Lphn3 KO rats are hyperactive with an attenuated response to ADHD medication and have cognitive deficits. Here, we tested KO, heterozygous (HET), and wildtype (WT) rats to determine if there was a gene-dosage effect. We tested the rats in home-cage activity starting at postnatal day (P)35 and P50, followed by tests of egocentric learning (Cincinnati water maze [CWM]), spatial learning (Morris water maze [MWM]), working memory (radial water maze [RWM]), incidental learning (novel object recognition [NOR]), acoustic startle response (ASR) habituation, tactile startle response (TSR) habituation, prepulse modification of acoustic startle, shuttle-box passive avoidance, conditioned freezing, and a mirror image version of the CWM. KO and HET rats were hyperactive. KO and HET rats had egocentric (CWM) and spatial deficits (MWM), increased startle response, and KO rats showed less conditioned freezing on contextual and cued memory; there were no effects on working memory (RWM) or passive avoidance. The selective gene-dosage effect in Lphn3 HET rats indicates that Lphn3 exhibits dominate expression on functions where it is most abundantly expressed (striatum, hippocampus) but not on behaviors mediated by regions of low expression. The data add further evidence to the impact of this synaptic protein on brain function and behavior.


Asunto(s)
Receptores Acoplados a Proteínas G , Reflejo de Sobresalto , Animales , Humanos , Locomoción , Aprendizaje por Laberinto/fisiología , Mutación , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos , Reflejo de Sobresalto/genética
14.
Neural Regen Res ; 17(9): 2079-2088, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35142700

RESUMEN

Regular exercise has been shown to reduce the risk of Alzheimer's disease (AD). Our previous study showed that the protein aquaporin 4 (AQP4), which is specifically expressed on the paravascular processes of astrocytes, is necessary for glymphatic clearance of extracellular amyloid beta (Aß) from the brain, which can delay the progression of Alzheimer's disease. However, it is not known whether AQP4-regulated glymphatic clearance of extracellular Aß is involved in beneficial effects of exercise in AD patients. Our results showed that after 2 months of voluntary wheel exercise, APP/PS1 mice that were 3 months old at the start of the intervention exhibited a decrease in Aß burden, glial activation, perivascular AQP4 mislocalization, impaired glymphatic transport, synapse protein loss, and learning and memory defects compared with mice not subjected to the exercise intervention. In contrast, APP/PS1 mice that were 7 months old at the start of the intervention exhibited impaired AQP4 polarity and reduced glymphatic clearance of extracellular Aß, and the above-mentioned impairments were not alleviated after the 2-month exercise intervention. Compared with age-matched APP/PS1 mice, AQP4 knockout APP/PS1 mice had more serious defects in glymphatic function, Aß plaque deposition, and cognitive impairment, which could not be alleviated after the exercise intervention. These findings suggest that AQP4-dependent glymphatic transport is the neurobiological basis for the beneficial effects of voluntary exercises that protect against the onset of AD.

15.
J Sleep Res ; 31(1): e13399, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34137107

RESUMEN

Sleeplessness leads to a spectrum of neuropsychiatric disorders, affecting both juveniles and young adults. Studies have shown different sleep patterns at different stages of development. However, the molecular mechanisms underlying the effects of the same chronic sleep deprivation (CSD) on behaviours of juveniles and young adults remain elusive. Here, we aimed to evaluate the effects of CSD (6 days, 19 h per day) on anxiety-like behaviour, cognitive performance and molecular alterations in juvenile and young adult mice. Change in body weight suggested impaired physical development in CSD animals, specifically juveniles gaining weight at a lower rate and young adults losing weight. Behavioural performance indicated that CSD had little effect on spatial memory, but induced analogous anxiety-like phenotypes in both juveniles and young adults, as evidenced by no significant difference in the Y-maze experiment (Y-M) or the Morris water maze experiment (MWM), as well as the decreased open-arm distance percentage in the elevated plus maze experiment (EPM). In addition, CSD reduced the N-methyl-D-aspartic receptor subunit 2B (NR2B) and postsynaptic density protein 95 (PSD95) levels in juveniles, but these were increased in young adults. In conclusion, our results suggested that although CSD resulted in analogous anxiety-like behaviours in both juvenile and young adult mice, the underlying mechanisms might be different, which was indicated by the opposite change of synaptic proteins under CSD. These findings may help to better understand the important role of sleep and have constructive significance for human health.


Asunto(s)
Ansiedad , Privación de Sueño , Animales , Ansiedad/etiología , Ratones
16.
Biol Psychiatry ; 92(10): 815-826, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34247782

RESUMEN

BACKGROUND: Gene dosage imbalance caused by copy number variations (CNVs) is a prominent contributor to brain disorders. In particular, 15q11.2 CNV duplications and deletions have been associated with autism spectrum disorder and schizophrenia, respectively. The mechanism underlying these diametric contributions remains unclear. METHODS: We established both loss-of-function and gain-of-function mouse models of Cyfip1, one of four genes within 15q11.2 CNVs. To assess the functional consequences of altered CYFIP1 levels, we performed systematic investigations on behavioral, electrophysiological, and biochemical phenotypes in both mouse models. In addition, we utilized RNA immunoprecipitation sequencing (RIP-seq) analysis to reveal molecular targets of CYFIP1 in vivo. RESULTS: Cyfip1 loss-of-function and gain-of function mouse models exhibited distinct and shared behavioral abnormalities related to autism spectrum disorder and schizophrenia. RIP-seq analysis identified messenger RNA targets of CYFIP1 in vivo, including postsynaptic NMDA receptor (NMDAR) complex components. In addition, these mouse models showed diametric changes in levels of postsynaptic NMDAR complex components at synapses because of dysregulated protein translation, resulting in bidirectional alteration of NMDAR-mediated signaling. Importantly, pharmacological balancing of NMDAR signaling in these mouse models with diametric Cyfip1 dosages rescues behavioral abnormalities. CONCLUSIONS: CYFIP1 regulates protein translation of NMDAR and associated complex components at synapses to maintain normal synaptic functions and behaviors. Our integrated analyses provide insight into how gene dosage imbalance caused by CNVs may contribute to divergent neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastornos Mentales , Ratones , Animales , Receptores de N-Metil-D-Aspartato/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Variaciones en el Número de Copia de ADN , Ratones Endogámicos C57BL , N-Metilaspartato/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Modelos Animales de Enfermedad , ARN Mensajero , ARN
17.
Front Cell Neurosci ; 15: 643717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790098

RESUMEN

Glutamate excitotoxicity triggers overactivation of CDK5 and increases calcium influx in neural cells, which promotes dendritic retraction, spine loss, increased mitochondrial calcium from the endoplasmic reticulum, and neuronal death. Our previous studies showed that CDK5 knockdown (KD) in astrocytes improves neurovascular integrity and cognitive functions and exerts neuroprotective effects. However, how CDK5-targeted astrocytes affect calcium regulation and whether this phenomenon is associated with changes in neuronal plasticity have not yet been analyzed. In this study, CDK5 KD astrocytes transplanted in CA3 remained at the injection site without proliferation, regulated calcium in the CA1 hippocampal region after excitotoxicity by glutamate in ex vivo hippocampal slices, improving synapsin and PSD95 clustering. These CDK5 KD astrocytes induced astrocyte stellation and neuroprotection after excitotoxicity induced by glutamate in vitro. Also, these effects were supported by CDK5 inhibition (CDK5i) in vitro through intracellular stabilization of calcium levels in astrocytes. Additionally, these cells in cocultures restored calcium homeostasis in neurons, redistributing calcium from somas to dendrites, accompanied by dendrite branching, higher dendritic spines and synapsin-PSD95 clustering. In summary, induction of calcium homeostasis at the CA1 hippocampal area by CDK5 KD astrocytes transplanted in the CA3 area highlights the role of astrocytes as a cell therapy target due to CDK5-KD astrocyte-mediated synaptic clustering, calcium spreading regulation between both areas, and recovery of the intracellular astrocyte-neuron calcium imbalance and plasticity impairment generated by glutamate excitotoxicity.

18.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576064

RESUMEN

S-palmitoylation is a reversible covalent post-translational modification of cysteine thiol side chain by palmitic acid. S-palmitoylation plays a critical role in a variety of biological processes and is engaged in several human diseases. Therefore, identifying specific sites of this modification is crucial for understanding their functional consequences in physiology and pathology. We present a random forest (RF) classifier-based consensus strategy (RFCM-PALM) for predicting the palmitoylated cysteine sites on synaptic proteins from male/female mouse data. To design the prediction model, we have introduced a heuristic strategy for selection of the optimum set of physicochemical features from the AAIndex dataset using (a) K-Best (KB) features, (b) genetic algorithm (GA), and (c) a union (UN) of KB and GA based features. Furthermore, decisions from best-trained models of the KB, GA, and UN-based classifiers are combined by designing a three-star quality consensus strategy to further refine and enhance the scores of the individual models. The experiment is carried out on three categorized synaptic protein datasets of a male mouse, female mouse, and combined (male + female), whereas in each group, weighted data is used as training, and knock-out is used as the hold-out set for performance evaluation and comparison. RFCM-PALM shows ~80% area under curve (AUC) score in all three categories of datasets and achieve 10% average accuracy (male-15%, female-15%, and combined-7%) improvements on the hold-out set compared to the state-of-the-art approaches. To summarize, our method with efficient feature selection and novel consensus strategy shows significant performance gains in the prediction of S-palmitoylation sites in mouse datasets.


Asunto(s)
Algoritmos , Simulación por Computador , Lipoilación , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Animales , Bases de Datos de Proteínas , Femenino , Masculino , Ratones
19.
Elife ; 102021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34100715

RESUMEN

Precise and efficient insertion of large DNA fragments into somatic cells using gene editing technologies to label or modify endogenous proteins remains challenging. Non-specific insertions/deletions (INDELs) resulting from the non-homologous end joining pathway make the process error-prone. Further, the insert is not readily removable. Here, we describe a method called CRISPR-mediated insertion of exon (CRISPIE) that can precisely and reversibly label endogenous proteins using CRISPR/Cas9-based editing. CRISPIE inserts a designer donor module, which consists of an exon encoding the protein sequence flanked by intron sequences, into an intronic location in the target gene. INDELs at the insertion junction will be spliced out, leaving mRNAs nearly error-free. We used CRISPIE to fluorescently label endogenous proteins in mammalian neurons in vivo with previously unachieved efficiency. We demonstrate that this method is broadly applicable, and that the insert can be readily removed later. CRISPIE permits protein sequence insertion with high fidelity, efficiency, and flexibility.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Mutagénesis Insercional/genética , Proteínas/análisis , Proteínas/genética , Animales , Línea Celular Tumoral , Exones/genética , Humanos , Ratones , Neuronas/citología , Proteínas/química , Proteínas/metabolismo
20.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33945465

RESUMEN

Members of the SH3- and ankyrin repeat (SHANK) protein family are considered as master scaffolds of the postsynaptic density of glutamatergic synapses. Several missense mutations within the canonical SHANK3 isoform have been proposed as causative for the development of autism spectrum disorders (ASDs). However, there is a surprising paucity of data linking missense mutation-induced changes in protein structure and dynamics to the occurrence of ASD-related synaptic phenotypes. In this proof-of-principle study, we focus on two ASD-associated point mutations, both located within the same domain of SHANK3 and demonstrate that both mutant proteins indeed show distinct changes in secondary and tertiary structure as well as higher conformational fluctuations. Local and distal structural disturbances result in altered synaptic targeting and changes of protein turnover at synaptic sites in rat primary hippocampal neurons.


Asunto(s)
Trastorno Autístico/genética , Mutación Missense/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Mutación Puntual , Sinapsis/fisiología , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/fisiología , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Prueba de Estudio Conceptual , Conformación Proteica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA