Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.934
Filtrar
1.
Neuro Oncol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351771

RESUMEN

Targeted radionuclide therapy is an emerging therapeutic concept for metastatic cancer that can be considered if a tumor can be delineated by nuclear medicine imaging and also targeted based on expression of a particular target (thera-nostics). This mode of treatment can also compete with or supplement conventional radiotherapy e.g., if MRI does not fully capture the extent of disease, including microscopic metastases. Targeted radionuclide therapy for patients with thyroid cancer, with certain somatostatin receptor 2-expressing tumors and with prostate-specific membrane antigen (PSMA)-expressing prostate cancer are approved, and numerous approaches of targeted radionuclide therapy for patients with metastatic cancer are in development (e.g. using fibroblast activation protein (FAP) as a target). Although brain metastases are rare in the cancers with approved targeted radionuclide therapies, there is no a priori reason to assume that such treatments would not be effective against brain metastases if the targets are expressed and not shielded by the blood brain barrier. Here, we discuss the current state of the art and opportunities of targeted radionuclide therapies for patients with brain and leptomeningeal metastases.

2.
Front Bioeng Biotechnol ; 12: 1437301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39359265

RESUMEN

Over the past 2 decades, rapid advances in synthetic biology have enabled the design of increasingly intricate and biologically relevant systems with broad applications in healthcare. A growing area of interest is in designing bacteria that sense and respond to endogenous disease-associated signals, creating engineered theranostics that function as disease surveyors for human health. In particular, engineered cells hold potential in facilitating greatly enhanced temporal and spatial control over the release of a range of therapeutics. Such systems are particularly useful for targeting challenging, under-drugged disease targets in a more nuanced manner than is currently possible. This review provides an overview of the recent advances in the design, delivery, and dynamics of bacterial theranostics to enable safe, robust, and genetically tractable therapies to treat disease. It outlines the primary challenges in theranostic clinical translation, proposes strategies to overcome these issues, and explores promising future avenues for the field.

3.
J Nucl Med ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362766

RESUMEN

226Ac (t½ = 29.37 h) has been proposed as a theranostic radioisotope leveraging both its diagnostic γ-emissions and therapeutic α-emissions. 226Ac emits 158 and 230 keV γ-photons ideal for quantitative SPECT imaging and acts as an in vivo generator of 4 high-energy α-particles. Because of these nuclear decay properties, 226Ac has potential to act as a standalone theranostic isotope. In this proof-of-concept study, we evaluated a preclinical 226Ac-radiopharmaceutical for its theranostic efficacy and present the first 226Ac-targeted α-therapy study. Methods: 226Ac was produced at TRIUMF and labeled with the chelator-peptide bioconjugate crown-TATE. [226Ac]Ac-crown-TATE was selected to target neuroendocrine tumors in male NRG mice bearing AR42J tumor xenografts for SPECT imaging, biodistribution, and therapy studies. A preclinical SPECT/CT scanner acquired quantitative images reconstructed from both the 158 and the 230 keV emissions. Mice in the biodistribution study were euthanized at 1, 3, 5, 24, and 48 h after injection, and internal radiation dosimetry was derived for the tumor and organs of interest to establish appropriate therapeutic activity levels. Mice in the therapy study were administered 125, 250, or 375 kBq treatments and were monitored for tumor size and body condition. Results: We present quantitative SPECT images of the in vivo biodistribution of [226Ac]Ac-crown-TATE, which showed agreement with ex vivo measurements. Biodistribution studies demonstrated high uptake (>30%IA/g at 5 h after injection) and retention in the tumor, with an estimated mean absorbed dose coefficient of 222 mGy/kBq. [226Ac]Ac-crown-TATE treatments significantly extended the median survival from 7 d in the control groups to 16, 24, and 27 d in the 125, 250, and 375 kBq treatment groups, respectively. Survival was prolonged by slowing tumor growth, and no weight loss or toxicities were observed. Conclusion: This study highlights the theranostic potential of 226Ac as a standalone therapeutic isotope in addition to its demonstrated diagnostic capabilities to assess dosimetry in matched 225Ac-radiopharmaceuticals. Future studies will investigate maximum dose and toxicity to further explore the therapeutic potential of 226Ac-radiopharmaceuticals.

4.
Ther Adv Med Oncol ; 16: 17588359241258367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386313

RESUMEN

The assessment of response to therapy in prostate cancer (PCa) patients is an ongoing, open issue. Prostate-specific antigen has limitations, especially in advanced metastatic PCa, which often displays intratumor variability in terms of response to therapy. Conventional imaging (i.e. computerized tomography and bone scan) is of limited use for its low sensitivity and specificity. Positron-emission tomography (PET) with prostate-specific membrane antigen (PSMA) demonstrated higher sensitivity and specificity, and novel PSMA-based criteria have been recently proposed for treatment response, with promising results in different scenarios, from chemotherapy to radioligand therapy. PSMA-based criteria have been found to outperform the current RECIST 1.1 and Prostate Cancer Working Group 3 frameworks in describing the behavior of PCa, precisely assessing tumor phenotypes through molecular-imaging-derived parameters. This review critically explores the current evidence about the role of PSMA PET/computed tomography in the assessment of treatment response.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39380145

RESUMEN

In recent decades, researchers have focused on developing less toxic and more precise cancer therapies. Carbon nanodots (CDs) are among the most promising technologies due to their high biocompatibility, tunable fluorescence, and ability to facilitate photothermal and photodynamic therapy. This study explores the synthesis and characterization of two CDs conjugated with Salphen metal complexes, namely, CDs-PEG-M1 and CDs-PEG-M2, through Sonogashira coupling. Their interaction with G-quadruplex DNA structures (G4s), motifs largely involved in cancer development, was evaluated using various spectroscopic techniques. The results indicate that CDs-PEG-M1 exhibits greater effectiveness in stabilizing G4 structures compared to the metal complex alone or nonfunctionalized CDs. This enhanced stabilization suggests that CDs-PEG-M1 could reduce the concentration of the metal complex needed for potential antitumor applications, thereby minimizing side effects on nontarget tissues. When tested on breast cancer models (MDA-MB-231 as a triple-negative model and MCF-7 as a HER-2 positive model) and on a healthy cell line (HDFa), the CDs-PEG-M1 conjugate reduced cell viability in a concentration- and time-dependent manner, showing greater potency and selectivity against cancer cells compared to virgin CDs and the free M1 complex. This synergistic anticancer effect, driven by the interaction with G4 structures and reactive oxygen species production, underscores the potential of CDs-PEG-M1 as a targeted nanotheranostic tool.

6.
Expert Opin Investig Drugs ; : 1-9, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39367699

RESUMEN

INTRODUCTION: Sarcomas encompass a highly diverse range of malignancies, characterized by varied morphological and molecular profiles. Treatment options in case of therapy-refractory or advanced disease are limited. In this context, theranostics emerges as an innovative platform seamlessly integrating diagnosis and therapy, offering promising prospects. AREAS COVERED: This special report delves into the initial clinical applications of theranostic-based approaches in sarcomas. Specifically, it examines various strategies targeting biomarkers associated with sarcomas, including fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), C-X-C chemokine receptor type 4 (CXCR4) and somatostatin receptor 2 (SSTR2). EXPERT OPINION: The heterogeneous uptake of the CXCR4-targeted radioligand in lesions, along with its poor correlation with immunohistochemistry data, diminishes the attractiveness of this theranostic approach in the sarcoma oncological setting. SSTR2-targeted approaches in sarcoma, although potentially effective, are limited to a single case. Early experiences with FAP inhibitors in sarcoma patients have shown particularly promising outcomes, indicating effective disease control with minimal toxicity. While PSMA presents an enticing target for theranostic approaches in sarcomas, its utilization remains anecdotal and requires further investigation. Prospective and well-designed clinical trials are imperative to delineate the potential impact of FAPI- and PSMA-based approaches on sarcoma therapeutic landscapes, offering innovative and personalized treatment options.

7.
Int Rev Cell Mol Biol ; 389: 1-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39396844

RESUMEN

Solid tumors are the most prevalent form of cancer. Considerable technological and medical advancements had been achieved for the diagnosis of the disease. However, detection of the disease in an early stage is of utmost importance, still far from reality. On the contrary, the treatment and therapeutic area to combat solid tumors are still in its infancy. Conventional treatments like chemotherapy and radiation therapy pose challenges due to their indiscriminate impact on healthy and cancerous cells. Contextually, efficient drug targeting is a pivotal approach in solid tumor treatment. This involves the precise delivery of drugs to cancer cells while minimizing harm to healthy cells. Targeted drugs exhibit superior efficacy in eradicating cancer cells while impeding tumor growth and mitigate side effects by optimizing absorption which further diminishes the risk of resistance. Furthermore, tailoring targeted therapies to a patient's tumor-specific molecular profile augments treatment efficacy and reduces the likelihood of relapse. This chapter discuss about the distinctive characteristics of solid tumors, the possibility of early detection of the disease and potential therapeutic angle beyond the conventional approaches. Additionally, the chapter delves into a hitherto unknown attribute of magnetic field effect to target cancer cells which exploit the relatively less susceptibility of normal cells compared to cancer cells to magnetic fields, suggesting a future potential of magnetic nanoparticles for selective cancer cell destruction. Lastly, bioinformatics tools and other unconventional methodologies such as AI-assisted codon bias analysis have a crucial role in comprehending tumor biology, aiding in the identification of futuristic targeted therapies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/diagnóstico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos
9.
Front Nucl Med ; 4: 1355912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355215

RESUMEN

Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.

10.
Nucl Med Biol ; 138-139: 108961, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39357076

RESUMEN

BACKGROUND: Patients with advanced metastatic estrogen receptor-positive breast cancer often develop resistance to standard treatments, leading to uncontrolled progression. Thus, innovative therapies are urgently needed. The gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers, including breast cancer, making it an interesting theranostic target. RM26, a GRPR-targeting antagonist, has demonstrated promising in vivo kinetics in prostate cancer models. This study evaluated the theranostic capabilities of [55Co]Co-/[177Lu]Lu-DOTA-RM26 in vitro in estrogen receptor-positive breast cancer cells and assessed the diagnostic potential of [55Co]Co-DOTA-RM26 in vivo in a breast cancer mouse model. METHODS: We analyzed the binding specificity of [57Co]Co-/[177Lu]Lu-DOTA-RM26 in T47D breast cancer cells, using [57Co]Co-DOTA-RM26 as a surrogate for [55Co]Co-DOTA-RM26. The therapeutic efficacy of increasing [177Lu]Lu-DOTA-RM26 concentrations was determined via viability assay in vitro. Ex vivo biodistribution of [57Co]Co-DOTA-RM26 (17.2 ± 2.7 kBq, 33 ± 5.2 pmol/mouse) was investigated in 12 mice (n= 4/group) with orthotopic breast cancer tumors. The mice were sacrificed at 4 and 24 h post-injection (pi), including a blocking group (20 nmol of unlabeled [Tyr4]-Bombesin) at 4 h pi. For imaging, two tumor-bearing mice underwent [55Co]Co-DOTA-RM26 PET/CT, 4 and 24 h pi (2.8 ± 0.2 MBq, 167.5 ± 0.5 pmol/mouse), with or without GRPR blocking. RESULTS: In vitro studies revealed high, specific binding of [57Co]Co-DOTA-RM26 (43 ± 1 % of total added activity per 106 cells (%IA/106)) and [177Lu]Lu-DOTA-RM26 (37 ± 4 %IA/106). The activity was predominantly localized at the cell surface: 71 ± 3 % and 80 ± 6 % for [57Co]Co-DOTA-RM26 and [177Lu]Lu-DOTA-RM26, respectively. [177Lu]Lu-DOTA-RM26 significantly reduced cell viability at all activity concentrations >0.625 MBq/mL (p < 0.0001), with cell viability below 1 % at concentrations ≥5 MBq/mL. Biodistribution data (n = 12) indicated a high, specific tumor uptake of [57Co]Co-DOTA-RM26, surpassing all other tissues significantly at both time points, 3.7 ± 0.6 % of the injected activity per gram (%IA/g) 4 h pi and 0.98 ± 0.05 %IA/g 24 h pi. The kidneys showed the second-highest uptake (2.0 ± 0.1 %IA/g 4 h pi), followed by the pancreas (1.4 ± 0.4 %IA/g 4 h pi). PET/CT imaging with [55Co]Co-DOTA-RM26 supported the biodistribution data and, distinctly visualized the tumor 24 h pi and showed an improved tumor-to-background compared to the earlier time points. Effective GRPR blocking significantly reduced tumor uptake in the PET images 24 h pi. CONCLUSION: These findings suggest that the theranostic pair [55Co]Co-/[177Lu]Lu-DOTA-RM26 holds significant promise as a theranostic agent for estrogen receptor-positive breast cancer.

11.
Arch Med Res ; 56(1): 103085, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369666

RESUMEN

Theranostics represents a significant advance in the fields of neurology and neurosurgery, offering innovative approaches that combine the diagnosis and treatment of various neurological disorders. This innovation serves as a cornerstone of personalized medicine, where therapeutic strategies are closely integrated with diagnostic tools to enable precise and targeted interventions. Primary research results emphasize the profound impact of theranostics in Neuro Oncol. In this context, it has provided valuable insights into the complexity of the tumor microenvironment and mechanisms of resistance. In addition, in the field of neurodegenerative diseases (NDs), theranostics has facilitated the identification of distinct disease subtypes and novel therapeutic targets. It has also unravelled the intricate pathophysiology underlying conditions such as cerebrovascular disease (CVD) and epilepsy, setting the stage for more refined treatment approaches. As theranostics continues to evolve through ongoing research and refinement, its goals include further advancing the field of precision medicine, developing practical biomarkers for clinical use, and opening doors to new therapeutic opportunities. Nevertheless, the integration of these approaches into clinical settings presents challenges, including ethical considerations, the need for advanced data interpretation, standardization of procedures, and ensuring cost-effectiveness. Despite these obstacles, the promise of theranostics to significantly improve patient outcomes in the fields of neurology and neurosurgery remains a source of optimism for the future of healthcare.

12.
Endocrine ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373830

RESUMEN

The approval in 2017 by the European Medicines Agency (EMA) and in 2018 by the US Food and Drug Administration (FDA) of radioligand therapy (RLT) led to its wide application in therapeutic management of neuroendocrine neoplasms (NENs). However, the indications are currently limited to certain specific histotypes belonging to the broader NEN's family, mainly advanced well-differentiated gastro-entero-pancreatic NENs. As a consequence, several other tumors of the NEN spectrum that can potentially benefit, due to their biological characteristics, from RLT are still ineligible and can be considered "RLT-orphans". Among those, the subgroup of NENs originating from the sympathetic-adrenal-medullary (SAM) axis can be listed. This paper discusses the state of art and perspectives of the theragnostic applications in pheochromocytomas and paragangliomas, considering both the traditional theragnostic model - with radiolabelled metaiodobenzylguanidine (MIBG) - and the innovative one with radiolabeled somatostatin analogs (SSAs), that will hopefully become available for these patients in the near future.

13.
Front Oncol ; 14: 1445191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239273

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a type of head and neck cancer that is aggressive, difficult to treat, and often associated with poor prognosis. HNSCC is the sixth most common cancer worldwide, highlighting the need to develop novel treatments for this disease. The current standard of care for HNSCC usually involves a combination of surgical resection, radiation therapy, and chemotherapy. Chemotherapy is notorious for its detrimental side effects including nausea, fatigue, hair loss, and more. Radiation therapy can be a challenge due to the anatomy of the head and neck area and presence of normal tissues. In addition to the drawbacks of chemotherapy and radiation therapy, high morbidity and mortality rates for HNSCC highlight the urgent need for alternative treatment options. Immunotherapy has recently emerged as a possible treatment option for cancers including HNSCC, in which monoclonal antibodies are used to help the immune system fight disease. Combining monoclonal antibodies approved by the US Food and Drug Administration, such as cetuximab and pembrolizumab, with radiotherapy or platinum-based chemotherapy for patients with locally advanced, recurrent, or metastatic HNSCC is an accepted first-line therapy. Targeted radionuclide therapy can potentially be used in conjunction with the first-line therapy, or as an additional treatment option, to improve patient outcomes and quality of life. Epidermal growth factor receptor is a known molecular target for HNSCC; however, other targets such as human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, programmed cell death protein 1, and programmed death-ligand 1 are emerging molecular targets for the diagnosis and treatment of HNSCC. To develop successful radiopharmaceuticals, it is imperative to first understand the molecular biology of the disease of interest. For cancer, this understanding often means detection and characterization of molecular targets, such as cell surface receptors, that can be used as sensitive targeting agents. The goal of this review article is to explore molecular targets for HNSCC and dissect previously conducted research in nuclear medicine and provide a possible path forward for the development of novel radiopharmaceuticals used in targeted radionuclide therapy for HNSCC, which has been underexplored to date.

14.
Theranostics ; 14(12): 4555-4569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239510

RESUMEN

Rationale: PSMA-targeting radioligand therapy (PSMA-RLT) has shown promise in metastatic castration-resistant prostate cancer (mCRPC), particularly in PSMA-avid tumours. However, predicting response remains challenging. Preclinical data suggests aberrant p53-signalling as a predictor of poor response. Methods: The patient population of this pre-planned retrospective cohort study consists of 96 patients with mCRPC who underwent treatment with PSMA-RLT and were molecularly profiled by whole-genome sequencing and or targeted next-generation sequencing. Response to PSMA-RLT was assessed per molecular subtype, including TP53-mutational status. Results: Patients with TP53 loss-of-function alterations had a shorter median progression-free survival (3.7 versus 6.2 months, P<0.001), a lower median PSA change (-55% vs. -75%, P=0.012) and shorter overall survival from initiation of PMSA-RLT (7.6 vs. 13.9 months, P=0.003) compared to TP53-wildtype patients. Pathogenic alterations in AR, MYC, BRCA1, or BRCA2 as well as in genes linked to the PI3K or MAPK pathways or genes involved in homologous recombination repair, were not associated with response. Only lactate dehydrogenase was, alongside TP53-status, significantly associated with response. Transcriptome analysis of 21 patients, identified six p53 signalling genes whose low expression was associated to a shorter progression-free survival (P<0.05). Conclusion: TP53 loss-of-function may serve as a prognostic factor for PSMA-RLT outcomes in patients with mCRPC.


Asunto(s)
Glutamato Carboxipeptidasa II , Neoplasias de la Próstata Resistentes a la Castración , Proteína p53 Supresora de Tumor , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Anciano , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Estudios Retrospectivos , Persona de Mediana Edad , Glutamato Carboxipeptidasa II/metabolismo , Glutamato Carboxipeptidasa II/genética , Anciano de 80 o más Años , Antígenos de Superficie/metabolismo , Antígenos de Superficie/genética , Mutación , Antígeno Prostático Específico/metabolismo , Supervivencia sin Progresión , Radiofármacos/uso terapéutico , Resultado del Tratamiento , Secuenciación Completa del Genoma
15.
Theranostics ; 14(12): 4861-4873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239515

RESUMEN

Rationale: Theranostic nanoplatforms exert a vital role in facilitating concurrent real-time diagnosis and on-demand treatment of diseases, thereby making contributions to the improvement of therapeutic efficacy. Nevertheless, the structural intricacy and the absence of well-defined integration of dual functionality persist as challenges in the development of theranostic nanoplatforms. Methods: We develop an atomically precise theranostic nanoplatform based on metal-organic cage (MOC) to provide magnetic resonance imaging (MRI) guided chemodynamic therapy (CDT) for cancer therapy and assess the theranostic performance both in vitro and in vivo. Through UV-vis spectroscopy, electron paramagnetic resonance (EPR), confocal microscopy, flow cytometry, immunofluorescence staining, and western blotting, the ability of MOC-Mn to generate •OH and the subsequent inhibition of HeLa cells was confirmed. Results: The MOC-Mn composed of manganese and calixarene was successfully synthesized and comprehensively characterized. The catalytic activity of manganese within MOC-Mn facilitated the efficient generation of hydroxyl radicals (•OH) through a Fenton-like reaction, leveraging the high concentrations of hydrogen peroxide in the tumor microenvironment (TME). Additionally, its capacity to prolong the T1 relaxation time and augment the MR signal was observed. The theranostic efficacy was verified via rigorous in vitro and in vivo experiments, indicating that MOC-Mn offered clearer visualization of tumor particulars and substantial suppression of tumor growth. Conclusion: This study showcases a precise MRI-guided CDT theranostic nanoplatform for cancer therapy, thereby promoting the advancement of precise nanomedicine and structure-function research.


Asunto(s)
Imagen por Resonancia Magnética , Nanomedicina Teranóstica , Nanomedicina Teranóstica/métodos , Humanos , Animales , Células HeLa , Imagen por Resonancia Magnética/métodos , Ratones , Manganeso/química , Ratones Desnudos , Femenino , Radical Hidroxilo/metabolismo , Radical Hidroxilo/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Ratones Endogámicos BALB C , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Nanopartículas/química
16.
Theranostics ; 14(12): 4701-4712, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239524

RESUMEN

Erythropoietin-producing hepatocellular receptor A2 (EphA2), is a receptor tyrosine kinase involved in cell-cell interactions. It is known to be overexpressed in various tumors and is associated with poor prognosis. EphA2 has been proposed as a target for theranostic applications. Low molecular weight peptide-based scaffolds with low nanomolar affinities have been shown to be ideal in such applications. Bicyclic peptides have emerged as an alternative to traditional peptides for this purpose, offering affinities comparable to antibodies due to their constrained nature, along with high tissue penetration, and improved stability compared to linear counterparts. This study presents the development and comprehensive in vitro and in vivo preclinical evaluation of BCY18469, a novel EphA2-targeting bicyclic peptide-based radiotheranostic agent. Methods: The EphA2-targeting Bicycle® peptide BCY18469 was identified through phage-display and chemically optimized. BCY18469 was radiolabeled with 68Ga, 177Lu and 111In. The physicochemical properties, binding affinity and internalization as well as specificity of the peptide were evaluated in vitro. In vivo PET/MR and SPECT/CT imaging studies were performed using [68Ga]Ga-BCY18469 and [111In]In-BCY18469, respectively, along with biodistribution of [177Lu]Lu-BCY18469 up to 24 h post injection in HT1080- and PC-3-tumor bearing BALB/c nu/nu EphA2-overexpressing xenograft mouse models. Results: The EphA2-targeting bicyclic peptide BCY18469 showed high binding affinity toward human and mouse EphA2 (1.9 and 3.8 nM, respectively). BCY18469 specifically bound and internalized into EphA2-expressing HT1080 cells. Imaging studies showed high tumor enrichment at early time-points (SUV of 1.7 g/mL at 1 h p.i. and 1.2 g/mL at 2 h p.i. in PET/MRI, HT1080 xenograft) with tumor contrast as early as 5 min p.i. and kidney-mediated clearance. Biodistribution studies revealed high early tumor uptake (19.5 ± 3.5 %ID/g at 1 h p.i., HT1080 xenograft) with SPECT/CT imaging further confirming these findings (5.7 ± 1.5 %ID/g at 1 h p.i., PC-3 xenograft). Conclusion: BCY18469 demonstrated high affinity, specific targeting of EphA2, a favorable biodistribution profile, and clearance through renal pathways. These findings underscore the potentially important role of bicyclic peptides in advancing radiotheranostic approaches and encourage additional translational research.


Asunto(s)
Receptor EphA2 , Animales , Receptor EphA2/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Distribución Tisular , Péptidos Cíclicos/farmacocinética , Péptidos Cíclicos/química , Radiofármacos/farmacocinética , Radiofármacos/química , Masculino , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Lutecio/química , Radioisótopos de Indio , Radioisótopos/química , Femenino , Radioisótopos de Galio , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo
17.
Biochemistry (Mosc) ; 89(8): 1362-1391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39245451

RESUMEN

The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.


Asunto(s)
Grafito , Neoplasias , Nanomedicina Teranóstica , Grafito/química , Grafito/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Fotoquimioterapia , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Terapia Fototérmica/métodos
18.
ChemMedChem ; : e202400410, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264862

RESUMEN

Nanoparticles can enhance drugs accumulating at the tumor site and hold tremendous promise for achieving effective tumor treatment. However, due to the complexity of cancer heterogeneity and suppressive tumor microenvironment, the delivery of traditional nanoparticles has poor infiltration and off-target effects, making it difficult to control the drug release rate and causing off-target toxicity. In recent years, cell membrane-coated biomimetic nanoparticles have been developed, which have both the natural characteristics of biomembranes and the physical characteristics of traditional nanoparticles, thus improving the homologous targeting ability of nanoparticles to tumor cells and better biocompatibility. In this paper, we reviewed the application of single cell membrane and hybrid cell membrane-coated biomimetic nanoparticles in the integration for tumor diagnosis and treatment. We talked about the preparation methods of cell membrane-coated nanoparticles, the targeting mechanisms, and the effects of imaging and therapeutic outcomes of different cell membrane-coated biomimetic nanoparticles in detail. Finally, we discussed the existing problems and prospects of cell membrane-coated biomimetic nanomaterials.

19.
Ann Nucl Med ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287742

RESUMEN

The gastrin-releasing peptide receptor (GRPr) has gained recognition as a promising target for both diagnostic and therapeutic applications in a variety of human cancers. This study aims to explore the primary tumor detection capabilities of [68Ga] Ga-GRPr PET imaging, specifically in newly diagnosed intra-prostatic prostate cancer lesions (PCa). Following PRISMA-DTA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies) guidelines, a systematic literature search was conducted using the Medline, Embase, Scopus, and Web of Science databases. Data regarding patient characteristics and imaging procedure details-including the type of radiotracer used, administered activity, image acquisition time, scanner modality, criteria, and detection rate of index test-were extracted from the included studies. The pooled patient-and lesion-based detection rates, along with their corresponding 95% confidence intervals (CI), were calculated using a random effects model. The final analysis included 9 studies involving 291 patients and 350 intra-prostatic lesions with [68Ga] Ga-GRPr PET imaging in primary PCa. In per-patient-based analysis of [68Ga] Ga-GRPr PET imaging, the pooled detection rates of overall and patients with Gleason score ≥ 7 were 87.09% (95% CI 74.98-93.82) and 89.01% (95% CI 68.17-96.84), respectively. In per-lesion-based analysis, the pooled detection rate [68Ga] Ga-GRPr PET imaging was 78.54% (95% CI 69.8-85.29). The pooled detection rate mpMRI (multiparametric magnetic resonance imaging) in patient-based analysis was 91.85% (95% CI 80.12-96.92). The difference between the detection rates of the mpMRI and [68Ga] Ga-GRPr PET imaging was not statistically significant (OR 0.90, 95% CI 0.23-3.51). Our findings suggest that [68Ga] Ga-GRPr PET imaging has the potential as a diagnostic target for primary PCa. Future research is needed to determine the effectiveness of [68Ga] Ga-GRPr PET in delivering additional imaging data and guiding therapeutic decisions.

20.
Adv Healthc Mater ; : e2402888, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279325

RESUMEN

Dendrimers and supramolecular chemistry continue to fascinate researchers due to the endless unrevealed potential of their combination. This study investigates the self-assembly process of a series of hydrophobic triazolylferrocenyl dendrimers in aqueous medium. Deep investigation through NMR spectroscopy, absorption UV-vis spectroscopy along with theoretical simulations demonstrates that the ferrocenyl moieties interact intramolecularly and intermolecularly driving the self-assembly process. Data obtained by DLS, NTA, SEM, TEM, and EF-TEM demonstrate that these dendrimers, in water, spontaneously self-assemble through a hierarchical process. The dendrimers first self-assemble into uniform nanovesicles, which in turn self-assemble into larger vesosomes. The resulting vesosomes emit green non-traditional intrinsic fluorescence, which is a property that emerged from the self-assembled architectures. The vesosomes are efficiently uptaken by cancer cells and induce significant cytotoxic activity against the cancer cell line MCF-7, up to the submicromolar concentration. Positive dendritic effects are identified in the fluorescence intensity and in the cytotoxic activity of the vesosomes, which follow the trend G0-9Fc < G1-27Fc < G2-81Fc. This work showcases the remarkable potential of combining the two dynamic fields of dendrimers and supramolecular chemistry, which resulted in green fluorescent vesosomes capable of performing the dual role of cell imaging and killing, with potential applications in nanotheranostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA