Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Scand J Immunol ; : e13410, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333050

RESUMEN

This study aimed to investigate the role of TSPAN32, a member of the tetraspanin family, in rheumatoid arthritis (RA). The objective was to assess the expression levels of TSPAN32 in experimental RA models and in RA patient immune cells, exploring its potential as a regulatory factor in RA pathogenesis. The study employed adjuvant-induced arthritis in rats and collagen-induced arthritis (CIA) in mice as experimental models. Ex vivo analyses included evaluating TSPAN32 expression in immune cells at different stages of the disease. In silico data analysis involved examining transcriptomic datasets from drug-naïve and treated RA patients to correlate TSPAN32 expression with clinical parameters. TSPAN32 overexpression experiments in splenocytes from CIA mice aimed to demonstrate its functional impact on antigen-specific immune responses. The animal models revealed a significant downregulation of TSPAN32, particularly in synovial-infiltrating T cells. Also, TSPAN32 overexpression inhibited pro-inflammatory cytokine production in splenocytes. In RA patients, TSPAN32 was consistently downregulated in circulating and synovial-infiltrating T cells, as well as in CD8+ T cells, B cells and NK cells. Drug treatment did not significantly alter TSPAN32 levels. Negative correlations were observed between TSPAN32 expression and inflammatory markers (CRP, ESR) and clinical scores (SDAI) in RA patients. This study suggests that reduced TSPAN32 expression characterizes pathogenic T-cell populations in RA, highlighting its potential as biomarker for inflammation and disease activity. TSPAN32 may play a crucial role in shaping adaptive immune responses in RA, opening avenues for novel therapeutic strategies targeting this tetraspanin family member.

2.
Virulence ; 15(1): 2399792, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39239914

RESUMEN

Human CD81 and CD9 are members of the tetraspanin family of proteins characterized by a canonical structure of four transmembrane domains and two extracellular loop domains. Tetraspanins are known as molecular facilitators, which assemble and organize cell surface receptors and partner molecules forming clusters known as tetraspanin-enriched microdomains. They have been implicated to play various biological roles including an involvement in infections with microbial pathogens. Here, we demonstrate an important role of CD81 for the invasion of epithelial cells by Salmonella enterica. We show that the overexpression of CD81 in HepG2 cells enhances invasion of various typhoidal and non-typhoidal Salmonella serovars. Deletion of CD81 by CRISPR/Cas9 in intestinal epithelial cells (C2BBe1 and HT29-MTX-E12) reduces S. Typhimurium invasion. In addition, the effect of human CD81 is species-specific as only human but not rat CD81 facilitates Salmonella invasion. Finally, immunofluorescence microscopy and proximity ligation assay revealed that both human tetraspanins CD81 and CD9 are recruited to the entry site of S. Typhimurium during invasion but not during adhesion to the host cell surface. Overall, we demonstrate that the human tetraspanin CD81 facilitates Salmonella invasion into epithelial host cells.


Asunto(s)
Células Epiteliales , Salmonella enterica , Tetraspanina 28 , Tetraspanina 29 , Humanos , Tetraspanina 28/metabolismo , Tetraspanina 28/genética , Células Epiteliales/microbiología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Animales , Salmonella enterica/genética , Salmonella enterica/fisiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiología , Células Hep G2 , Ratas , Infecciones por Salmonella/microbiología , Células HT29
3.
Elife ; 132024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250349

RESUMEN

Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.


Asunto(s)
Proteómica , Tetraspanina 28 , Tetraspanina 29 , Tetraspanina 28/metabolismo , Tetraspanina 28/genética , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Proteómica/métodos , Humanos , Animales , Vesículas Extracelulares/metabolismo , Nanotubos/química , Ratones , Comunicación Celular
4.
Heliyon ; 10(14): e34350, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104473

RESUMEN

This study aims to investigate the role of RNF149 and tetraspanin CD63 in lipopolysaccharide/Toll-like receptor 4 (LPS/TLR4) signal transduction. TNF-α was assessed using enzyme-linked immunosorbent assay. The distribution of TLR4 was examined through flow cytometry after CD63 knockdown. Real-time polymerase chain reaction was used to analyze the expression of the target genes RNF149 and CD63 under different conditions. Western blotting was employed to detect gene expression, while immunoprecipitation and confocal microscopy were used to evaluate protein interactions. Transcriptome array data from stimulated monocytes (GSE7547) was obtained from GEO and subjected to bioinformatic analysis. It is suggested that CD63 may serve as a substrate of RNF149, with RNF149 capable of directly interacting with CD63. RNF149 degrades CD63 through covalent modification of CD63 at lysine 29 of the ubiquitin monomer, leading to the formation of a multiubiquitin chain. Both RNF149 and CD63 interact with TLR4, with CD63 promoting LPS/TLR4 signaling and RNF149 inhibits it. CD63 does not impact the distribution of TLR4 on the cell surface and does not directly interact with TIRAP, IRAK4, or TRAF6, but does interact with Myd88.RNF149 plays a negative regulatory role in LPS/TLR4 signal transduction by mediating ubiquitination-induced CD63 degradation.

5.
Eur J Immunol ; : e2451092, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194380

RESUMEN

Dectin-1 is a C-type lectin-receptor involved in sensing fungi by innate immune cells. Encoded by the Clec7a gene, Dectin-1 exists in two major splice isoforms, Dectin-1a and 1b, which differ in the presence of a membrane-proximal stalk domain. As reported previously, this domain determines degradative routes for Dectin-1a and 1b leading to the generation of a stable N-terminal fragment exclusively from Dectin-1a. Here, we narrow down the responsible part of the stalk and demonstrate the stabilisation of the Dectin-1a N-terminal fragment in tetraspanin-enriched microdomains. C57BL/6 and BALB/c mice show divergent Dectin-1 isoform expression patterns, which are caused by a single nucleotide polymorphism in exon 3 of the Clec7a gene, leading to a non-sense Dectin-1a mRNA in C57BL/6 mice. Using backcrossing, we generated mice with the C57BL/6 Clec7a allele on a BALB/c background and compared these to the parental strains. Expression of the C57BL/6 allele leads to the exclusive presence of the Dectin-1b protein. Furthermore, it was associated with higher Dectin-1 mRNA expression, but less Dectin-1 at the cell surface according to flow cytometry. In neutrophils, this altered ROS production induced by Dectin-1 model ligands, while cellular responses in macrophages and dendritic cells were not significantly influenced by the Dectin-1 isoform pattern.

7.
mBio ; 15(9): e0192224, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39140770

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused the biggest public health crises in recent history. Many expect future coronavirus introductions into the human population. Hence, it is essential to understand the basic biology of these viruses. In natural infection, the SARS-CoV-2 Spike (S) glycoprotein is co-expressed with all other viral proteins, which modify cellular compartments to maximize virion assembly. By comparison, most of S is degraded when the protein is expressed in isolation, as in current molecular vaccines. To probe the maturation pathway of S, we redirected its maturation by fusing S to the tetraspanin protein CD81. CD81 is a defining constituent of extracellular vesicles (EVs) or exosomes. EVs are generated in large numbers by all cells, extruded into blood and lymph, and transfer cargo between cells and systemically (estimated 1012 EVs per mL plasma). EVs, like platelets, can be transfused between unrelated donors. When fusing the proline-stabilized form of strain Delta S into the flexible, large extracellular loop of CD81 rather than being degraded in the lysosome, S was extruded into EVs. CD81-S fusion containing EVs were produced in large numbers and could be isolated to high purity. Purified CD81::S EVs bound ACE2, and S displayed on individual EV was observed by cryogenic electron microscopy (EM). The CD81::S-fusion EVs were non-toxic and elicited an anti-S trimer and anti-RBD antibody response in mice. This report shows a design path to maximize viral glycoprotein assembly and release without relying on the co-expression of potentially pathogenic nonstructural viral proteins. IMPORTANCE: The severe acute respiratory syndrome coronavirus 2 pandemic caused the biggest public health crises in recent history. To understand the maturation pathway of S, we fused S to the tetraspanin protein CD81. The resulting molecule is secreted in extracellular vesicles and induces antibodies in mice. This may be a general design path for viral glycoprotein vaccines.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Tetraspanina 28 , Animales , Humanos , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , COVID-19/virología , COVID-19/inmunología , Vesículas Extracelulares/metabolismo , Transporte de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Tetraspanina 28/metabolismo , Tetraspanina 28/genética
8.
Nefrologia (Engl Ed) ; 44(4): 503-508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39054239

RESUMEN

BACKGROUND AND OBJECTIVE: Extracellular vesicles (EV) reflect the pathophysiological state of their cells of origin and are a reservoir of renal information accessible in urine. When biopsy is not an option, EV present themselves as sentinels of function and damage, providing a non-invasive approach. However, the analysis of EV in urine requires prior isolation, which slows down and hinders transition into clinical practice. The aim of this study is to show the applicability of the "single particle interferometric reflectance imaging sensor" (SP-IRIS) technology through the ExoView® platform for the direct analysis of urine EV and proteins involved in renal function. MATERIALS AND METHODS: The ExoView® technology enables the quantification and phenotyping of EV present in urine and the quantification of their membrane and internal proteins. We have applied this technology to the quantification of urinary EV and their proteins with renal tubular expression, amnionless (AMN) and secreted frizzled-related protein 1 (SFRP1), using only 5 µl of urine. Tubular expression was confirmed by immunohistochemistry. RESULTS: The mean size of the EV analysed was 59 ± 16 nm for those captured by tetraspanin CD63, 61 ± 16 nm for those captured by tetraspanin CD81, and 59 ± 10 for tetraspanin CD9, with CD63 being the majority EV subpopulation in urine (48.92%). The distribution of AMN and SFRP1 in the three capture tetraspanins turned out to be similar for both proteins, being expressed mainly in CD63 (48.23% for AMN and 52.1% for SFRP1). CONCLUSIONS: This work demonstrates the applicability and advantages of the ExoView® technique for the direct analysis of urine EV and their protein content in relation to the renal tubule. The use of minimum volumes, 5 µl, and the total analysis time not exceeding three hours facilitate the transition of EV into daily clinical practice as sources of diagnostic information.


Asunto(s)
Vesículas Extracelulares , Humanos , Tetraspanina 30/orina , Tetraspanina 30/análisis , Urinálisis/métodos , Tetraspanina 29/orina , Tetraspanina 29/análisis , Electrólitos/orina , Orina/citología , Orina/química , Tetraspanina 28/orina , Tetraspanina 28/análisis , Túbulos Renales
9.
Cancer Med ; 13(14): e7390, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031113

RESUMEN

BACKGROUND: The tetraspanin (TSPAN) family comprises 33 membrane receptors involved in various physiological processes in humans. Tetrasapanins are surface proteins expressed in cells of various organisms. They are localised to the cell membrane by four transmembrane domains (TM4SF). These domains bind several cell surface receptors and signalling proteins to tetraspanin-enriched lipid microdomains (TERM or TEM). Tetraspanins play a critical role in anchoring many proteins. They also act as a scaffold for cell signalling proteins. AIM: To summarise how tetraspanins 6, 7 and 8 contribute to the carcinogenesis process in different types of cancer. METHODS: To provide a comprehensive review of the role of tetraspanins 6, 7 and 8 in cancer biology, we conducted a thorough search in PubMed, Embase and performed manual search of reference list to collect and extract data. DISCUSSION: The assembly of tetraspanins covers an area of approximately 100-400 nm. Tetraspanins are involved in various biological processes such as membrane fusion, aggregation, proliferation, adhesion, cell migration and differentiation. They can also regulate integrins, cell surface receptors and signalling molecules. Tetraspanins form direct bonds with proteins and other members of the tetraspanin family, forming a hierarchical network of interactions and are thought to be involved in cell and membrane compartmentalisation. Tetraspanins have been implicated in cancer progression and have been shown to have multiple binding partners and to promote cancer progression and metastasis. Clinical studies have documented a correlation between the level of tetraspanin expression and the prediction of cancer progression, including breast and lung cancer. CONCLUSIONS: Tetraspanins are understudied in almost all cell types and their functions are not clearly defined. Fortunately, it has been possible to identify the basic mechanisms underlying the biological role of these proteins. Therefore, the purpose of this review is to describe the roles of tetraspanins 6, 7 and 8.


Asunto(s)
Neoplasias , Tetraspaninas , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Proteínas del Tejido Nervioso , Transducción de Señal , Tetraspaninas/metabolismo
10.
Exp Mol Pathol ; 137: 104911, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861838

RESUMEN

BACKGROUND: Recently, consensus molecular subtypes (CMSs) have been proposed as a robust transcriptome-based classification system for colorectal cancer (CRC). Tetraspanins (TSPANs) are transmembrane proteins. They have been associated with the development of numerous malignancies, including CRC, through their role as "master organizers" for multi-molecular membrane complexes. No previous study has investigated the correlation between TSPANs and CMS classification. Herein, we investigated the expression of TSPANs in patient-derived primary CRC tissues and their CMS classifications. METHODS: RNA samples were derived from primary CRC tissues (n = 100 patients diagnosed with colorectal adenocarcinoma) and subjected to RNA sequencing for transcriptome-based CMS classification and TSPAN-relevant analyses. Immunohistochemistry (IHC) and immunofluorescence (IF) stains were conducted to observe the protein expression level. To evaluate the relative biological pathways, gene-set enrichment analysis was performed. RESULTS: Of the highly expressed TSPAN genes in CRC tissues (TSPAN8, TSPAN29, and TSPAN30), TSPAN8 was notably overexpressed in CMS3-classified primary tissues. The overexpression of TSPAN8 protein in CMS3 CRC was also observed by IHC and IF staining. As a result of gene-set enrichment analysis, TSPAN8 may potentially play a role in organizing signaling complexes for kinase-based metabolic deregulation in CMS3 CRC. CONCLUSIONS: The present study reports the overexpression of TSPAN8 in CMS3 CRC. This study proposes TSPAN8 as a subtype-specific biomarker for CMS3 CRC. This finding provides a foundation for future CMS-based studies of CRC, a complex disease and the second leading cause of cancer mortality worldwide.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Tetraspaninas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/clasificación , Tetraspaninas/genética , Tetraspaninas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/clasificación , Transcriptoma/genética , Inmunohistoquímica
11.
Trends Biochem Sci ; 49(9): 829-840, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945731

RESUMEN

Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.


Asunto(s)
Biofisica , Humanos , Animales , Membrana Celular/metabolismo , Orgánulos/metabolismo , Movimiento Celular
12.
In Silico Pharmacol ; 12(1): 24, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584777

RESUMEN

Tetraspanin CD81 is a transmembrane protein used as a co-receptor by different viruses and implicated in some cancer and inflammatory diseases. The design of therapeutic small molecules targeting CD81 lags behind monoclonal antibodies and peptides but different synthetic and natural products binding to CD81 have been identified. We have investigated the interaction between synthetic compounds and CD81, considering both the cholesterol-bound full-length receptor and a truncated protein corresponding to the large extracellular loop (LEL) of the tetraspanin. They represent the closed and open conformations of the protein, respectively. Stable complexes were characterized with bi-aryl compounds (notably the quinolinone-benzothiazole 6) and atypical molecules bearing a 1-amino-boraadamantane scaffold well adapted to interact with CD81 (5a-d). In each case, the mode of binding to CD81 was analyzed, the binding sites identified and the molecular contacts determined. The narrow intra-LEL binding site of CD81 can accommodate the elongated bi-aryl 6 but not a series of isosteric compounds with a bis(bicyclic) scaffold. The bora-adamantane derivatives appeared to bind well to CD81, but essentially to the external surface of the protein loop. The binding selectivity of the compounds was assessed comparing binding to the LEL of tetraspanins CD81, CD9 and Tspan15. A net preference for CD81 over CD9 was evidenced, but the LEL of Tspan15 also provided a suitable binding site for the compounds, notably for the bora-adamantane derivatives. This work provides an aid to the identification and design of tetraspanin-binding small molecules, underlining the distinct behavior of the open and closed conformation of the protein for drug binding. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00203-6.

13.
Front Immunol ; 15: 1336246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515751

RESUMEN

Introduction: To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods: We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results: Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion: These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antígenos CD/metabolismo , Linfocitos Infiltrantes de Tumor , Interleucina-2/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/metabolismo , Citocinas/metabolismo , Tetraspaninas/metabolismo , Tetraspanina 28 , Proteína Kangai-1/metabolismo
14.
mBio ; 15(4): e0037324, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470056

RESUMEN

The STimulator of INterferon Genes (STING) constitutes a major DNA-sensing pathway that restricts HSV-1 infection in different models by activating type I interferon and pro-inflammatory responses. To counteract STING, HSV-1 has evolved numerous strategies including mechanisms to interfere with its oligomerization, post-translational modifications, and downstream signaling. Previously, we demonstrated that STING is packaged in extracellular vesicles (EVs) produced from HSV-1-infected cells. These EVs activated antiviral responses in uninfected recipient cells and suppressed a subsequent HSV-1 infection in a STING-dependent manner. Here, we provide information on the packaging of STING in EVs and its exocytosis. We found that STING exocytosis did not occur in CD63 knockdown cells supporting that STING follows the CD63 exocytosis pathway. Consistently, we found that STING co-localized with CD63 in cytoplasmic globular structures and exosomal STING and CD63 co-fractionated. Both golgicide A and brefeldin A prevented STING exocytosis during HSV-1 infection suggesting that STING trafficking through the Golgi is required. A STING ligand was insufficient for STING exocytosis, and downstream signaling through TBK1 was not required. However, STING palmitoylation and tethering to the ER by STIM1 were required for STING exocytosis. Finally, we found that HSV-1 replication/late gene expression triggered CD63 exocytosis that was required for STING exocytosis. Surprisingly, HSV-2 strain G did not trigger CD63 or STING exocytosis as opposed to VZV and HCMV. Also, EVs from HSV-1(F)- and HSV-2(G)-infected cells displayed differences in their ability to restrict these viruses. Overall, STING exocytosis is induced by certain viruses and shapes the microenvironment of infection.IMPORTANCEExtracellular vesicles (EVs) are released by all types of cells as they constitute a major mechanism of intercellular communication. The packaging of specific cargo in EVs and the pathway of exocytosis are not fully understood. STING is a sensor of a broad spectrum of pathogens and a key component of innate immunity. STING exocytosis during HSV-1 infection has been an intriguing observation, raising questions of whether this is a virus-induced process, the purpose it serves, and whether it is observed after infection with other viruses. Here, we have provided insights into the pathway of STING exocytosis and determined factors involved. STING exocytosis is a virus-induced process and not a response of the host to the infection. Besides HSV-1, other herpes viruses triggered STING exocytosis, but HSV-2(G) did not. HSV-1 EVs displayed different restriction capabilities compared with HSV-2(G) EVs. Overall, STING exocytosis is triggered by viruses to shape the microenvironment of infection.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Exocitosis , Herpesvirus Humano 1/fisiología , Inmunidad Innata , Proteínas de la Membrana/metabolismo
15.
BMC Biotechnol ; 24(1): 16, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532411

RESUMEN

BACKGROUND: Cytotoxic T lymphocytes (CTLs) are central players in the adaptive immune response. Their functional characterization and clinical research depend on efficient and reliable transfection. Although various methods have been utilized, electroporation remains the preferred technique for transient gene over-expression. However, the efficiency of electroporation is reduced for human and mouse primary CTLs. Lonza offers kits that effectively improve plasmid DNA transfection quality. Unfortunately, the removal of key components of the cell recovery medium considerably reduced the efficiency of their kit for CTLs. Our aim was to develop a new recovery medium to be used with Lonza's Nucleofector system that would significantly enhance transfection rates. RESULTS: We assessed the impact of different media in which the primary CTLs were placed to recover after electroporation on cell survival, transfection rate and their ability to form an immunological synapse and to perform exocytosis. We transfected the cells with pmax-GFP and large constructs encoding for either CD81-super ecliptic pHluorin or granzyme B-pHuji. The comparison of five different media for mouse and two for human CTLs demonstrated that our new recovery medium composed of Opti-MEM-GlutaMAX supplemented with HEPES, DMSO and sodium pyruvate gave the best result in cell survival (> 50%) and transfection rate (> 30 and 20% for mouse and human cells, respectively). More importantly, the functionality of CTLs was at least twice as high as with the original Lonza recovery medium. In addition, our RM significantly improved transfection efficacy of natural killer cells that are notoriously hard to electroporate. CONCLUSION: Our results show that successful transfection depends not only on the electroporation medium and pulse sequence but also on the medium applied for cell recovery. In addition, we have reduced our reliance on proprietary products by designing an effective recovery medium for both mouse and human primary CTLs and other lymphocytes that can be easily implemented by any laboratory. We expect that this recovery medium will have a significant impact on both fundamental and applied research in immunology.


Asunto(s)
Electroporación , Linfocitos T Citotóxicos , Humanos , Ratones , Animales , Electroporación/métodos , Transfección , Plásmidos , ADN/genética
16.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542421

RESUMEN

Extracellular vesicles produced by tumor cells (TEVs) influence all stages of cancer development and spread, including tumorigenesis, cancer progression, and metastasis. TEVs can trigger profound phenotypic and functional changes in target cells through three main general mechanisms: (i) docking of TEVs on target cells and triggering of intra-cellular signaling; (ii) fusion of TEVs and target cell membranes with release of TEVs molecular cargo in the cytoplasm of recipient cell; and (iii) uptake of TEVs by recipient cells. Though the overall tumor-promoting effects of TEVs as well as the general mechanisms involved in TEVs interactions with, and uptake by, recipient cells are relatively well established, current knowledge about the molecular determinants that mediate the docking and uptake of tumor-derived EVs by specific target cells is still rather deficient. These molecular determinants dictate the cell and organ tropism of TEVs and ultimately control the specificity of TEVs-promoted metastases. Here, we will review current knowledge on selected specific molecules that mediate the tropism of TEVs towards specific target cells and organs, including the integrins, ICAM-1 Inter-Cellular Adhesion Molecule), ALCAM (Activated Leukocyte Cell Adhesion Molecule), CD44, the metalloproteinases ADAM17 (A Disintegrin And Metalloproteinase member 17) and ADAM10 (A Disintegrin And Metalloproteinase member 10), and the tetraspanin CD9.


Asunto(s)
Desintegrinas , Vesículas Extracelulares , Humanos , Comunicación Celular , Tetraspaninas/metabolismo , Carcinogénesis/metabolismo , Vesículas Extracelulares/metabolismo
17.
Front Cell Dev Biol ; 12: 1343894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389703

RESUMEN

Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.

18.
Life (Basel) ; 14(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38255741

RESUMEN

Stage 4 colon cancer (CC) presents a significant global health challenge due to its poor prognosis and limited treatment options. Tetraspanins, the transmembrane proteins involved in crucial cancer processes, have recently gained attention as diagnostic markers and therapeutic targets. However, their spatial expression and potential roles in stage 4 CC tissues remain unknown. Using the GeoMx digital spatial profiler, we profiled all 33 human tetraspanin genes in 48 areas within stage 4 CC tissues, segmented into immune, fibroblast, and tumor compartments. Our results unveiled diverse gene expression patterns across different primary tumor sub-regions. CD53 exhibited distinct overexpression in the immune compartment, hinting at a potential role in immune modulation. TSPAN9 was specifically overexpressed in the fibroblast compartment, suggesting involvement in tumor invasion and metastasis. CD9, CD151, TSPAN1, TSPAN3, TSPAN8, and TSPAN13 displayed specific overexpression in the tumor compartment, indicating potential roles in tumor growth. Furthermore, our differential analysis revealed significant spatial changes in tetraspanin expression between patient-matched stage 4 primary CC and metastatic liver tissues. These findings provide spatially resolved insights into the expression and potential roles of tetraspanins in stage 4 CC progression, proposing their utility as diagnostic markers and therapeutic targets. Understanding this landscape is beneficial for tailoring therapeutic strategies to specific sub-tumor regions in the context of stage 4 CC and liver metastasis.

19.
Cells ; 13(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201299

RESUMEN

Salivary extracellular vesicles (EVs) represent an attractive source of biomarkers due to the accessibility of saliva and its non-invasive sampling methods. However, the lack of comparative studies assessing the efficacy of different EV isolation techniques hampers the use of salivary EVs in clinical settings. Moreover, the effects of age on salivary EVs are largely unknown, hindering the identification of salivary EV-associated biomarkers across the lifespan. To address these questions, we compared salivary EV concentration, size mode, protein concentration, and purity using eight EV isolation techniques before and after magnetic bead immunocapture with antibodies against CD9, CD63, and CD81. The effects of age on salivary EVs obtained with each isolation technique were further investigated. Results showed higher expression of CD63 on isolated salivary EVs compared to the expression of CD81 and flotillin-1. Overall, magnetic bead immunocapture was more efficient in recovering salivary EVs with Norgen's Saliva Exosome Purification Kit and ExoQuick-TC ULTRA at the cost of EV yield. Regardless of age, Invitrogen Total Exosome Isolation Solution showed the highest level of protein concentration, whereas Izon qEVOriginal-70nm columns revealed the highest purity. This study provides the first comprehensive comparison of salivary EVs in younger and older adults using different EV isolation techniques, which represents a step forward for assessing salivary EVs as a source of potential biomarkers of tissue-specific diseases throughout the life cycle.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Anciano , Saliva , Anticuerpos , Biomarcadores
20.
Int J Med Sci ; 20(13): 1744-1754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928882

RESUMEN

Chronic venous disease (CVD) is a complex and common vascular disorder characterized by increased blood pressure and morpho-functional changes in the venous system like varicose veins. Pregnancy is one of the main risk factors for suffering from this condition. Despite the consequences of CVD during pregnancy remains to be fully understood, compelling evidence support that this condition represents an important stress for the mother and the fetus, leading to significant histopathological changes in the placenta. Tetraspanins (CD9, CD63, and CD81), ALG-2-interacting protein X (Alix), and heat-shock protein (HSP-70) are cellular components involved in multiple biological processes under homeostatic and disease conditions. Despite some studies that have evidence of their relevance in the placenta tissue and pathological pregnancies, there is limited knowledge regarding their role in pregnancy-associated CVD. In this sense, the present work aims to analyze gene and protein expression of these components in the placenta of women with CVD (n=62) in comparison to healthy women (n=52) through RT-qPCR and immunohistochemistry, respectively. Our results show an increased gene and protein expression of the different studied markers, suggesting their potential involvement in the pathological environment of the placenta of women who undergo CVD during pregnancy. In this sense, further studies should be directed to deep into the potential implications of these changes to understand the effects and consequences of this condition in maternofetal wellbeing.


Asunto(s)
Enfermedades Cardiovasculares , Tetraspaninas , Embarazo , Humanos , Femenino , Tetraspaninas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Placenta/metabolismo , Proteínas de Choque Térmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA