RESUMEN
Mitochondrial Ca2+ plays a positive role in regulating pyruvate dehydrogenase, as well as the TCA cycle enzymes isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. This regulation boosts the production of reducing equivalents that fuel the electron transport chain, ultimately driving ATP production. The Mitochondrial Calcium Uniporter (MCU) is the highly selective channel responsible for mitochondrial Ca2+ uptake when local Ca2+ levels reach the threshold for channel activation. In a recent study, LaMoia et al. used an innovative [13C5]glutamine-based metabolic flux analysis method (Q-flux) to measure in vivo hepatic metabolic fluxes in liver-specific MCU-/- mice. Surprisingly, they observed increased flux through isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. Metabolic pathways are continuously reorganized in response to intrinsic cellular signals, as well as hormonal and nutritional inputs. Integrating metabolic flux analysis into complex systems can provide deeper insights into how metabolic adaptations occur under different conditions.
RESUMEN
Lysine ß-hydroxybutyrylation (Kbhb) is a post-translational modification that has recently been found to regulate protein functions. However, whether and how protein Kbhb modification participates in Alzheimer's disease (AD) remains unknown. Herein, we carried out 4D label-free ß-hydroxybutylation quantitative proteomics using brain samples of 8-month-old and 2-month-old APP/PS1 AD model mice and wild-type (WT) controls. We identified a series of tricarboxylic acid (TCA) cycle-associated enzymes including citrate synthase (CS) and succinate-CoA ligase subunit alpha (SUCLG1), whose Kbhb modifications were decreased in APP/PS1 mice at pathological stages. Sodium ß-hydroxybutyrate (Na-ß-OHB) treatment markedly increased Kbhb modifications of CS and SUCLG1 and their enzymatic activities, leading to elevated ATP production. We further found that Kbhb modifications at lysine 393 site in CS and at lysine 81 site in SUCLG1 were crucial for their enzymatic activities. Finally, we found that ß-OHB levels were decreased in the brain of APP/PS1 mice at pathological stages. While ketogenic diet not only significantly increased ß-OHB levels, Kbhb modifications and enzymatic activities of CS and SUCLG1, and ATP production, but also dramatically attenuated ß-amyloid plaque pathologies and microgliosis in APP/PS1 mice. Together, our findings indicate the importance of protein Kbhb modification for maintaining normal TCA cycle and ATP production and provide a novel molecular mechanism underlying the beneficial effects of ketogenic diet on energy metabolism and AD intervention.
RESUMEN
Despite the known metabolic benefits of exercise, an integrated metabolic understanding of exercise is lacking. Here, we use in vivo steady-state isotope-labeled infusions to quantify fuel flux and oxidation during exercise in fasted, fed, and exhausted female mice, revealing several novel findings. Exercise strongly promoted glucose fluxes from liver glycogen, lactate, and glycerol, distinct from humans. Several organs spared glucose, a process that broke down in exhausted mice despite concomitant hypoglycemia. Proteolysis increased markedly, also divergent from humans. Fatty acid oxidation dominated during fasted exercise. Ketone production and oxidation rose rapidly, seemingly driven by a hepatic bottleneck caused by gluconeogenesis-induced cataplerotic stress. Altered fuel consumption was observed in organs not directly involved in muscle contraction, including the pancreas and brown fat. Several futile cycles surprisingly persisted during exercise, despite their energy cost. In sum, we provide a comprehensive, integrated, holistic, and quantitative accounting of metabolism during exercise in an intact organism.
RESUMEN
Cancer cells rely on mitochondrial oxidative phosphorylation (OXPHOS) and the noncanonical tricarboxylic acid (TCA) cycle. In this paper, we shed light on the vital role played by the noncanonical TCA cycle in a host-side concession to mitochondria, especially in highly energy-demanding malignant tumor cells. Inhibition of ATP-citrate lyase (ACLY), a key enzyme in the noncanonical TCA cycle, induced apoptosis by increasing reactive oxygen species levels and DNA damage while reducing mitochondrial membrane potential. The mitochondrial membrane citrate transporter inhibitor, CTPI2, synergistically enhanced these effects. ACLY inhibition reduced cytosolic citrate levels and CTPI2 lowered ACLY activity, suggesting that the noncanonical TCA cycle is sustained by a positive feedback mechanism. These inhibitions impaired ATP production, particularly through OXPHOS. Metabolomic analysis of mitochondrial and cytosolic fractions revealed reduced levels of glutathione pathway-related and TCA cycle-related metabolite, except fumarate, in mitochondria following noncanonical TCA cycle inhibition. Despite the efficient energy supply to the cell by mitochondria, this symbiosis poses challenges related to reactive oxygen species and mitochondrial maintenance. In conclusion, the noncanonical TCA cycle is indispensable for the canonical TCA cycle and mitochondrial integrity, contributing to mitochondrial domestication.
RESUMEN
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
RESUMEN
The large multi-subunit mitochondrial alpha-keto glutarate dehydrogenase (KGDH) complex plays a key, rate-determining, role in the tricarboxylic acid (Krebs) cycle, catalyzing the conversion of alpha-keto glutarate to succinyl-CoA. This complex is both a source and target of oxidants, but the sites of modification and association with structural changes and activity loss are poorly understood. We report here oxidative modifications induced by Rose Bengal (RB) in the presence of O2, a source of singlet oxygen (1O2). A rapid loss of activity was detected, with this being dependent on light exposure, illumination time, and the presence of RB and O2. Activity loss was enhanced by D2O (consistent with 1O2 involvement), but diminished by both pre- and (to a lesser extent) post-illumination addition of lipoic acid and lipoamide. Aggregates containing all three KGDH subunits were detected on photooxidation. LC-MS experiments provided evidence for oxidation at 45 sites, including specific Met, His, Trp, Tyr residues and the lipoyllysine active-site cofactor. Products include mono- and di-oxygenated species, and kynurenine from Trp. Mapping of the modifications to the 3-D structure showed that these are localized to both the inner channel and the external surface, consistent with reactions of free 1O2, however the sites and extent of modification do not correlate with their solvent accessibility. These products are generated concurrently with loss of activity, indicative of strong links between these events. These data provide evidence for the impairment of KGDH activity by 1O2 via the oxidation of specific residues on the protein subunits of the complex.
RESUMEN
BACKGROUND: Qin-Yu-Qing-Chang decoction (QYQC), an herbal formula from China, is extensively employed to manage ulcerative colitis (UC) and exhibits potential benefits for colonic function. Nevertheless, the fundamental molecular mechanisms of QYQC remain largely uncharted. METHODS: The primary constituents of QYQC were determined utilizing UHPLC-MS/MS analysis and the effectiveness of QYQC was assessed in a mouse model of colitis induced by dextran sulfate sodium. Evaluations of colon inflammatory responses and mucosal barrier function were thoroughly assessed. RNA sequencing, molecular docking, colonic energy metabolism, and 16S rRNA sequencing analysis were applied to uncover the complex mechanisms of QYQC in treating UC. Detect the signal transduction of the peroxisome proliferator-activated receptor-γ (PPAR-γ) both in the nucleus and cytoplasm. Furthermore, a PPAR-γ antagonist was strategically utilized to confirm the functional targets that QYQC exerts. RESULTS: Utilizing UHPLC-MS/MS, the principal constituents of the nine traditional Chinese medicinal herbs comprising QYQC were systematically identified. QYQC treatment substantially ameliorated colitis in mice, as evidenced by the improvement in symptoms and the reduction in colonic pathological injuries. Besides, QYQC treatment mitigated the inflammatory response and improved mucosal barrier function. Furthermore, QYQC enhanced the mitochondria citrate cycle (TCA cycle) by triggering PPAR-γ signaling and increasing the proportion of PPAR-γ entering the nucleus. This prevented the unconstrained expansion of facultative anaerobes, particularly pathogenic Escherichia coli (E. coli, family Enterobacteriaceae) and thus improved colitis. Results of molecular docking indicated that the representative chemical components of QYQC including Baicalin, Paeoniflorin, Mollugin, and Imperatorin bound well with PPAR-γ. The impact of QYQC on colitis was diminished in the presence of a PPAR-γ antagonist. CONCLUSIONS: In summary, QYQC ameliorates UC by activating PPAR-γ signaling and increasing the proportion of PPAR-γ entering the nucleus, which enhances the energy metabolism of intestinal epithelial cells and thereby preventing the uncontrolled proliferation of facultative anaerobes.
RESUMEN
How enteric pathogens adapt their metabolism to a dynamic gut environment is not yet fully understood. To investigate how Salmonella enterica Typhimurium (S.Tm) colonizes the gut, we conducted an in vivo transposon mutagenesis screen in a gnotobiotic mouse model. Our data implicate mixed-acid fermentation in efficient gut-luminal growth and energy conservation throughout infection. During initial growth, the pathogen utilizes acetate fermentation and fumarate respiration. After the onset of gut inflammation, hexoses appear to become limiting, as indicated by carbohydrate analytics and the increased need for gluconeogenesis. In response, S.Tm adapts by ramping up ethanol fermentation for redox balancing and supplying the TCA cycle with α-ketoglutarate for additional energy. Our findings illustrate how S.Tm flexibly adapts mixed fermentation and its use of the TCA cycle to thrive in the changing gut environment. Similar metabolic wiring in other pathogenic Enterobacteriaceae may suggest a broadly conserved mechanism for gut colonization.
Asunto(s)
Fermentación , Salmonella typhimurium , Animales , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Ratones , Tracto Gastrointestinal/microbiología , Ciclo del Ácido Cítrico , Ratones Endogámicos C57BL , Acetatos/metabolismo , Elementos Transponibles de ADN , Vida Libre de Gérmenes , Microbioma Gastrointestinal/fisiología , Etanol/metabolismo , Gluconeogénesis , Fumaratos/metabolismo , MutagénesisRESUMEN
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
RESUMEN
Swietenia macrophylla fruit is a valuable and historically significant medicinal plant with anti-hypertension and anti-diabetes. We identified a toxic component, Febrifugin, from the edible part of the nut following zebrafish toxicity-guided isolation. Febrifugin is a mexicanolide-type limonoid compound. The toxic factor induced acute toxicity in zebrafish, including yolk sac edema and pericardial edema, reduced body length, decreased melanin deposition, and presented acute skeletal developmental issues. Further exploration of the acute toxicity mechanism through metabolomics revealed that Febrifugin caused significant changes in 13 metabolites in zebrafish larvae, which are involved in the pentose phosphate, tricarboxylic acid (TCA) cycle, and amino acid biosynthesis. The bioassay of oxidative stress capacity and qRT-PCR measurement showed that the compound significantly affected the h6pd gene in the pentose phosphate pathway and the mRNA expression of cs, idh3a, fh, and shda genes in the TCA cycle, leading to reactive oxygen species (ROS) accumulation and a notable decrease in glutathione (GSH) activity in zebrafish. These findings provide a basis for the rational use of S. macrophylla as a medicinal plant and raise awareness of the safety of medicinal plants.
Asunto(s)
Metabolómica , Pez Cebra , Animales , Pez Cebra/metabolismo , Metabolómica/métodos , Estrés Oxidativo/efectos de los fármacos , Meliaceae/química , Limoninas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Nueces/química , Larva/efectos de los fármacos , Larva/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metaboloma , Plantas Medicinales/química , Ciclo del Ácido Cítrico/efectos de los fármacos , Glutatión/metabolismoRESUMEN
The tricarboxylic acid (TCA) cycle plays a crucial role in mitochondrial ATP production in the healthy heart. However, in heart failure, the TCA cycle becomes dysregulated. Understanding the mechanism by which TCA cycle genes are transcribed in the healthy heart is an important prerequisite to understanding how these genes become dysregulated in the failing heart. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator that broadly induces genes involved in mitochondrial ATP production. PGC-1α potentiates its effects through the coactivation of coupled transcription factors, such as estrogen-related receptor (ERR), nuclear respiratory factor 1 (Nrf1), GA-binding protein-a (Gabpa), and Yin Yang 1 (YY1). We hypothesized that PGC-1α plays an essential role in the transcription of TCA cycle genes. Thus, utilizing localization peaks of PGC-1α to TCA cycle gene promoters would allow the identification of coupled transcription factors. PGC-1α potentiated the transcription of 13 out of 14 TCA cycle genes, partly through ERR, Nrf1, Gabpa, and YY1. ChIP-sequencing showed PGC-1α localization peaks in TCA cycle gene promoters. Transcription factors with binding elements that were found proximal to PGC-1α peak localization were generally essential for the transcription of the gene. These transcription factor binding elements were well conserved between mice and humans. Among the four transcription factors, ERR and Gabpa played a major role in potentiating transcription when compared to Nrf1 and YY1. These transcription factor-dependent PGC-1α recruitment was verified with Idh3a, Idh3g, and Sdha promoters with DNA binding assay. Taken together, this study clarifies the mechanism by which TCA cycle genes are transcribed, which could be useful in understanding how those genes are dysregulated in pathological conditions.
Asunto(s)
Ciclo del Ácido Cítrico , Factor Nuclear 1 de Respiración , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores de Estrógenos , Factor de Transcripción YY1 , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Animales , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Humanos , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Factor Nuclear 1 de Respiración/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/genética , Transcripción Genética , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Receptor Relacionado con Estrógeno ERRalfaRESUMEN
Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.
Asunto(s)
Senescencia Celular , Cobre , Fibrosis , Riñón , Mitocondrias , Complejo Piruvato Deshidrogenasa , Cobre/metabolismo , Mitocondrias/metabolismo , Fibrosis/metabolismo , Animales , Complejo Piruvato Deshidrogenasa/metabolismo , Riñón/metabolismo , Riñón/patología , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ciclo del Ácido CítricoRESUMEN
Abnormalities in distinct metabolic pathways have been associated with the pathogenesis and progression of many forms of kidney disease. Metabolomics analyses can be used to determine organ-specific metabolic fingerprints and, ideally, should represent the metabolic state of the organ at the exact moment the sample is harvested. However, conventional harvesting methods depend on posteuthanasia tissue harvest, which results in ischemia conditions and metabolome changes that could potentially introduce artifacts into the final studies. We recently optimized a modified clamp-freezing technique for rodent kidney harvesting and freezing, significantly reducing ischemia and freezing times and granting a closer snapshot of in vivo metabolism. In this study, we characterized and compared the metabolome of kidneys harvested using our modified approach versus traditional techniques to determine which metabolites are preferentially affected by a brief lapse of ischemia and freezing delay and which are more stable. We used Sprague-Dawley rats as a model of wild-type (WT) kidneys and PCK [polycystic kidney disease (PKD)] rats as a model of chronic kidney disease kidneys. Finally, we compared the metabolic profile of clamp-frozen and delayed WT and PKD kidneys to determine which metabolic changes are most likely observed in vivo in PKD and which could be subjected to false positive or negative results. Our data indicate that a short harvesting-freezing delay is sufficient to impart profound metabolic changes in WT and PKD kidneys, leading to false positive and negative differences when comparing these genotypes. In addition, we identified a group of metabolites that were more stable. Interestingly, while the delay had a similar effect between WT and PKD, there were notable differences. The data obtained indicate that the quick clamp-freezing technique for kidney metabolomics provides a more accurate interpretation of the in vivo metabolic changes associated with the disease state. NEW & NOTEWORTHY Our study shows that a brief harvesting-freezing delay associated with organ collection and freezing can significantly alter the kidney metabolic profile of both male and female wild-type and a genetic model of chronic kidney disease. Importantly, given that the effect of this delay differs among genotypes, it is not safe to assume that equally delaying harvesting-freezing in wild-type and polycystic kidney disease kidneys adequately controls this effect, ultimately leading to false positive and negative results among different renal diseases.
Asunto(s)
Riñón , Metaboloma , Metabolómica , Ratas Sprague-Dawley , Animales , Riñón/metabolismo , Metabolómica/métodos , Masculino , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/genética , Recolección de Tejidos y Órganos/métodos , Reacciones Falso Positivas , Factores de Tiempo , Modelos Animales de Enfermedad , Reacciones Falso Negativas , Ratas , Criopreservación/métodos , CongelaciónRESUMEN
Utilizing ammonium in wastewater is a prospective way to reduce costs for bioproduction by photosynthetic organisms. A model cyanobacterium Synechocystis sp. PCC 6803 takes advantage of tolerance to ammonium compared to other microalgae. However, in this study, we report that Synechocystis growth was inhibited when cultured in a medium containing ammonium. This may be due to the pH decreasing below 6 caused by consuming ammonium. Transcriptomic analysis by RNA-seq revealed that the expression of the genes for proteases, chaperones, and antioxidant-scavenging enzymes was induced, but photosynthetic components were repressed. Although these regulations are similar to the previous studies on acidic stress in nitrate-containing culture, the expression of genes such as sigD, slr0042, slr0373, slr0374, and slr1501 was different, indicating that these phenomena are not simply identical to the known responses to acidic stress. The expression of the genes for photosynthesis, gluconeogenesis, and nitrogen assimilation was repressed, and glycolysis and the tricarboxylic acid cycle were induced. Despite the up-regulation of the carbon catabolism and down-regulation of nitrogen assimilation, the 2-oxoglutarate content in the ammonium-grown cells was lower than that in the nitrate-grown cells, and the contents of the major amino acids, such as Glu, Ala, Asp, and Gly were decreased, while the minor amino acids were the same or increased, especially Arg, Lys, Val, and Ile. These results demonstrated that the acidic stress induced by the consumption of ammonium ions differs from the sudden pH drop, and the Synechocystis cell manages amino acid levels to endure carbon limitation under the stress.
Asunto(s)
Compuestos de Amonio , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Nitrógeno , Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/crecimiento & desarrollo , Synechocystis/efectos de los fármacos , Nitrógeno/metabolismo , Concentración de Iones de Hidrógeno , Compuestos de Amonio/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Transcriptoma , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo/químicaRESUMEN
The spread of opportunistic pathogens (OPs) and antibiotic resistance genes (ARGs) through drinking water has already caused serious human health issues. There is also an urgent need to know the effects of perfluorooctanoic acid (PFOA) on OPs with different ARGs in drinking water. Our results suggested that PFOA accumulation and release from the pipelines induced its concentration in pipelines effluents increase from 0.03 ± 0.01 µg/L to 0.70 ± 0.01 µg/L after 6 months accumulation. The PFOA also promoted the growth of Hyphomicrobium, Microbacterium, and Bradyrhizobium. In addition, PFOA accumulation and release from the pipelines enhanced the metabolism and tricarboxylic acid (TCA) cycle processes, resulting in more extracellular polymeric substances (EPS) production. Due to EPS protection, Pseudomonas aeruginosa and Legionella pneumophila increased to (7.20 ± 0.09) × 104 gene copies/mL, and (8.85 ± 0.11) × 102 gene copies/mL, respectively. Moreover, PFOA also enhanced the transfer potential of different ARGs, including emrB, mdtB, mdtC, mexF, and macB. The main bacterial community composition and the main OPs positively correlated with the main ARGs and mobile genetic elements (MGE)-ARGs significantly. Therefore, PFOA promoted the propagation of OPs with different ARGs. These results are meaningful for controlling the microbial risk caused by the OPs with ARGs and MGE-ARGs in drinking water.
Asunto(s)
Bacterias , Caprilatos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Caprilatos/toxicidad , Fluorocarburos/toxicidad , Agua Potable/microbiología , Contaminantes Químicos del Agua/toxicidad , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/genética , Microbiología del AguaRESUMEN
Pseudomonas aeruginosa, an opportunistic bacterial pathogen of public health concern, is known for its metabolic versatility, adaptability in harsh environment, and pathogenic aggressiveness. P. aeruginosa relies on various regulatory networks modulated by small non-coding RNAs, which in turn influence different physiological traits such as metabolism, stress response, and pathogenesis. In this study, srbA sRNA has been shown to play a diverse role in regulating cellular metabolism and the production of different virulence factors in P. aeruginosa. srbA was found to control the TCA cycle, a key regulatory pathway for cellular metabolism and energy production, by regulating three main enzymes: citrate synthase (gltA), isocitrate dehydrogenase (icd), and α-ketoglutarate dehydrogenase E1 subunit (sucA) at both the transcriptional and translational levels. By modulating the TCA cycle, srbA could help the bacteria to adapt nutritional stress by lowering energy consumption. Additionally, srbA has been found to differentially regulate production of various virulence factors such as rhamnolipid, elastase, LasA protease, and pyocyanin under both nutrient-rich and nutrient-limiting conditions. It could also influence motilities in P. aeruginosa, linked to biofilm formation and pathogenicity. Thus, srbA might hold a promise in the research area for identifying virulence pathways and developing novel therapeutic targets to combat the global pathogenic threat of P. aeruginosa.
RESUMEN
Approximately 660,000 women are diagnosed with cervical cancer annually. Current screening options such as cytology or human papillomavirus testing have limitations, creating a need to identify more effective ancillary biomarkers for triage. Here, we evaluated whether metabolomic analysis of cervical mucus metabolism could be used to identify biomarkers of cervical intraepithelial neoplasia (CIN) and cervical cancer. The case-control group consisted of 181 CIN, 69 squamous cell carcinoma (SCC) patients, and 48 healthy controls in the primary cohort. We undertook metabolomic analyses using ultra-HPLC-tandem mass spectrometry. Univariate and multivariate analyses were carried out to profile metabolite characteristics, and receiver operating characteristic (ROC) analysis identified biomarker candidates. Five metabolites conferred the highest discriminatory power for SCC: oxidized glutathione (GSSG) (area under the ROC curve, 0.924; 95% confidence interval, 0.877-0.971), malic acid (0.914, 0.859-0.968), kynurenine (0.884, 0.823-0.945), GSSG/glutathione (GSH) (0.936, 0.892-0.979), and kynurenine/tryptophan (0.909, 0.856-0.961). Malic acid was the best marker for detection of CIN2 or worse (0.858, 0.793-0.922) and was a clinically useful metabolite. We confirmed the reproducibility of the results by validation cohort. Additionally, metabolomic analyses revealed eight pathways strongly associated with cervical neoplasia. Of these, only the tricarboxylic acid cycle was strongly associated with all CINs and cancer, indicating active energy production. Aberrant arginine metabolism by decreasing arginine and increasing citrulline might reduce tumor immunity. Changes in cysteine-methionine and GSH pathways might drive the initiation and progression of cervical cancer. These results suggest that metabolic analysis can identify ancillary biomarkers and could improve our understanding of the pathophysiological mechanisms underlying cervical neoplasia.
RESUMEN
PURPOSE: Recurrent pregnancy loss (RPL) represents a common disorder with consequences on family and society. As more than half of the RPL cases do not have a clearly identified cause, uncovering the mechanisms behind the idiopathic RPL is urgently needed. EXPERIMENTAL DESIGN: Using label-free data-independent LC-MS/MS acquisition coupled with ion mobility, we compared the proteome of chorionic villi from 13 RPL cases with 10 age and gestational week-matched elective pregnancies. Transcriptional levels of selected candidate biomarkers were determined in chorionic villi of 35 RPL cases and 25 controls using quantitative polymerase chain reaction (qPCR). RESULTS: Statistically significant difference in abundance (Benjamini-Hochberg [B-H] p ≤ 0.05) and fold change ≥1.5 showed 128 proteins. Bioinformatics analysis identified complement and coagulation cascades, platelet activation, tricarboxylic acid cycle (TCA) cycle, and ferroptosis as pathways with the highest significance. Correlation with transcriptome datasets revealed a weak statistically significant positive correlation with 45% of the co-differentially expressed proteins/genes displaying the same regulation trend. The transcription levels of neurofilament light polypeptide (NEFL), dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex_mitochondrial (DLST), nitric oxide synthase 3 (NOS3), and ceruloplasmin (CP) were significantly increased in the RPL, consistent with the proteomics findings. CONCLUSIONS AND CLINICAL RELEVANCE: Our data suggests alteration of several pathways as potential causes of idiopathic RPL from the fetal side and opens the way for investigations concerning clinical management.
RESUMEN
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
RESUMEN
This review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling. However, there is skepticism about the presence of metabolons and their functionality in physiological conditions in vivo. We address the skepticism by reviewing compelling evidence supporting the existence of the MDH-CISY metabolon and highlighting its potential functions in cellular metabolism. The electrostatic interaction between MDH and CISY and the intermediate oxaloacetate, channeled within the metabolon, has been demonstrated using various experimental techniques, including protein-protein interaction assays, isotope dilution studies, and enzyme coupling assays. Regardless of the wealth of in vitro evidence, further validation is required to elucidate the functionality of MDH-CISY metabolons in living systems using advanced structural and spatial analysis techniques.