Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Extracell Biol ; 3(7): e155, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38947879

RESUMEN

Extracellular vesicle (EV) secretion is mediated by purinergic receptor P2X7 (P2RX7), an ATP-gated cation channel highly expressed in microglia. We have previously shown that administration of GSK1482160, a P2RX7 selective inhibitor, suppresses EV secretion from murine microglia and prevents tauopathy development, leading to the recovery of the hippocampal function in PS19 mice, expressing P301S tau mutant. It is yet unknown, however, whether the effect of GSK1482160 on EV secretion from glial cells is specifically regulated through P2RX7. Here we tested GSK1482160 on primary microglia and astrocytes isolated from C57BL/6 (WT) and P2rx7-/- mice and evaluated their EV secretion and phagocytotic activity of aggregated human tau (hTau) under ATP stimulation. GSK1482160 treatment and deletion of P2rx7 significantly reduced secretion of small and large EVs in microglia and astrocytes in both ATP stimulated or unstimulated condition as determined by nanoparticle tracking analysis, CD9 ELISA and immunoblotting of Tsg101 and Flotilin 1 using isolated EVs. GSK1482160 treatment had no effect on EV secretion from P2rx7 -/- microglia while we observed significant reduction in the secretion of small EVs from P2rx7 -/- astrocytes, suggesting its specific targeting of P2RX7 in EV secretion except small EV secretion from astrocytes. Finally, deletion of P2rx7 suppressed IL-1ß secretion and phagocytosed misfolded tau from both microglia and astrocytes. Together, these findings show that GSK1482160 suppresses EV secretion from microglia and astrocytes in P2RX7-dependment manner, and P2RX7 critically regulates secretion of IL-1ß and misfolded hTau, demonstrating as the viable target of suppressing EV-mediated neuroinflammation and tau propagation.

2.
Int J Biol Macromol ; 274(Pt 1): 133233, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901510

RESUMEN

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disrupting TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of novel host-oriented antivirals with a broad spectrum of action. Nonetheless, finding inhibitors with good properties as therapeutic agents remains a challenge since the key determinants of binding affinity and specificity are still poorly understood. Here we present a detailed thermodynamic, structural, and dynamic characterization viral PTAP Late domain recognition by TSG101-UEV, combining isothermal titration calorimetry, X-ray diffraction structural studies, molecular dynamics simulations, and computational analysis of intramolecular communication pathways. Our analysis highlights key contributions from conserved hydrophobic contacts and water-mediated hydrogen bonds at the PTAP binding interface. We have identified additional electrostatic hotspots adjacent to the core motif that modulate affinity. Using competitive phage display screening we have improved affinity by 1-2 orders of magnitude, producing novel peptides with low micromolar affinities that combine critical elements found in the best natural binders. Molecular dynamics simulations revealed that optimized peptides engage new pockets on the UEV domain surface. This study provides a comprehensive view of the molecular forces directing TSG101-UEV recognition of PTAP motifs, revealing that binding is governed by conserved structural elements yet tuneable through targeted optimization. These insights open new venues to design inhibitors targeting TSG101-dependent pathways with potential application as novel broad-spectrum antivirals.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Simulación de Dinámica Molecular , Unión Proteica , Termodinámica , Factores de Transcripción , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Humanos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Ligandos , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Péptidos/química , Péptidos/metabolismo , Sitios de Unión , Dominios Proteicos , Técnicas de Visualización de Superficie Celular/métodos
3.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888346

RESUMEN

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Penaeidae , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Penaeidae/virología , Penaeidae/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Endosomas/metabolismo , Endosomas/virología , Hemocitos/virología , Hemocitos/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Interferencia de ARN
4.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746182

RESUMEN

Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.

5.
Cells ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607019

RESUMEN

Previous research indicates that carcinogenesis involves disrupting the functions of numerous genes, including factors involved in the regulation of transcription and cell proliferation. For these reasons, in endometrial carcinogenesis, we decided to investigate the expression of TSG101 (a suppressor of tumor transformation) and LSF (a transcription factor involved in numerous cellular processes, such as cell cycle regulation, cell growth, development, and apoptosis). LSF may be involved in the regulation of TSG101 expression. The research material consisted of endometrial cancer samples from 60 patients. The control group consisted of normal endometrium samples donated by 60 women undergoing surgery for benign diseases of the female reproductive organs. The samples were subjected to immunohistochemical staining with antibodies specific to TSG101 and LSF. Specific antibodies were used to identify TSG101 and LSF in the examined histopathological preparations. An approximately 14-fold lower risk of endometrial cancer development was observed in patients with TSG expression in more than 75% of the assessed cells (4% vs. 36%; OR = 0.07; p = 0.0182). There was a four-fold lower risk of endometrial cancer development in patients with LSF expression in more than 50% of the assessed cells (32% vs. 64%; OR = 0.26; p = 0.0262). A more than three-fold lower risk of endometrial cancer development was observed in patients with LSF expression in more than 75% of the assessed cells (24% vs. 52%; OR = 0.29; p = 0.0454). Endometrial cancer was diagnosed in those with a lower level of TSG101 expression than in those with a cancer-free endometrium. Decreased expression of TSG101 may be a marker of endometrial cancer, and increased expression of LSF when diagnosed with endometrial cancer may indicate greater advancement of the disease. These markers might be used as diagnostic and prognostic markers-however, there is a lack of a correlation between them.


Asunto(s)
Neoplasias Endometriales , Factores de Transcripción , Femenino , Humanos , Factores de Transcripción/metabolismo , Transformación Celular Neoplásica/genética , Neoplasias Endometriales/genética , Regulación Neoplásica de la Expresión Génica , Endometrio/metabolismo
6.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003710

RESUMEN

Human T-cell tropic virus type 1 (HTLV-1) is known to be mainly transmitted by cell-to-cell contact due to the lower infectivity of the cell-free virion. However, the reasons why cell-free HTLV-1 infection is poor remain unknown. In this study, we found that the retrovirus pseudotyped with HTLV-1 viral envelope glycoprotein (Env) was infectious when human immunodeficiency virus type 1 (HIV-1) was used to produce the virus. We found that the incorporation of HTLV-1 Env into virus-like particles (VLPs) was low when HTLV-1 Gag was used to produce VLPs, whereas VLPs produced using HIV-1 Gag efficiently incorporated HTLV-1 Env. The production of VLPs using Gag chimeras between HTLV-1 and HIV-1 Gag and deletion mutants of HIV-1 Gag showed that the p6 domain of HIV-1 Gag was responsible for the efficient incorporation of HTLV-1 Env into the VLPs. Further mutagenic analyses of the p6 domain of HIV-1 Gag revealed that the PTAP motif in the p6 domain of HIV-1 Gag facilitates the incorporation of HTLV-1 Env into VLPs. Since the PTAP motif is known to interact with tumor susceptibility gene 101 (TSG101) during the budding process, we evaluated the effect of TSG101 knockdown on the incorporation of HTLV-1 Env into VLPs. We found that TSG101 knockdown suppressed the incorporation of HTLV-1 Env into VLPs and decreased the infectivity of cell-free HIV-1 pseudotyped with HTLV-1 Env. Our results suggest that the interaction of TSG101 with the PTAP motif of the retroviral L domain is involved not only in the budding process but also in the efficient incorporation of HTLV-1 Env into the cell-free virus.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Humanos , Secuencias de Aminoácidos , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Virión/genética , Virión/metabolismo , VIH-1/fisiología , Productos del Gen env/metabolismo
7.
J Virol ; 97(5): e0043823, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37042780

RESUMEN

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host endosomal sorting complex required for transport (ESCRT) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection and, specifically, the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a small interfering RNA (siRNA) screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. IMPORTANCE Enveloped viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT complexes. Some enveloped viruses utilize their late (L-) domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped virions, but the underlying molecular mechanisms involved remain elusive. Here, we showed that TSG101, one of the ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via the L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Virus de la Rabia , Rabia , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Morfogénesis , Rabia/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Liberación del Virus , Línea Celular , Animales
8.
Biomol NMR Assign ; 17(1): 49-54, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740661

RESUMEN

The Endosomal Sorting Complex Required for Transport (ESCRT) pathway, through inverse topology membrane remodeling, is involved in many biological functions, such as ubiquitinated membrane receptor trafficking and degradation, multivesicular bodies (MVB) formation and cytokinesis. Dysfunctions in ESCRT pathway have been associated to several human pathologies, such as cancers and neurodegenerative diseases. The ESCRT machinery is also hijacked by many enveloped viruses to bud away from the plasma membrane of infected cells. Human tumor susceptibility gene 101 (Tsg101) protein is an important ESCRT-I complex component. The structure of the N-terminal ubiquitin E2 variant (UEV) domain of Tsg101 (Tsg101-UEV) comprises an ubiquitin binding pocket next to a late domain [P(S/T)AP] binding groove. These two binding sites have been shown to be involved both in the physiological roles of ESCRT-I and in the release of the viral particles, and thus are attractive targets for antivirals. The structure of the Tsg101-UEV domain has been characterized, using X-ray crystallography or NMR spectroscopy, either in its apo-state or bound to ubiquitin or late domains. In this study, we report the backbone NMR resonance assignments, including the proline signals, of the apo human Tsg101-UEV domain, that so far was not publicly available. These data, that are in good agreement with the crystallographic structure of Tsg101-UEV domain, can therefore be used for further NMR studies, including protein-protein interaction studies and drug discovery.


Asunto(s)
Proteínas de Unión al ADN , Ubiquitina , Humanos , Ubiquitina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas de Unión al ADN/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
9.
J Biol Chem ; 299(2): 102901, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642186

RESUMEN

The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Infecciones por VIH , VIH-1 , Ubiquitina , Humanos , Sitios de Unión , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología
10.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076942

RESUMEN

Although tissue-type plasminogen activator was approved by the FDA for early reperfusion of occluded vessels, there is a need for an effective neuroprotective drug for stroke patients. In this study, we established tumor susceptibility gene (TSG)101-overexpressing human neural stem cells (F3.TSG) and investigated whether they showed enhanced secretion of exosomes and whether treatment with exosomes during reperfusion alleviated ischemia-reperfusion-mediated brain damage. F3.TSG cells secreted higher amounts of exosomes than the parental F3 cells. In N2A cells subjected to oxygen-glucose deprivation (OGD), treatment with exosomes or coculture with F3.TSG cells significantly attenuated lactate dehydrogenase release, the mRNA expression of proinflammatory factors, and the protein expression of DNA-damage-related proteins. In a middle cerebral artery occlusion (MCAO) rat model, treatment with exosomes, F3 cells, or F3.TSG cells after 2 h of occlusion followed by reperfusion reduced the infarction volume and suppressed inflammatory cytokines, DNA-damage-related proteins, and glial fibrillary acidic protein, and upregulated several neurotrophic factors. Thus, TSG101-overexpressing neural stem cells showed enhanced exosome secretion; exosome treatment protected against MCAO-induced brain damage via anti-inflammatory activities, DNA damage pathway inhibition, and growth/trophic factor induction. Therefore, exosomes and F3.TSG cells can affect neuroprotection and functional recovery in acute stroke patients.


Asunto(s)
Isquemia Encefálica , Exosomas , Células-Madre Neurales , Fármacos Neuroprotectores , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Isquemia Encefálica/metabolismo , ADN/metabolismo , Exosomas/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Células-Madre Neurales/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Ratas , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/terapia
11.
EMBO J ; 41(21): e110372, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36124865

RESUMEN

In a genome-wide screening for components of the dsDNA-break-induced IKK-NF-κB pathway, we identified scores of regulators, including tumor susceptibility gene TSG101. TSG101 is essential for DNA damage-induced formation of cellular poly(ADP-ribose) (PAR). TSG101 binds to PARP1 and is required for PARP1 activation. This function of TSG101 is independent of its role in the ESCRT-I endosomal sorting complex. In the absence of TSG101, the PAR-dependent formation of a nuclear PARP1-IKKγ signalosome, which triggers IKK activation, is impaired. According to its requirement for PARP1 and NF-κB activation, TSG101-deficient cells are defective in DNA repair and apoptosis protection. Loss of TSG101 results in PARP1 trapping at damage sites and mimics the effect of pharmacological PARP inhibition. We also show that the loss of TSG101 in connection with inactivated tumor suppressors BRCA1/2 in breast cancer cells is lethal. Our results imply TSG101 as a therapeutic target to achieve synthetic lethality in cancer treatment.


Asunto(s)
FN-kappa B , Poli ADP Ribosilación , FN-kappa B/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Daño del ADN , Reparación del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
12.
Biol Cell ; 114(10): 259-275, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35844059

RESUMEN

BACKGROUD: Extracellular vesicles (EVs) are nanometric membrane vesicles produced by cells and involved in cell-cell communication. EV formation can occur in endosomal compartments whose budding depends on the ESCRT machinery (i.e., exosomes), or at the cell plasma membrane (i.e., EVs or microvesicles). How these EVs bud from the cell plasma membrane is not completely understood. Membrane curvatures of the plasma membrane toward the exterior are often generated by I-BAR domain proteins. I-BAR proteins are cytosolic proteins that when activated bind to the cell plasma membrane and are involved in protrusion formation including filopodia and lamellipodia. These proteins contain a conserved I-BAR domain that senses curvature and induces negative membrane curvatures at the plasma membrane. I-BAR proteins, such as IRSp53, also interact with actin co-factors to favor membrane protrusions. RESULTS: Here, we explore whether the I-BAR protein IRSp53 is sorting with EVs and if ectopic GFP-tagged I-BAR proteins, such as IRSp53-GFP, as well as related IRTKS-GFP or Pinkbar proteins, can be found in these EVs originated from the cell plasma membrane. We found that a subpopulation of these I-BAR EVs, which are negative for the CD81 exosomal biomarker, are produced from the cell plasma membrane in a TSG101-independent manner but in an Arp2/3-dependent manner. CONCLUSIONS: Our results thus reveal that IRSp53 containing EVs represent a subset of plasma membrane EVs whose production depends on branched actin. SIGNIFICANCE: IRSp53 belongs to the I-BAR family proteins involved in curving cell membranes through a link with cortical actin. In that perspective, IRSp53 was shown to help membrane curvature of HIV-1 particles and, here, to be part of the budding process of a sub-population of EVs through its link with Arp2/3. IRSp53 is consequently a biomarker of these EVs of the cell plasma membrane.


Asunto(s)
Actinas , Vesículas Extracelulares , Actinas/metabolismo , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
13.
J Extracell Vesicles ; 11(6): e12233, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642450

RESUMEN

The formation of extracellular vesicles (EVs) is induced by the sphingolipid ceramide. How this pathway is regulated is not entirely understood. Here, we report that the ceramide transport protein (CERT) mediates a non-vesicular transport of ceramide between the endoplasmic reticulum (ER) and the multivesicular endosome at contact sites. The process depends on the interaction of CERT's PH domain with PI4P generated by PI4KIIα at endosomes. Furthermore, a complex is formed between the START domain of CERT, which carries ceramide, and the Tsg101 protein, which is part of the endosomal sorting complex required for transport (ESCRT-I). Inhibition of ceramide biosynthesis reduces CERT-Tsg101 complex formation. Overexpression of CERT increases EV secretion while its inhibition reduces EV formation and the concentration of ceramides and sphingomyelins in EVs. In conclusion, we discovered a function of CERT in regulating the sphingolipid composition and biogenesis of EVs, which links ceramide to the ESCRT-dependent pathway.


Asunto(s)
Vesículas Extracelulares , Esfingolípidos , Proteínas Portadoras , Ceramidas , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Serina-Treonina Quinasas
14.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269659

RESUMEN

Tumor viruses gain control of cellular functions when they infect and transform host cells. Alternative splicing is one of the cellular processes exploited by tumor viruses to benefit viral replication and support oncogenesis. Epstein-Barr virus (EBV) participates in a number of cancers, as reported mostly in nasopharyngeal carcinoma (NPC) and Burkitt lymphoma (BL). Using RT-nested-PCR and Northern blot analysis in NPC and BL cells, here we demonstrate that EBV promotes specific alternative splicing of TSG101 pre-mRNA, which generates the TSG101∆154-1054 variant though the agency of its viral proteins, such as EBNA-1, Zta and Rta. The level of TSG101∆154-1054 is particularly enhanced upon EBV entry into the lytic cycle, increasing protein stability of TSG101 and causing the cumulative synthesis of EBV late lytic proteins, such as VCA and gp350/220. TSG101∆154-1054-mediated production of VCA and gp350/220 is blocked by the overexpression of a translational mutant of TSG101∆154-1054 or by the depletion of full-length TSG101, which is consistent with the known role of the TSG101∆154-1054 protein in stabilizing the TSG101 protein. NPC patients whose tumor tissues express TSG101∆154-1054 have high serum levels of anti-VCA antibodies and high levels of viral DNA in their tumors. Our findings highlight the functional importance of TSG101∆154-1054 in allowing full completion of the EBV lytic cycle to produce viral particles. We propose that targeting EBV-induced TSG101 alternative splicing has broad potential as a therapeutic to treat EBV-associated malignancies.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Empalme del ARN , Factores de Transcripción , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Herpesvirus Humano 4/genética , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patología , Precursores del ARN/genética , Factores de Transcripción/genética
15.
J Virol ; 96(7): e0024422, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35319226

RESUMEN

Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. We showed previously that PPRV induced sustained autophagy for their replication in host cells. Many studies have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate the recipient's cellular response and result in productive infection of the recipient host. Here, we show that PPRV infection results in packaging of the viral genomic RNA and partial viral proteins into exosomes of Vero cells and upregulates exosome secretion. We provide evidence showing that the exosomal viral cargo can be transferred to and establish productive infection in a new target cell. Importantly, our study reveals that PPRV-induced autophagy enhances exosome secretion and exosome-mediated virus transmission. Additionally, our data show that TSG101 may be involved in the sorting of the infectious PPRV RNA into exosomes to facilitate the release of PPRV through the exosomal pathway. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated PPRV intercellular transmission. IMPORTANCE Autophagy plays an important role in PPRV pathogenesis. The role of exosomes in viral infections is beginning to be appreciated. The present study examined the role of autophagy in secretion of infectious PPRV from Vero cells. Our data provided the first direct evidence that ATG7-mediated autophagy enhances exosome secretion and exosome-mediated PPRV transmission. TSG101 may be involved in the sorting of the infectious PPRV RNA genomes into exosomes to facilitate the release of PPRV through the exosomal pathway. Inhibition of PPRV-induced autophagy or TSG101 expression could be used as a strategy to block exosome-mediated virus transmission.


Asunto(s)
Autofagia , Exosomas , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Chlorocebus aethiops , Exosomas/metabolismo , Exosomas/virología , Peste de los Pequeños Rumiantes/transmisión , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/genética , ARN Viral/metabolismo , Rumiantes , Células Vero , Proteínas Virales/metabolismo
16.
Structure ; 30(2): 289-299.e6, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120596

RESUMEN

The ESCRT-I protein Tsg101 plays a critical role in viral budding and endocytic sorting. Although Tsg101 is known to recognize monoubiquitin (Ub1), here we show that it can also bind several diubiquitins (K48-Ub2, N-Ub2, and K63-Ub2), with a preference for K63-linked Ub2. The NMR structure of the Tsg101:K63-Ub2 complex showed that while the Ub1-binding site accommodates the distal domain of Ub2, the proximal domain alternatively binds two different sites, the vestigial active site and an N-terminal helix. Mutation of each site results in distinct phenotypes regarding the recruitment of Tsg101 partners. Mutation in the vestigial active site abrogates interaction between Tsg101 and the HIV-1 protein Gag but not Hrs, a cellular protein. Mutation at the N-terminal helix alters Gag but not Hrs-Tsg101 localization. Given the broad involvement of Tsg101 in diverse cellular functions, this discovery advances our understanding of how the ESCRT protein recognizes binding partners and sorts endocytic cargo.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisina/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Sitios de Unión , Humanos , Elementos de la Serie de los Lantanoides/química , Lisina/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
17.
J Virol ; 96(6): e0000522, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080428

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses to global swine industry. As an intracellular obligate pathogen, PRRSV exploits host cellular machinery to establish infection. The endocytic sorting complex required for transport (ESCRT) system has been shown to participate in different life cycle stages of multiple viruses. In the present study, a systematic small interference RNA screening assay identified that certain ESCRT components contributed to PRRSV infection. Among them, tumor susceptibility gene 101 (TSG101) was demonstrated to be important for PRRSV infection by knockdown and overexpression assays. TSG101 was further revealed to be involved in virion formation rather than viral attachment, internalization, RNA replication and nucleocapsid (N) protein translation within the first round of PRRSV life cycle. In detail, TSG101 was determined to specially interact with PRRSV N protein and take effect on its subcellular localization along with the early secretory pathway. Taken together, these results provide evidence that TSG101 is a proviral cellular factor for PRRSV assembly, which will be a promising target to interfere with the viral infection. IMPORTANCE PRRSV infection results in a serious swine disease affecting pig farming in the world. However, efficient prevention and control of PRRSV is hindered by its complicated infection process. Until now, our understanding of PRRSV assembly during infection is especially limited. Here, we identified that TSG101, an ESCRT-I subunit, facilitated virion formation of PRRSV via interaction with the viral N protein along with the early secretory pathway. Our work actually expands the knowledge of PRRSV infection and provides a novel therapeutic target for prevention and control of the virus.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Nucleocápside , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Vías Secretoras , Factores de Transcripción , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Nucleocápside/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN/metabolismo , Vías Secretoras/fisiología , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virión/metabolismo , Replicación Viral
18.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R112-R122, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907783

RESUMEN

The purpose of this study is to investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Seventeen healthy [body mass index (BMI): 23.5 ± 0.5 kg·m-2] and 15 prediabetic (BMI: 27.3 ± 1.2 kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia ([Formula: see text] 14.0%). Venous blood samples were taken before (T0), during (T30), and after (T60) exercise, and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81, and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX, and CD9 was upregulated in skeletal muscle after exercise in normoxia, whereas CD9 and CD81 were downregulated in hypoxia. ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.


Asunto(s)
Ejercicio Físico , Vesículas Extracelulares/metabolismo , Hipoxia/sangre , Cuerpos Multivesiculares/metabolismo , Contracción Muscular , Estado Prediabético/sangre , Músculo Cuádriceps/metabolismo , Adulto , Ciclismo , Proteínas de Unión al Calcio/sangre , Estudios de Casos y Controles , Proteínas de Ciclo Celular/sangre , Proteínas de Unión al ADN/sangre , Complejos de Clasificación Endosomal Requeridos para el Transporte/sangre , Humanos , Hipoxia/diagnóstico , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Biogénesis de Organelos , Estado Prediabético/diagnóstico , Estado Prediabético/fisiopatología , Músculo Cuádriceps/fisiopatología , Distribución Aleatoria , Tetraspanina 29/sangre , Factores de Tiempo , Factores de Transcripción/sangre
19.
J Virol ; 96(3): e0162421, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851141

RESUMEN

Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/virología , Flavivirus/fisiología , Interacciones Huésped-Patógeno , Ubiquitinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Infecciones por Flavivirus/transmisión , Humanos , Modelos Biológicos , Proteolisis , Garrapatas/virología , Replicación Viral
20.
Acta Pharm Sin B ; 11(9): 2783-2797, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589397

RESUMEN

Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA