Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Aging Cell ; : e14321, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177077

RESUMEN

Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the United States (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the ß3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice. Sustained ß3-AR treatment resulted in reduced fat mass, increased energy expenditure, increased fatty acid oxidation and mitochondrial activity in adipose depots, improved glucose homeostasis, and a favorable adipokine profile. At the cellular level, CL treatment increased uncoupling protein 1 (UCP1)-dependent thermogenesis in brown adipose tissue (BAT). However, in white adipose tissue (WAT) depots, CL treatment increased glycerol and lipid de novo lipogenesis (DNL) and turnover suggesting the activation of the futile substrate cycle of lipolysis and reesterification in a UCP1-independent manner. Increased lipid turnover was also associated with the simultaneous upregulation of proteins involved in glycerol metabolism, fatty acid oxidation, and reesterification in WAT. Further, a dose-dependent impact of CL treatment on inflammation was observed, particularly in subcutaneous WAT, suggesting a potential mismatch between fatty acid supply and oxidation. These findings indicate that chronic ß3-AR stimulation activates distinct cellular mechanisms that increase energy expenditure in BAT and WAT to improve systemic metabolism in aged mice. Considering that people lose BAT with aging, activation of futile lipid cycling in WAT presents a novel strategy for improving age-related metabolic dysfunction.

2.
Front Physiol ; 15: 1427722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156823

RESUMEN

Background: Ling-gui-zhu-gan (LGZG) formula has been demonstrated to effectively ameliorate the clinical symptoms of patients with obesity or metabolic syndrome. This study aimed to explore both the effect and the underlying mechanisms of LGZG against obesity. Methods: Male C57BL/6N mice were randomized into four groups (n = 8): normal control (NC), obese (OB), metformin (Met), and LGZG. After 8 weeks of gavage administration, the pharmacological effects of LGZG on obesity and metabolism were investigated using biochemical parameters, histomorphological examination, and lipidomics techniques. Pivotal factors associated with white adipose tissue browning were evaluated using quantitative real-time polymerase chain reaction and western blotting. Results: The results revealed that LGZG reduced the levels of obesity markers, including body weights, body fat mass and food intake in obese mice. Further evaluations highlighted that LGZG restored glucose homeostasis and significantly improved insulin sensitivity in obese mice. Importantly, LGZG could adjust serum lipid profiles and regulate the lipidomic spectrum of intestinal contents, with noticeable shifts in the levels of certain lipids, particularly diacylglycerols and monoacylglycerols. Histopathological examinations of LGZG-treated mice also revealed more favorable adipose tissue structures than their obese counterparts. Furthermore, we found that LGZG upregulated the expression of several key thermogenesis-related factors, such as UCP1, PRDM16, PGC-1α, PPARα, PPARγ, CTBP1, and CTBP2 in white adipose tissues. Conclusion: Our findings position LGZG as a novel strategy for preventing obesity and improving metabolic health.

3.
J Biol Chem ; : 107690, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159807

RESUMEN

Iron homeostasis is essential for maintaining metabolic health and iron disorder has been linked to chronic metabolic diseases. Increasing thermogenic capacity in adipose tissue has been considered as a potential approach to regulate energy homeostasis. Both Mitochondrial biogenesis and mitochondrial function are iron dependent and essential for adipocyte thermogenic capacity, but the underlying relationships between iron accumulation and adipose thermogenesis is unclear. Firstly, we confirmed that iron homeostasis and the iron regulatory markers (e.g. Tfr1, Hfe) are involved in cold induced thermogenesis in subcutaneous adipose tissues using RNA-seq and bioinformatic analysis. Secondly, an Hfe (Hfe-/-) deficient mouse model, in which tissues become overloaded with iron, was employed. We found iron accumulation caused by Hfe deficiency enhanced mitochondrial respiratory chain expression in subcutaneous white adipose in vivo and resulted in enhanced tissue thermogenesis with upregulation of PGC-1α and ATGL, mitochondrial biogenesis and lipolysis. To investigate the thermogenic capacity in vitro, stromal vascular fraction (SVF) from adipose tissues was isolated, followed with adipogenic differentiation. Primary adipocyte from Hfe-/- mice exhibited higher cellular oxygen consumption, associated with enhanced expression of mitochondrial oxidative respiratory chain protein, while primary adipocytes or SVFs from WT mice supplemented with iron citrate (FAC) exhibited similar effect in thermogenic capacity. Taken together, these findings indicate iron supplementation and iron accumulation (Hfe deficiency) can regulate adipocyte thermogenic capacity, suggesting a potential role for iron homeostasis in adipose tissues.

4.
Adipocyte ; 13(1): 2391511, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39155481

RESUMEN

In mammals, brown adipose tissue (BAT) and beige adipocytes in white adipose tissue (WAT) play pivotal roles in maintaining body temperature and energy metabolism. In mice, BAT quickly stimulates thermogenesis by activating brown adipocytes upon cold exposure. In the presence of chronic cold stimuli, beige adipocytes are recruited in inguinal WAT to support heat generation. Accumulated evidence has shown that thermogenic execution of brown and beige adipocytes is regulated in a fat depot-specific manner. Recently, we have demonstrated that ubiquitin ligase ring finger protein 20 (RNF20) regulates brown and beige adipocyte thermogenesis through fat-depot-specific modulation. In BAT, RNF20 regulates transcription factor GA-binding protein alpha (GABPα), whereas in inguinal WAT, RNF20 potentiates transcriptional activity of peroxisome proliferator-activated receptor-gamma (PPARγ) through the degradation of nuclear corepressor 1 (NCoR1). This study proposes the molecular mechanisms by which co-regulator(s) selectively and temporally control transcription factors to coordinate adipose thermogenesis in a fat-depot-specific manner. In this Commentary, we provide molecular features of brown and beige adipocyte thermogenesis and discuss the underlying mechanisms of distinct thermogenic processes in two fat depots.


Asunto(s)
Adipocitos Beige , Adipocitos Marrones , Termogénesis , Animales , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Humanos , Tejido Adiposo Pardo/metabolismo , Ratones , Regulación de la Expresión Génica , Metabolismo Energético , Transcripción Genética , PPAR gamma/metabolismo , PPAR gamma/genética , Tejido Adiposo Blanco/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-39140972

RESUMEN

Brown and beige adipose tissues are specialized for thermogenesis and are important for energy balance in mice. Mounting evidence suggests chromatin modifying enzymes are integral for the development, maintenance, and functioning of thermogenic adipocytes. p300 and CREB-binding protein (CBP) are histone acetyltransferases (HATs) responsible for writing the transcriptionally activating mark H3K27ac. Despite their homology, p300 and CBP do have unique tissue and context-dependent roles, which have yet to be examined in brown and beige adipocytes specifically. We assessed the requirement of p300 or CBP in thermogenic fat using Ucp1-Cre mediated knockdown in mice to determine if their loss impacted tissue development, susceptibility to diet-induced obesity, and response to pharmacological induction via b3-agonism. Despite successful knockdown, brown adipose tissue mass and expression of thermogenic markers were unaffected by loss of either HAT. As such, knockout mice developed a comparable degree of diet-induced obesity and glucose intolerance to that of floxed controls. Furthermore, "browning" of white adipose tissue by the b3-adrenergic agonist CL-316,243remained largely intact in knockout mice. Although p300 and CBP have non-overlapping roles in other tissues, our results indicate they are individually dispensable within thermogenic fats specifically, possibly due to functional compensation by one another.

6.
Biofactors ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115325

RESUMEN

Inducing browning in white adipocytes has emerged as a promising therapeutic approach for addressing obesity. Bioactive that modulate the WAT microenvironment to induce trans browning in white adipocytes have been explored as a strategy to control unregulated lipid storage. However, relying on a single bioactive for modulating lipid metabolism has proven insufficient in obese individuals during human trials, because these compounds primarily activate a single biochemical pathway in promoting browning. Consequently, there is a growing emphasis on targeting multiple pathways to ensure a safe and effective browning process. The present study investigated the combinatorial effect of bioactives namely Apigenin and Resveratrol for activating multiple pathways for effective trans-browning of white adipocytes. The combination was seen to promote the browning more effectively than the single bioactive, as the combination simultaneously activated multiple signaling pathways to induce angiogenesis-mediated browning in primary white adipocytes isolated from obese mice. Activation of PI3K signaling via estrogen receptor-α-dependent pathway resulted in simultaneous activation of angiogenesis and trans browning in white adipocytes. The study provides valuable insights into the potential use of bioactives in combination with therapeutic intervention to improve the overall health of obese subjects by enhancing lipid metabolism by activating trans-differentiation of white adipocytes.

7.
Zoology (Jena) ; 166: 126195, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128254

RESUMEN

For small non-hibernating mammals, a high thermogenic capacity is important to increase activity levels in the cold. It has been previously reported that lactating females decrease their thermogenic activity of brown adipose tissue (BAT), whereas their capacity to cope with extreme cold remains uncertain. In this study we examined food intake, body temperature and locomotor behavior, resting metabolic rate, non-shivering thermogenesis, and cytochrome c oxidase activity, and the rate of state 4 respiration of liver, skeletal muscle, and BAT in striped hamsters (Cricetulus barabensis) at peak lactation and non- breeding hamsters (controls). The lactating hamsters and non- breeding controls were acutely exposed to -15°C, and several markers indicative of thermogenic capacity were examined. In comparison to non-breeding females, lactating hamsters significantly increased food intake and body temperature, but decreased locomotor behavior, and the BAT mass, indicative of decreased BAT thermogenesis at peak lactation. Unexpectedly, lactating hamsters showed similar body temperature, resting metabolic rate, non-shivering thermogenesis with non-breeding females after acute exposure to -15°C. Furthermore, cytochrome c oxidase activity of liver, skeletal muscle and BAT, and serum thyroid hormone concentration, and BAT uncoupling protein 1 expression, in lactating hamsters were similar with that in non-breeding hamsters after acute extreme cold exposure. This suggests that lactating females have the same thermogenic capacity to survive cold temperatures compared to non-breeding animals. This is particularly important for females in the field to cope with cold environments during the period of reproduction. Our findings indicate that the females during lactation, one of the highest energy requirement periods, do not impair their thermogenic capacity in response to acute cold exposure.

8.
J Lipid Res ; : 100617, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128824

RESUMEN

INTRODUCTION: Brown adipose tissue (BAT) combusts lipids and glucose to generate heat. Via this process of non-shivering thermogenesis, BAT plays a pivotal role in thermoregulation in cold environments, but its contribution to immune-induced fever is less clear. METHODS: Male APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism, and wildtype mice were given an intraperitoneal injection of Salmonella enterica serovar Typhimurium (S.tm). Energy expenditure and substrate utilization, plasma lipid levels, fatty acid uptake by adipose tissues, and lipid content and thermogenic markers in adipose tissues were examined. RESULTS: S.tm infection led to a set of characteristic symptoms, including elevated body temperature and decreased body weight. Whole-body energy expenditure was significantly decreased 72 hours post-infection, but fat oxidation was increased and accompanied by a substantial reduction in plasma triglyceride (TG) levels as demonstrated in APOE*3-Leiden.CETP mice. S.tm infection strongly increased uptake of fatty acids from TG-rich lipoproteins (TRLs) by BAT, which showed a positive correlation with body temperature in infected mice. Upon histological examination of BAT from wildtype or APOE*3-Leiden.CETP mice, elevated levels of tyrosine hydroxylase were observed, indicative of stimulated sympathetic activity. In addition, the gene expression profile was consistent with more adrenergic stimulation, while lipid content was reduced. Furthermore, browning of white adipose tissue was observed, evidenced by a modest increase in TG-derived fatty acid uptake, the presence of multilocular cells, and induction of UCP-1 expression. CONCLUSION: We proposed that BAT, or thermogenic adipose tissue in general, is involved in the maintenance of elevated body temperature upon invasive bacterial infection.

9.
Nutrients ; 16(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125449

RESUMEN

We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.


Asunto(s)
Colesterol , Dieta Alta en Grasa , Metabolismo Energético , Lactobacillus , Ratones Endogámicos C57BL , Probióticos , Animales , Dieta Alta en Grasa/efectos adversos , Probióticos/farmacología , Probióticos/administración & dosificación , Colesterol/metabolismo , Colesterol/sangre , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Obesidad/metabolismo , Obesidad/microbiología , Tejido Adiposo Blanco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo , Hígado/metabolismo , Lactobacillus plantarum , Yeyuno/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/microbiología
10.
J Orthop Translat ; 48: 39-52, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39087139

RESUMEN

Background: Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods: We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results: Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion: Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article: This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.

11.
Clin Nutr ; 43(9): 2043-2056, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39088961

RESUMEN

Given its nonnegligible role in metabolic homeostasis, adipose tissue has been the target for treating metabolic disorders such as obesity, diabetes and cardiovascular diseases. Besides its lipolytic function, adipose thermogenesis has gained increased interest due to the irreplaceable contribution to dissipating energy to restore equilibrium, and its therapeutic effects have been testified in various animal models. In this review, we will brief about the canonical cold-stimulated adipose thermogenic mechanisms, elucidate on the exercise- and intermittent fasting-induced adipose thermogenic mechanisms, with a focus on the similarities and disparities among these signaling pathways, in an effort to uncover the overlapped and specific targets that may yield potent therapeutic efficacy synergistically in improving metabolic health.

12.
Metabol Open ; 22: 100291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38957623

RESUMEN

Obesity is a major public health problem with a prevalence increasing at an alarming rate worldwide. There is an urgent need for efficient approaches to weight management. Diet induced thermogenesis (DIT) is the process by which the body increases its energy expenditure in response to a meal. It is estimated to account for approximately 10 % of total energy expenditure and is considered a potentially modifiable component of energy expenditure. The palatability of food, meal's composition in macronutrients, the circadian rhythm and sleep, as well as individual's characteristics such as age, the presence of obesity or diabetes mellitus, and the proportion of physical activity are the main factors that affect DIT. However, studies examining DIT are mostly characterized by small sample size and the methodology varies considerably between studies. It seems that even today there is a lot of contradiction between the relative studies. Inspite of that, future research might lead to the modification of DIT in order to achieve some weight loss in obese people.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38972782

RESUMEN

Central ceramides regulate energy metabolism by impacting hypothalamic neurons. This allows ceramides to integrate endocrine signals - such as leptin, ghrelin, thyroid hormones, or estradiol - and to modulate the central control of puberty. In this forum article we discuss recent evidence suggesting that specific ceramide species and neuronal populations are involved in these effects.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39018792

RESUMEN

Inhabiting some of the world's most inhospitable climatic regions, the Sunite Mongolian sheep generates average temperatures as low as 4.3 °C and a minimum temperature of -38.8 °C; in these environments, they make essential cold adaptations. In this regard, scapular fat tissues from Mongolian sheep were collected both in winter and summer for transcriptomic and proteomic analyses to identify genes related to adaptive thermogenesis. In the transcriptome analysis, 588 differentially expressed genes were identified to participate in smooth muscle activity and fat metabolism, as well as in nutrient regulation. There were 343 upregulated and 245 downregulated genes. GO and KEGG pathway analyses on these genes revealed their participation in regulating smooth muscle activity, metabolism of fats, and nutrients. Proteomic analysis showed the differential expression of 925 proteins: among them, there are 432 up- and 493 down-expressed proteins. These proteins are mainly involved in oxidative phosphorylation, respiratory chain complex assembly, and ATP production by electron transport. Furthermore, using both sets at a more detailed level of analysis revealed over-representation in gene ontology categories related to hormone signaling, metabolism of lipids, the pentose phosphate pathway, the TCA cycle, and especially the process of oxidative phosphorylation. The identified essential genes and proteins were further validated by quantitative real-time polymerase chain reaction and Western blotting, respectively; key metabolic network constriction was constructed. The present study emphasized the critical role of lipid turnover in scapular fat for thermogenic adaptation in Sunite sheep.

15.
Front Endocrinol (Lausanne) ; 15: 1386230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962676

RESUMEN

Background: Despite the evidence that energy balance is regulated differently in females and that the endocannabinoid system is sexually dimorphic, previous studies on the endocannabinoid system and energy balance predominantly used male models. Here, we characterize the effects of cannabinoid receptor deletion on body weight gain and glucose metabolism in female C57BL mice. Methods: Female mice lacking the cannabinoid-1 receptor (CB1R-/-), cannabinoid-2 receptor (CB2R-/-), or both receptors (CB1R-/-/CB2R-/-) and wild-type (WT) mice were fed with a low (LFD; 10% of calories from fat) or high-fat diet (HFD; 45% of calories from fat) for six weeks. Results: Female WT mice fed with HFD gained significantly more weight than WT mice fed with LFD (p < 0.001). Similar pattern was observed for CB2/- mice fed with HFD compared to CB2R-/- mice fed with LFD (p < 0.001), but not for CB1R-/- fed with HFD vs. LFD (p = 0.22) or CB1R-/-/CB2R-/- fed with HFD vs. LFD (p = 0.96). Comparing the 4 groups on LFD, weight gain of CB1R-/- mice was greater than all other genotypes (p < 0.05). When fed with HFD, the deletion of CB1R alone in females did not attenuate weight gain compared to WT mice (p = 0.72). Female CB1R-/-/CB2R-/- mice gained less weight than WT mice when fed with HFD (p = 0.007) despite similar food intake and locomotor activity, potentially owing to enhanced thermogenesis in the white adipose tissue. No significant difference in weight gain was observed for female CB2R-/- and WT mice on LFD or HFD. Fasting glucose, however, was higher in CB2R-/- mice fed with LFD than all other groups (p < 0.05). Conclusion: The effects of cannabinoid receptor deletion on glucose metabolism in female mice were similar to previously published findings on male mice, yet the effects on body weight gain and thermogenesis were attenuated in CB1R-/- mice.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Aumento de Peso , Animales , Femenino , Ratones , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/deficiencia , Dieta Alta en Grasa/efectos adversos , Aumento de Peso/genética , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/deficiencia , Peso Corporal
16.
Front Endocrinol (Lausanne) ; 15: 1396965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982992

RESUMEN

Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by ß-adrenergic receptor stimulation correlating with elevated ß-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.


Asunto(s)
Esferoides Celulares , Termogénesis , Animales , Ratones , Esferoides Celulares/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Ratones Endogámicos C57BL , Masculino , Adipocitos/metabolismo , Adipocitos/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Células Cultivadas , Adipocitos Beige/metabolismo , Adipocitos Beige/citología , Metabolismo Energético , Adipogénesis/fisiología , Sistemas Microfisiológicos
17.
Inflamm Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017739

RESUMEN

OBJECTIVE AND DESIGN: Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis. MATERIAL OR SUBJECTS: Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure. METHODS: Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice. RESULTS: B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT. CONCLUSION: B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.

18.
Cell Rep ; 43(7): 114447, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38963761

RESUMEN

Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion. LAMs participate in this scenario by capturing extracellular vesicles carrying damaged lipids and mitochondria released from metabolically stressed brown adipocytes. CD36 scavenger receptor drove LAM phenotype, and CD36-deficient LAMs were able to increase brown fat genes in adipocytes. LAMs released transforming growth factor ß1 (TGF-ß1), which promoted the loss of brown adipocyte identity through aldehyde dehydrogenase 1 family member A1 (Aldh1a1) induction. These findings unfold cell dynamic changes in BAT during obesity and identify LAMs as key responders to tissue metabolic stress and drivers of loss of brown adipocyte identity.


Asunto(s)
Tejido Adiposo Pardo , Macrófagos , Obesidad , Animales , Obesidad/patología , Obesidad/metabolismo , Macrófagos/metabolismo , Tejido Adiposo Pardo/metabolismo , Ratones , Adipocitos Marrones/metabolismo , Ratones Endogámicos C57BL , Antígenos CD36/metabolismo , Antígenos CD36/genética , Factor de Crecimiento Transformador beta1/metabolismo , Masculino , Lípidos , Mitocondrias/metabolismo
19.
Biomolecules ; 14(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062535

RESUMEN

Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence highlights steroidogenic factor 1 (SF1) cells within the central and dorsomedial ventromedial hypothalamus (c/dmVMH) as a modulator of both energy homeostasis and defensive behavior. However, the brain mechanism driving elevated EE and muscle thermogenesis during PO exposure has yet to be elucidated. To assess the ability of SF1 neurons of the c/dmVMH to induce muscle thermogenesis, we used the combined technology of chemogenetics, transgenic mice, temperature transponders, and indirect calorimetry. Here, we evaluate EE and muscle thermogenesis in SF1-Cre mice exposed to PO (ferret odor) compared to transgenic and viral controls. We detected significant increases in muscle temperature, EE, and oxygen consumption following the chemogenetic stimulation of SF1 cells. However, there were no detectable changes in muscle temperature in response to PO in either the presence or absence of chemogenetic stimulation. While the specific role of the VMH SF1 cells in PO-induced thermogenesis remains uncertain, these data establish a supporting role for SF1 neurons in the induction of muscle thermogenesis and EE similar to what is seen after predator threats.


Asunto(s)
Metabolismo Energético , Ratones Transgénicos , Neuronas , Factor Esteroidogénico 1 , Termogénesis , Animales , Termogénesis/efectos de los fármacos , Ratones , Factor Esteroidogénico 1/metabolismo , Factor Esteroidogénico 1/genética , Neuronas/metabolismo , Músculo Esquelético/metabolismo , Masculino , Núcleo Hipotalámico Ventromedial/metabolismo , Odorantes
20.
Foods ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063332

RESUMEN

The present study was designed to investigate the protective effects of pectin extracted from Premna microphylla Turcz leaves (PTP) against high-fat-diet (HFD)-induced lipid metabolism disorders and gut microbiota dysbiosis in obese mice. PTP was made using the acid extraction method, and it was found to be an acidic pectin that had relative mole percentages of 32.1%, 29.2%, and 26.2% for galacturonic acid, arabinose, and galactose, respectively. The administration of PTP in C57BL/6J mice inhibited the HFD-induced abnormal weight gain, visceral obesity, and dyslipidemia, and also improved insulin sensitivity, as revealed by the improved insulin tolerance and the decreased glucose levels during an insulin sensitivity test. These effects were linked to increased energy expenditure, as demonstrated by the upregulation of thermogenesis-related protein UCP1 expression in the brown adipose tissue (BAT) of PTP-treated mice. 16S rRNA gene sequencing revealed that PTP dramatically improved the HFD-induced gut dysbiosis by lowering the ratio of Firmicutes to Bacteroidetes and the quantity of potentially harmful bacteria. These findings may provide a theoretical basis for us to understand the functions and usages of PTP in alleviating obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA