Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bone ; 186: 117177, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942344

RESUMEN

Tmem119 was identified as a bone anabolic factor in osteoblasts, however the roles of Tmem119 on bone repair have remained unknown. Therefore, we herein investigated the roles of Tmem119 on bone repair by examining the bone repair process after a femoral bone defect using Tmem119-deficient mice. In Tmem119-deficient mice, bone repair after a femoral bone defect was significantly delayed 10 and 14 days after bone injury in female and male mice with 3-dimensional micro-computed tomography analyses, respectively. The number of alkaline phosphatase-positive cells at the damaged sites was significantly decreased 7 days after bone injury in Tmem119-deficient mice, although the number of Osterix-positive cells was not significantly different 4 days after bone injury. The number of tartrate-resistant acid phosphatase-positive multinucleated cells as well as the number and luminal area of CD31-positive vessels at the damaged sites were not significantly different between Tmem119-deficient and wild-type mice. The present study first showed that Tmem119 deficiency delayed bone repair partly through a decrease in the osteoblastic bone formation of differentiated osteoblasts.


Asunto(s)
Fémur , Proteínas de la Membrana , Osteoblastos , Microtomografía por Rayos X , Animales , Femenino , Masculino , Ratones , Regeneración Ósea , Fémur/diagnóstico por imagen , Fémur/patología , Fémur/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo , Osteogénesis
2.
Neurosci Lett ; 833: 137829, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38788796

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has been reported to be affected by inflammatory cells, such as microglia and macrophages, through the concept of non-cell autonomous neuronal death. Resident microglia in the human brain and monocyte-derived macrophages (MoDM) infiltrating in tissues are difficult to distinguish. Therefore, the effects of microglia and MoDMs in ALS remain poorly understood. This study aimed to investigate the role of resident microglia and MoDMs in the pathogenesis of ALS using postmortem brain and spinal cord samples. The samples used for immunohistochemical analysis included 11 cases of sporadic ALS and 11 age-matched controls. We stained the cells with TMEM119 to detect resident microglia and CCR2 to detect MoDMs. In ALS cases, TMEM119-immunopositive resident microglia were abundant in the motor cortex and subcortical white matter (SWM) of the motor area, whereas CCR2-immunopositive MoDM was similar to control cases. In addition, the mean density of CD68-immunopositive cells in the SWM significantly correlated with the mean density of pTDP-43-positive GCIs. These results suggest that resident microglial activation plays an important role in the cerebral pathogenesis of ALS and may provide novel therapeutic strategies to target excessive activation of resident microglia in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Encéfalo , Proteínas de la Membrana , Microglía , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Microglía/metabolismo , Microglía/patología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Proteínas de la Membrana/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Receptores CCR2/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Anciano de 80 o más Años
3.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474068

RESUMEN

Primary failure of eruption (PFE) is a rare oral disease with an incidence rate of 0.06%. It is characterized by abnormal eruption mechanisms that disrupt tooth eruption. The underlying pathogenic genetic variant and mechanism of PFE remain largely unknown. The purpose of this study was to explore the role of a novel transmembrane protein 119 (TMEM119) mutation in two PFE patients in a Chinese family. Information collection was performed on the family with a diagnosis of PFE, and blood samples from patients and healthy family members were extracted. Whole-exome sequencing was performed. Bioinformatics analysis revealed that a heterozygous variant in the TMEM119 gene (c.G143A, p.S48L) was a disease-associated mutation in this family. Recombinant pcDNA3.1 plasmid-containing wild-type and mutant TMEM119 expression cassettes were successfully constructed and transfected into MC3T3-E1 cells, respectively. The results of in vitro analysis suggested that the subcellular distribution of the TMEM119 protein was transferred from the cell cytoplasm to the nucleus, and the ability of cells to proliferate and migrate as well as glycolytic and mineralized capacities were reduced after mutation. Furthermore, rescue assays showed that activating transcription factor 4 (ATF4) overexpression rescued the attenuated glycolysis and mineralization ability of cells. Results of in vivo analysis demonstrated that TMEM119 was mainly expressed in the alveolar bone around the mouse molar germs, and the expression level increased with tooth eruption, demonstrated using immunohistochemistry and immunofluorescence. Collectively, the novel TMEM119 mutation is potentially pathogenic in the PFE family by affecting the glucose metabolism and mineralized function of osteoblasts, including interaction with ATF4. Our findings broaden the gene mutation spectrum of PFE and further elucidate the pathogenic mechanism of PFE.


Asunto(s)
Osteogénesis , Erupción Dental , Humanos , Animales , Ratones , Erupción Dental/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Mutación , Glucólisis
4.
BMC Neurosci ; 25(1): 6, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308250

RESUMEN

Under pathological conditions, the immune-specialized brain microenvironment contains both resident microglia and bone marrow-derived myeloid cells recruited from peripheral circulation. Due to largely overlapping phenotypic similarities between these ontogenically distinct myeloid populations, studying their individual functions in central nervous system diseases has been challenging. Recently, transmembrane protein 119 (Tmem119) has been reported as a marker for resident microglia which is not expressed by bone marrow-derived myeloid cells. However, several studies have reported the loss or reduction of Tmem119 expression in pathologically activated microglia. Here, we examined whether Tmem119 could be used as a robust marker to identify brain metastasis-associated microglia. In addition, we also compared Tmem119 expression of primary microglia to the immortalized microglia-like BV2 cell line and characterized expression changes after LPS treatment. Lastly, we used a commercially available transgenic mouse line (Tmem119-eGFP) to compare Tmem119 expression patterns to the traditional antibody-based detection methods. Our results indicate that brain metastasis-associated microglia have reduced Tmem119 gene and protein expression.


Asunto(s)
Neoplasias Encefálicas , Microglía , Animales , Ratones , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Macrófagos/metabolismo , Ratones Transgénicos , Microglía/metabolismo , Microambiente Tumoral
5.
Bone ; 181: 117040, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316336

RESUMEN

The intermittent administration of parathyroid hormone (PTH) exerts potent bone anabolic effects, which increase bone mineral density (BMD) and reduce fracture risk in osteoporotic patients. However, the underlying mechanisms remain unclear. Tmem119 has been proposed as a factor that is closely linked to the osteoblast phenotype, and we previously reported that PTH enhanced the expression of Tmem119 in mouse osteoblastic cells. However, roles of Tmem119 in the bone anabolic effects of PTH in vivo remain unknown. We herein investigated the roles of Tmem119 in bone anabolic effects of PTH using Tmem119-deficient mice. Tmem119 deficiency significantly reduced PTH-induced increases in trabecular bone volume and cortical BMD of femurs. Effects of Tmem119 deficiency on bone mass seemed predominant in female mice. Histomorphometric analyses with calcein labeling showed that Tmem119 deficiency significantly attenuated PTH-induced increases in the rates of bone formation and mineralization as well as numbers of osteoblasts. Moreover, Tmem119 deficiency significantly blunted PTH-induced decreases in phosphorylation of ß-catenin and increases in alkaline phosphatase activity in osteoblasts. In conclusion, the present results indicate that Tmem119 is involved in bone anabolic effects of PTH through osteoblastic bone formation partly related to canonical Wnt-ß-catenin signaling in mice.


Asunto(s)
Anabolizantes , Hormona Paratiroidea , Humanos , Animales , Femenino , Ratones , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/metabolismo , Osteogénesis , Anabolizantes/farmacología , Anabolizantes/metabolismo , beta Catenina/metabolismo , Huesos/metabolismo , Osteoblastos/metabolismo , Densidad Ósea , Proteínas de la Membrana/metabolismo
6.
Cell Rep ; 43(1): 113660, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38217856

RESUMEN

The recent proliferation of new Cre and CreER recombinase lines provides researchers with a diverse toolkit to study microglial gene function. To determine how best to apply these lines in studies of microglial gene function, a thorough and detailed comparison of their properties is needed. Here, we examined four different microglial CreER lines (Cx3cr1YFP-CreER(Litt), Cx3cr1CreER(Jung), P2ry12CreER, and Tmem119CreER), focusing on (1) recombination specificity, (2) leakiness (the degree of tamoxifen-independent recombination in microglia and other cells), (3) the efficiency of tamoxifen-induced recombination, (4) extraneural recombination (the degree of recombination in cells outside of the CNS, particularly myelo/monocyte lineages), and (5) off-target effects in the context of neonatal brain development. We identify important caveats and strengths for these lines, which will provide broad significance for researchers interested in performing conditional gene deletion in microglia. We also provide data emphasizing the potential of these lines for injury models that result in the recruitment of splenic immune cells.


Asunto(s)
Integrasas , Microglía , Ratones , Animales , Ratones Transgénicos , Tamoxifeno/farmacología , Modelos Animales de Enfermedad
7.
J Neurovirol ; 29(4): 367-375, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552415

RESUMEN

West Nile virus (WNV) has emerged as a significant cause of viral encephalitis in humans and horses. However, the pathogenesis of the West Nile encephalitis remains unclear. Microglia are activated by WNV infection, and the pathogenic involvement of their phenotypes is controversial. In this study, we examined the diversity of microglia phenotypes caused by WNV infection by assessing various microglia markers and identified disease-associated microglia in WNV-infected mouse brain tissue. Cells positive for general microglia markers such as Iba1, P2RY12, or TMEM119 were detected in the control and WNV-infected brain tissue. The morphology of the positive cells in brain tissue infected by WNV was different from that of control brain tissue, indicating that WNV infection induced activation of microglia. The activated microglia were classified into various phenotypes by investigation of specific marker expression. Among the activated microglia, disease-associated microglia that were positive for CD11c and weakly positive for TMEM119 were detected close to the WNV-infected cells. These results indicate that WNV infection induces activation of diverse microglia phenotypes and that disease-associated microglia may be associated with the pathogenicity of WNV infection in the mouse brain.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Ratones , Animales , Humanos , Caballos , Microglía , Encéfalo , Fenotipo
8.
bioRxiv ; 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131606

RESUMEN

The recent proliferation of new Cre and CreER recombinase lines provides researchers with a diverse toolkit to study microglial gene function. To determine how best to apply these lines in studies of microglial gene function, a thorough and detailed comparison of their properties is needed. Here, we examined four different microglial CreER lines (Cx3cr1CreER(Litt), Cx3cr1CreER(Jung), P2ry12CreER, Tmem119CreER), focusing on (1) recombination specificity; (2) leakiness - degree of non-tamoxifen recombination in microglia and other cells; (3) efficiency of tamoxifen-induced recombination; (4) extra-neural recombination -the degree of recombination in cells outside the CNS, particularly myelo/monocyte lineages (5) off-target effects in the context of neonatal brain development. We identify important caveats and strengths for these lines which will provide broad significance for researchers interested in performing conditional gene deletion in microglia. We also provide data emphasizing the potential of these lines for injury models that result in the recruitment of splenic immune cells.

9.
Free Radic Biol Med ; 195: 231-244, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592659

RESUMEN

Increased oxidative stress and decreased osteoblastic bone formation contribute to estrogen deficiency-induced osteoporosis. However, the role and mechanism of estrogen-deficiency in regulating oxidative stress and osteoblastic activity remain unclear. Here, we showed that estrogen-deficient bone marrow stromal/stem cells (BMSCs) exhibited impaired capacity to combat stress, characterized by increased oxidative stress, shortened cell survival and reduced osteogenic differentiation and bone formation, which were due to a decrease of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 re-activation induced by the pyrazinyl dithiolethione oltipraz significantly rescued the cell phenotype of estrogen-deficient BMSCs in vitro and ex vivo. Mechanistically, we found that 17ß-estradiol/ESR1 (Estrogen Receptor 1) facilitated Nrf2 accumulation, and activated its target genes by competing with Nrf2 for binding to Kelch-like ECH-associated protein 1 (Keap1) via ESR1 containing a highly conserved DLL motif. Of note, oltipraz, an Nrf2 activator, rescued ovariectomy-induced osteoporosis partly by inhibiting oxidative stress and promoting osteoblastic bone formation via Nrf2-induced antioxidant signaling activation and Tmem119 (transmembrane protein 119) upregulation. Conversely, Nrf2 knockout largely blocked the bone anabolic effect of 17ß-estradiol in vivo and ex vivo. This study provides insight into the mechanisms whereby estrogen prevents osteoporosis through promoting osteoblastic bone formation via Nrf2-mediated activation of antioxidant signaling and upregulation of Tmem119, and thus provides evidence for Nrf2 as a potential target for clinical prevention and treatment of menopause-related osteoporosis.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Osteoporosis , Femenino , Humanos , Antioxidantes/farmacología , Estradiol/farmacología , Estrógenos/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteogénesis/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Estrés Oxidativo , Regulación hacia Arriba
10.
J Neuropathol Exp Neurol ; 82(2): 140-149, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440536

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an intractable neurodegenerative disease of the central nervous system that is pathologically characterized by motor neuron loss. Although the cause of the disease is still unknown, its pathophysiology is considered heterogeneous. In recent years, there have been a series of reports on the existence of disease-associated microglia (DAM) in the lesions of various neurodegenerative diseases. DAM have also been reported in SOD1-deficient mice, a disease model of ALS. However, the role of DAM in sporadic ALS remains unclear. This study revealed that spinal cord lesions in ALS can be pathologically distinguished into 2 subgroups (TMEM119+ and TMEM119- microglia) according to the type of microglia. Expression of the microglial activation marker CD68 and endothelial activation were also observed in the TMEM119+ microglia group, suggesting the presence of inflammatory processes in ALS lesions. Since DAM suppress the expression of TMEM119, the TMEM119+ microglia group may indicate DAM-independent inflammatory neurodegeneration. These results may explain why, in some clinical trials of anti-inflammatory drugs for ALS, only some cases showed suppression of disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Esclerosis Amiotrófica Lateral/patología , Microglía/patología , Enfermedades Neurodegenerativas/patología , Ratones Transgénicos , Neuronas Motoras/patología , Médula Espinal/patología , Modelos Animales de Enfermedad , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/uso terapéutico
11.
Int Forum Allergy Rhinol ; 13(3): 242-254, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35984636

RESUMEN

BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory sinonasal disease characterized by eosinophilic infiltration and new bone formation. These changes indicate the severity and prognosis of CRSwNP and may be closely linked to each other. METHODS: We performed RNA sequencing to screen specific osteogenic molecules and validated transmembrane protein 119 (TMEM119) expression by quantitative polymerase chain reaction (qPCR) and immunohistochemistry analyses. TMEM119 knockdown was performed to observe the downregulation of bone mineralization. We validated the bone-forming activity of interferon-γ (IFN-γ) and its signaling pathways in cultured primary sinus bone cells. Cellular sources of IFN-γ were identified using immunohistochemistry and immunofluorescence analyses. Interleukin-4-eosinophil-IFN-γ axis and the effect of dupilumab were investigated in Eol-1 cells. RESULTS: We observed elevated IFN-γ levels and eosinophils in the nasal fluid and predominantly eosinophil-derived IFN-γ in the sinus mucosa of patients with CRSwNP. TMEM119 expression and bone-forming activities were increased in the osteitic and primary sinus bone cells of CRSwNP. IFN-γ treatment enhanced bone mineralization and TMEM119 expression via signal transducer and activator of transcription 1 (STAT1) signaling. Moreover, TMEM119 knockdown inhibited sinus bone cell mineralization and dupilumab attenuated IFN-γ secretion by IL4-stimulated Eol-1 cells. CONCLUSION: Eosinophil-derived IFN-γ promotes the bone-forming activities of sinus bone cells via the STAT1-TMEM119 signaling pathway. Interleukin-4-eosinophil-IFN-γ axis may be crucial for TMEM119-mediated new bone formation in CRSwNP.


Asunto(s)
Pólipos Nasales , Rinitis , Sinusitis , Humanos , Interferón gamma/metabolismo , Eosinófilos/metabolismo , Interleucina-4/metabolismo , Rinitis/metabolismo , Pólipos Nasales/metabolismo , Osteogénesis , Sinusitis/metabolismo , Enfermedad Crónica
12.
Neurobiol Pain ; 12: 100106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531615

RESUMEN

Chronic pain is a common and often debilitating problem that affects 100 million Americans. A better understanding of pain's molecular mechanisms is necessary for developing safe and effective therapeutics. Microglial activation has been implicated as a mediator of chronic pain in numerous preclinical studies; unfortunately, translational efforts using known glial modulators have largely failed, perhaps at least in part due to poor specificity of the compounds pursued, or an incomplete understanding of microglial reactivity. In order to achieve a more granular understanding of the role of microglia in chronic pain as a means of optimizing translational efforts, we utilized a clinically-informed mouse model of complex regional pain syndrome (CRPS), and monitored microglial activation throughout pain progression. We discovered that while both males and females exhibit spinal cord microglial activation as evidenced by increases in Iba1, activation is attenuated and delayed in females. We further evaluated the expression of the newly identified microglia-specific marker, TMEM119, and identified two distinct populations in the spinal cord parenchyma after peripheral injury: TMEM119+ microglia and TMEM119- infiltrating myeloid lineage cells, which are comprised of Ly6G + neutrophils and Ly6G- macrophages/monocytes. Neurons are sensitized by inflammatory mediators released in the CNS after injury; however, the cellular source of these cytokines remains somewhat unclear. Using multiplex in situ hybridization in combination with immunohistochemistry, we demonstrate that spinal cord TMEM119+ microglia are the cellular source of cytokines IL6 and IL1ß after peripheral injury. Taken together, these data have important implications for translational studies: 1) microglia remain a viable analgesic target for males and females, so long as duration after injury is considered; 2) the analgesic properties of microglial modulators are likely at least in part related to their suppression of microglial-released cytokines, and 3) a limited number of neutrophils and macrophages/monocytes infiltrate the spinal cord after peripheral injury but have unknown impact on pain persistence or resolution. Further studies to uncover glial-targeted therapeutic interventions will need to consider sex, timing after injury, and the exact target population of interest to have the specificity necessary for translation.

13.
J Neuroinflammation ; 19(1): 280, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36403004

RESUMEN

Microglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals. DON-induced toxicity is characterized by reduced food intake, weight gain, and immunological effects. We previously showed that exposure to DON induces an inflammatory response within the hypothalamus and dorsal vagal complex (DVC) which contributes to DON-induced anorexia. Here, in response to anorectic DON doses, we reported microglial activation within two circumventricular organs (CVOs), the area postrema (AP) and median eminence (ME) located in the DVC and the hypothalamus, respectively. Interestingly, this microglial activation was observed while DON-induced anorexia was ongoing (i.e., 3 and 6 h after DON administration). Next, we took advantage of pharmacological microglia deletion using PLX3397, a colony-stimulating factor 1 receptor (CSF1R)-inhibitor. Surprisingly, microglia-depleted mice exhibited an increased sensitivity to DON since non-anorectic DON doses reduced food intake in PLX3397-treated mice. Moreover, low DON doses induced c-Fos expression within feeding behavior-associated structures in PLX3397-treated mice but not in control mice. In parallel, we have highlighted heterogeneity in the phenotype of microglial cells present in and around the AP and ME of control animals. In these areas, microglial subpopulations expressed IBA1, TMEM119, CD11b and CD68 to varying degrees. In addition, a CD68 positive subpopulation showed, under resting conditions, a noticeable phagocytotic/endocytotic activity. We observed that DON strongly reduced CD68 in the hypothalamus and DVC. Finally, inactivation of constitutively active microglia by intraperitoneal administration of minocycline resulted in anorexia with a DON dose ineffective in control mice. Taken together, these results strongly suggest that various populations of microglial cells residing in and around the CVOs are maintained in a functionally active state even under physiological conditions. We propose that these microglial cell populations are attempting to protect the brain parenchyma from hazardous molecules coming from the blood. This study could contribute to a better understanding of how microglia respond to environmental contaminants.


Asunto(s)
Anorexia , Tricotecenos , Humanos , Animales , Ratones , Anorexia/inducido químicamente , Microglía , Tricotecenos/toxicidad
14.
Front Mol Neurosci ; 15: 944883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204141

RESUMEN

Neuronopathic Gaucher disease (nGD) is an inherited neurodegenerative disease caused by mutations in GBA1 gene and is associated with premature death. Neuroinflammation plays a critical role in disease pathogenesis which is characterized by microgliosis, reactive astrocytosis, and neuron loss, although molecular mechanisms leading to neuroinflammation are not well-understood. In this report, we developed a convenient tool to quantify microglia proliferation and activation independently and uncovered abnormal proliferation of microglia (∼2-fold) in an adult genetic nGD model. The nGD-associated pattern of inflammatory mediators pertinent to microglia phenotypes was determined, showing a unique signature favoring pro-inflammatory chemokines and cytokines. Moreover, highly polarized (up or down) dysregulations of mTORC1 signaling with varying lysosome dysfunctions (numbers and volume) were observed among three major cell types of nGD brain. Specifically, hyperactive mTORC1 signaling was detected in all disease-associated microglia (Iba1high) with concurrent increase in lysosome function. Conversely, the reduction of neurons presenting high mTORC1 activity was implicated (including Purkinje-like cells) which was accompanied by inconsistent changes of lysosome function in nGD mice. Undetectable levels of mTORC1 activity and low Lamp1 puncta were noticed in astrocytes of both diseased and normal mice, suggesting a minor involvement of mTORC1 pathway and lysosome function in disease-associated astrocytes. These findings highlight the differences and complexity of molecular mechanisms that are involved within various cell types of the brain. The quantifiable parameters established and nGD-associated pattern of neuroinflammatory mediators identified would facilitate the efficacy evaluation on microgliosis and further discovery of novel therapeutic target(s) in treating neuronopathic Gaucher disease.

15.
Front Psychiatry ; 13: 945548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090351

RESUMEN

Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.

16.
Front Immunol ; 13: 948457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935990

RESUMEN

Diabetes increases the occurrence and severity of atherosclerosis. When plaques form in brain vessels, cerebral atherosclerosis causes thickness, rigidity, and unstableness of cerebral artery walls, leading to severe complications like stroke and contributing to cognitive impairment. So far, the molecular mechanism underlying cerebral atherosclerosis is not determined. Moreover, effective intervention strategies are lacking. In this study, we showed that polarization of microglia, the resident macrophage in the central nervous system, appeared to play a critical role in the pathological progression of cerebral atherosclerosis. Microglia likely underwent an M2c-like polarization in an environment long exposed to high glucose. Experimental suppression of microglia M2c polarization was achieved through transduction of microglia with an adeno-associated virus (serotype AAV-PHP.B) carrying siRNA for interleukin-10 (IL-10) under the control of a microglia-specific TMEM119 promoter, which significantly attenuated diabetes-associated cerebral atherosclerosis in a mouse model. Thus, our study suggests a novel translational strategy to prevent diabetes-associated cerebral atherosclerosis through in vivo control of microglia polarization.


Asunto(s)
Diabetes Mellitus , Arteriosclerosis Intracraneal , Accidente Cerebrovascular , Animales , Diabetes Mellitus/patología , Infarto de la Arteria Cerebral Media , Arteriosclerosis Intracraneal/complicaciones , Arteriosclerosis Intracraneal/patología , Ratones , Microglía/patología , Accidente Cerebrovascular/patología
17.
J Neurooncol ; 159(2): 425-435, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35802230

RESUMEN

PURPOSE: Opening the ventricular system during glioblastoma surgery is often necessary, but the consequent effect on the tumor microenvironment of glioblastoma remains unknown. Implantation of carmustine wafer enables direct drug delivery to the tumor site; however, the exact mechanism of the wafer's biodegradation process is unclear, and the available data is limited to in vivo non-human mammalian studies. We hypothesized that the ventricular opening affects the degradation process of the wafer and the glioblastoma tumor microenvironment. METHODS: This study included 30 glioblastoma patients. 21 patients underwent carmustine wafer implantation during initial surgery. All patients underwent repeated surgical resection upon recurrence, allowing for pathological comparison of changes associated with wafer implantation. Immunohistochemical analyses were performed using CD68, TMEM119, CD163, IBA1, BIN1, and CD31 antibodies to highlight microglia, macrophages, and tumor vascularity, and the quantitative scoring results were correlated with clinical, molecular, and surgical variables, including the effect of the ventricular opening. RESULTS: The carmustine wafer implanted group presented significantly less TMEM119-positive microglia within the tumor (P = 0.0002). Simple and multiple regression analyses revealed that the decrease in TMEM119-positive microglia was correlated with longer intervals between surgeries and opened ventricular systems. No correlation was observed between age, methylated O6-methylguanine DNA methyltransferase promoter expression, and the extent of surgical resection. CONCLUSIONS: Our study findings strongly suggest that biomaterials may possess immunomodulation capacity, which is significantly impacted by the ventricular opening procedure. Furthermore, our data highlights the pathophysiological effects of the ventricular opening within the surrounding human brain, especially after the wafer implantation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes , Encéfalo , Carmustina , Humanos , Inmunomodulación , Microambiente Tumoral
18.
Front Cell Neurosci ; 16: 902372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769325
20.
Neurobiol Dis ; 167: 105684, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35247551

RESUMEN

Microglia have been identified as key players in Alzheimer's disease pathogenesis, and other neurodegenerative diseases. Iba1, and more specifically TMEM119 and P2RY12 are gaining ground as presumedly more specific microglia markers, but comprehensive characterization of the expression of these three markers individually as well as combined is currently missing. Here we used a multispectral immunofluorescence dataset, in which over seventy thousand microglia from both aged controls and Alzheimer patients have been analysed for expression of Iba1, TMEM119 and P2RY12 on a single-cell level. For all markers, we studied the overlap and differences in expression patterns and the effect of proximity to ß-amyloid plaques. We found no difference in absolute microglia numbers between control and Alzheimer subjects, but the prevalence of specific combinations of markers (phenotypes) differed greatly. In controls, the majority of microglia expressed all three markers. In Alzheimer patients, a significant loss of TMEM119+-phenotypes was observed, independent of the presence of ß-amyloid plaques in its proximity. Contrary, phenotypes showing loss of P2RY12, but consistent Iba1 expression were increasingly prevalent around ß-amyloid plaques. No morphological features were conclusively associated with loss or gain of any of the markers or any of the identified phenotypes. All in all, none of the three markers were expressed by all microglia, nor can be wholly regarded as a pan- or homeostatic marker, and preferential phenotypes were observed depending on the surrounding pathological or homeostatic environment. This work could help select and interpret microglia markers in previous and future studies.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA