Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Toxicon ; 250: 108113, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357778

RESUMEN

In recent years, the clinical adverse drug reactions (ADR) reports of Senna obtusifolia have been constantly emerging, especially hepatotoxicity. However, it is unclear whether the liver is the only or main toxic target organ. In this study, we conducted a repeated administration experiment with the Senna obtusifolia Aqueous Extract (SE) and PCA analysis was used to determine the primary toxic target organs. The results revealed that the liver was the main toxic target organ and we also verifid the hepatotoxicity in vitro. The mechanism of hepatotoxicity was predicted by network toxicology technology, which was verified by ELISA, qPCR, western blotting and other methods.The results showed that SE could increase the serum levels of TNF-α, IL-6, IL-1ß, the mRNA expression levels of ACT1, TRAF6, NF-κB P65 and the protein expression levels of TRAF6, NF-κB P65, P-P65 in rat livers and HepG2 cells, which indicated that SE induced hepatotoxicity might be related to inflammatory response.

2.
Heliyon ; 10(19): e38440, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403457

RESUMEN

Polyurethanes (PUs) are a special class of polymeric materials that differ significantly from most other types of plastic in many aspects. They can be utilized in a wide range of products, including paints, coatings, elastomers, insulators, elastic fibers, and foams. PU foams are especially important as part of various convenience products. PU products often end up in landfills when they are no longer useful and can release toxic compounds when damaged by humans or microbes. Therefore, the ecotoxicological assessment of PU foams is essential. In this paper, five PU foam samples were prepared with different NCO indices (NCO-0.8, 0.9, 1.0, 1.1, and 1.2) and together with the Control sample (a previously tested non-toxic foam sample) were applied to develop toxicity tests procedure, while intentionally prepared Toxic foam has been used to verify the accuracy of the developed testing procedure. Two test organisms were successfully applied, Sinapis alba (white mustard) seeds and Escherichia coli (non-pathogenic) bacterial model organisms, and toxicity tests were adapted for the examination of PU-derived substances. Regarding Sinapis alba test, the highest NCO index (NCO-1.2) significantly reduced root length by 9.8 % compared to the Control sample. In the bacterial test, it was observed that the samples containing NCO-1.1 and NCO-1.2 had lower colony numbers (5.0 × 108 and 4.9 × 108 CFU/mL respectively) in comparison to the Control plate (9.6 × 108 CFU/mL). All in all, two toxicity tests were successfully adapted for PU foams, and both are applicable in their ecotoxicological assessment.

3.
Sci Total Environ ; 953: 176070, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39244051

RESUMEN

Di(2-ethylhexyl)phthalate (DEHP) and di-n-butylphthalate (DBP) frequently coexist in different environmental compartments. Thus, in this study, model aquatic and terrestrial microcosms were prepared to analyze the combined effect of DEHP and DBP on their fate, toxicity, and ecological risk. In the aquatic microcosms, with the addition of the same amount of DEHP and DBP, a higher total amount of DEHP was detected in water, suspended particles, and sediment than DBP due to the higher Kow and half-life of DEHP than DBP. Sediment was the major sink of both phthalates, as the highest percentages of DEHP (90.0 % âˆ¼ 95.6 %) and DBP (68.7 % âˆ¼ 78.1 %) were found in the sediment. The results of the whole sediment toxicity test showed that DBP (LC50/LC10: 6.75/1.171 µg/g dw) was more toxic than DEHP (LC50/LC10: 158.75/27.25 µg/g dw) to the tubificid oligochaete Monopylephorus limosus, with a synergistic toxic effect of the mixture of DEHP and DBP (LC50/LC10: 100.3/4.6 µg/g dw). The mobility of DEHP and DBP in soil was low during irrigation, with the release of 0.054 % âˆ¼ 2.29 % DEHP and 0.097 % âˆ¼ 1.86 % DBP. The bioconcentration factors/biota-sediment accumulation factors for DEHP (70.8-145 L/kg/0.093-0.359) in the muscle of the fish Carassius auratus were lower than those for DBP (82.2-300 L/kg/0.514-1.625). The bioaccumulation factors of DEHP and DBP for earthworms were 0.373 and 0.682, respectively. The levels of DEHP and DBP in the water and sediment of aquatic systems and in the soil of terrestrial systems might pose high ecological risks to some fish species, M. limosus and earthworms, according to the risk quotient values. These data provide valuable insights for the development of government control strategies to minimize the ecological risks of DEHP and DBP.


Asunto(s)
Dibutil Ftalato , Dietilhexil Ftalato , Contaminantes Químicos del Agua , Dietilhexil Ftalato/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Animales , Dibutil Ftalato/toxicidad , Medición de Riesgo , Sedimentos Geológicos/química , Monitoreo del Ambiente , Oligoquetos/efectos de los fármacos
4.
Front Pharmacol ; 15: 1445905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234111

RESUMEN

Background: Despite the widely reported potentials of n-Hexadecanoic acid (HA) as a bioactive, its multi-stage antiplasmodial activity and toxicity profiles remain largely unknown. Methodology: Thus, this study uses a combination of in silico approaches and in vivo studies to assess the inhibitory activities of HA at different stages of the Plasmodium lifecycle, antiplasmodial performance, and toxicity profiles. The HA was retrieved from the PubChem database, while antiplasmodial target proteins from different stages of the Plasmodium falciparum life cycle were collated from the Protein Databank (PDB). Molecular Docking and Visualization were conducted between the compound and target proteins using AutoVina PyRx software and Biovia Discovery Studio, respectively. Also, the AdmetLab 3.0 algorithm was used to predict the absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profiles of HA. Based on a 4-day suppressive test, the antiplasmodial activity against the Plasmodium berghei ANKA strain in mice was evaluated. Furthermore, subacute toxicity and micronucleus assays were used for further toxicity assessment. Results: The molecular docking analysis indicates multi-stage, multi-target potentials of HA with favourable ligand-receptor complexes across the four Plasmodium falciparum stages. Meanwhile, the mice administered with 100 mg/kg, 50 mg/kg, and 10 mg/kg of HA demonstrated considerable chemosuppression in a dose-dependent manner of 89.74%, 83.80%, and 71.58% percentage chemosuppression, respectively, at p < 0.05. The ADMET prediction, histopathological tests, and micronucleus assays show that HA is safer at a lower dose. Conclusion: This study showed that n-Hexadecanoic acid is a potential drug candidate for malaria. Hence, it is recommended for further molecular and biochemical investigations.

5.
Sci Total Environ ; : 176018, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278489

RESUMEN

Coral reefs are at risk of bleaching due to various environmental and anthropogenic stressors such as global warming and chemical pollutants. However, there is little understanding of stressor-specific mechanisms that cause coral bleaching. Therefore, conducting accurate ecotoxicological risk assessments and deciphering modes of action of potentially deleterious ultraviolet (UV) filters (sunscreen compounds) are crucial issues. In this study, we evaluated the toxicity and bleaching effect of benzophenone-3 (BP-3), which is widely used in sunscreen products, on the reef-building coral Acropora tenuis. Furthermore, to understand differences in UV filter- and temperature-induced adverse effects, a comparative ecotoxicogenomic approach using RNA-seq was integrated into a toxicity test to clarify differences in gene expression changes induced by BP-3 and heat stress (31 °C). The lethal concentration 50 % (LC50) was calculated as 3.9 mg/L, indicating that the aquatic environmental risk on corals posed by BP-3 was low based on the risk assessment in this study. Differentially expressed genes related to oxidative stress and extracellular matrix organization were involved in coral responses to both BP-3 and heat stress, but their patterns differed. Whereas immune and heat-shock responses were activated in response to heat stress, activation of a drug metabolism pathway and several signal transduction pathways were identified in BP-3 treatment groups. Our study enhances understanding of stress responses in corals induced by UV filters and thermal stress. Using potential gene markers identified in this study for eco-epidemiological surveys of stressed corals, we urgently need to develop effective countermeasures.

6.
Ecotoxicology ; 33(9): 996-1008, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39115797

RESUMEN

Sulfate is increasingly found in elevated concentrations in freshwater ecosystems due to anthropogenic activities. Chronic exposure to sulfate has been reported to cause sublethal effects on freshwater invertebrates. Previous sulfate toxicity tests have mostly been conducted in hard or moderately hard waters, and research on species inhabiting soft water is needed, given that freshwater organisms face heightened sensitivity to toxicants in water of lower hardness. In the present study, we examined sulfate sensitivity of two endangered freshwater mussel species, Unio crassus, and Margaritifera margaritifera. Glochidia and juveniles of both species were subjected to acute and/or chronic sulfate exposures in soft water to compare sulfate sensitivity across age groups, and effective concentrations (EC)/lethal concentrations (LC) values were estimated. Mussels were individually exposed to allow relatively larger numbers of replicates per treatment. Chronic sulfate exposure significantly reduced growth, foot movement, and relative water content (RWC) in juvenile mussels of M. margaritifera. Mussels at younger stages were not necessarily more sensitive to sulfate. In the acute tests, LC50 of glochidia of M. margaritifera and U. crassus was 1301 and 857 mg/L, respectively. Chronic LC10 was 843 mg/L for 3-week-old U. crassus juveniles, 1051 mg/L for 7-week-old M. margaritifera juveniles, and 683 mg/L for 2-year-old M. margaritifera juveniles. True chronic Lowest Effective Concentration for 7-week-old M. margaritifera may be within the 95% interval of EC10 based on RWC (EC10 = 446 mg/L, 95%CI = 265-626 mg/L). Our study contributed to the understanding of sulfate toxicity to endangered freshwater mussel species in soft water.


Asunto(s)
Agua Dulce , Sulfatos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Sulfatos/toxicidad , Unio/efectos de los fármacos , Unionidae/efectos de los fármacos , Unionidae/fisiología
7.
Neotrop Entomol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158774

RESUMEN

Neonicotinoid insecticides are used against agricultural, forest, and urban insect pests. Evaluation of dry neonicotinoid residues on treated filter paper is a commonly used method to determine the toxicity of active ingredients towards target and non-target organisms. Dry residues of four neonicotinoids, acetamiprid, dinotefuran, imidacloprid, and thiamethoxam, on filter paper did not cause significant levels of mortality in Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae) and Nezara viridula (L.) (Hemiptera: Pentatomidae) when compared to paired untreated groups. Conversely, nearly 100% mortality was observed when test insects were exposed to dry neonicotinoid residues on leaf discs and glass plate surfaces. On the other hand, dry residues of the pyrethroid bifenthrin on filter paper, leaf disks, and glass plates killed significantly more test insects when compared to untreated groups. Additional bioassays tested the toxicity of acetamiprid and thiamethoxam by evaluating the toxicity of dry residues on (1) the upper and (2) lower surfaces of treated filter paper, (3) on a glass plate underneath treated filter paper, (4) on the upper surface of treated filter paper treated with insecticide and adjuvant, and (5) dried residues on a glass plate after dipping treated filter paper in water and letting the solvent dry on the inert test surface. The results indicated that neonicotinoid insecticides applied to filter paper were adsorbed. Toxic compounds possibly move in between and binding to paper fibers so that no toxic residues were left on treated surfaces. However, adsorbed insecticides were still biologically active when washed out of filter paper and dried on an inert glass surface. The results reported here clearly demonstrate that the toxicity of neonicotinoid insecticides should not be evaluated using filter paper as a test surface.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39106914

RESUMEN

Flusilazole is a well-known triazole fungicide applied to various crops and fruits worldwide. Flusilazole residues are frequently detected in the environment, and many researchers have reported the hazardous effects of flusilazole on non-target organisms; however, the developmental toxicity of flusilazole has not been fully elucidated. In this study, we investigated flusilazole-induced developmental defects in zebrafish, which are used in toxicology studies to assess the toxic effects of chemicals on aquatic species or vertebrates. We confirmed that flusilazole exposure affected the viability and hatching rate of zebrafish larvae, and resulted in morphological defects, reduced body length, diminished eye and head sizes, and inflated pericardial edema. Apoptosis, oxidative stress, and inflammation were also observed. These factors interrupted the normal organ formation during early developmental stages, and transgenic models were used to identify organ defects. We confirmed the effects of flusilazole on the nervous system using olig2:dsRed transgenic zebrafish, and on the cardiovascular system using cmlc2:dsRed and fli1:eGFP transgenic zebrafish. Our results demonstrate the developmental toxicity of flusilazole and its mechanisms in zebrafish as well as the detrimental effects of flusilazole.


Asunto(s)
Animales Modificados Genéticamente , Apoptosis , Fungicidas Industriales , Estrés Oxidativo , Triazoles , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Triazoles/toxicidad , Fungicidas Industriales/toxicidad , Embrión no Mamífero/efectos de los fármacos , Silanos
9.
Mar Pollut Bull ; 206: 116765, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068711

RESUMEN

Nonylphenol (NP), a main byproduct of nonylphenol polyethoxylates (NPEs) degradation, is prevalent across diverse environmental settings. Given its widespread presence, evaluating the ecological risks associated with NP in coastal waters and sediments is essential for the protection of the marine environment. This study evaluates the acute toxicity of NP on ten representative aquatic species from the Bohai Sea, determining the Aquatic Life Criteria (ALC) through two distinct methods. The Criteria Maximum Concentration (CMC) for NP in seawater was established at 12.0 µg/L, with a Predicted No-Effect Concentration (PNEC) for water at 15.2 µg/L and for sediment at 33.3 µg/kg. Additionally, a tiered ecological risk assessment (ERA) of both surface seawater and sediment in the Bohai Sea revealed significant ecological risks at various sediment sites. These results offer crucial insights for assessing the ecological risks to coastal ecosystem and provide foundational data necessary for informed environmental protection and management strategies.


Asunto(s)
Monitoreo del Ambiente , Fenoles , Agua de Mar , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Fenoles/toxicidad , Medición de Riesgo , China , Agua de Mar/química , Animales , Sedimentos Geológicos/química , Organismos Acuáticos/efectos de los fármacos , Ecosistema , Pruebas de Toxicidad Aguda
10.
J Med Food ; 27(7): 681-691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39018055

RESUMEN

Fungi are a source of a variety of secondary metabolites of importance in different areas of biotechnology. Several compounds have been characterized with antioxidant, antimicrobial, and anti-inflammatory activity from fungi of the division of the Ascomycota, among which is the species Daldinia eschscholtzii, an endophyte fungus of pantropical distribution. In this study, we evaluated the effect of an ointment made with D. eschscholtzii on the wound healing of BALB/c mice. The species was corroborated using a molecular marker Internal Transcribed Spacer (ITS1 and ITS4). The extracts and dust of the fungus were considered nontoxic as they caused a mortality of <15% in the nematode Panagrellus redivivus, and experimental ointments had no adverse effects on the skin of BALB/c mice. Wounds treated with the D. eschscholtzii ointments had 99.9-100% wound contraction after 17 days, which was similar to commercial healing (positive control). As such, the ointment of D. eschscholtzii is a natural alternative to improve wound healing.


Asunto(s)
Ratones Endogámicos BALB C , Pomadas , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Ratones , Piel/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Humanos , Ascomicetos/química , Femenino
11.
Toxics ; 12(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38787150

RESUMEN

"Organoids", three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we aimed to analyze the functionality and gene expression of pre- and post-differentiated human hepatic organoids derived from induced pluripotent stem cells and utilize them for toxicity assessment. First, we confirmed the functional similarity of this hepatic organoid model to the human liver through various functional assessments, such as glycogen storage, albumin and bile acid secretion, and cytochrome P450 (CYP) activity. Subsequently, utilizing these functionally validated hepatic organoids, we conducted toxicity evaluations with three hepatotoxic substances (ketoconazole, troglitazone, and tolcapone), which are well known for causing drug-induced liver injury, and three non-hepatotoxic substances (sucrose, ascorbic acid, and biotin). The organoids effectively distinguished between the toxicity levels of substances with and without hepatic toxicity. We demonstrated the potential of hepatic organoids with validated functionalities and genetic characteristics as promising models for toxicity evaluation by analyzing toxicological changes occurring in hepatoxic drug-treated organoids.

12.
Cureus ; 16(3): e55605, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38586722

RESUMEN

Introduction  Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.

13.
Sci Total Environ ; 927: 172378, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604362

RESUMEN

The neonicotinoid pesticide imidacloprid has been used worldwide since 1992. As one of the most important chemicals used in pest control, there have been concerns that its run-off into rivers and lakes could adversely affect aquatic ecosystems, where zooplankton play a central role in the energy flow from primary to higher trophic levels. However, studies assessing the effects of pesticides at the species level have relied on a Daphnia-centric approach, and no studies have been conducted using species-level assessments on a broad range of zooplankton taxa. In the present study, we therefore investigated the acute toxicity of imidacloprid on 27 freshwater crustacean zooplankton (18 cladocerans, 3 calanoid copepods and 6 cyclopoid copepods). The experiment showed that a majority of calanoid copepods and cladocerans were not affected at all by imidacloprid, with the exception of one species each of Ceriodaphnia and Diaphasoma, while all six cyclopoid copepods showed high mortality rates, even at concentrations of imidacloprid typically found in nature. In addition, we found a remarkable intra-taxonomic variation in susceptibility to this chemical. As many cyclopoid copepods are omnivorous, they act as predators as well as competitors with other zooplankton. Accordingly, their susceptibility to imidacloprid is likely to cause different responses at the community level through changes in predation pressure as well as changes in competitive interactions. The present results demonstrate the need for species-level assessments of various zooplankton taxa to understand the complex responses of aquatic communities to pesticide disturbance.


Asunto(s)
Insecticidas , Neonicotinoides , Nitrocompuestos , Contaminantes Químicos del Agua , Zooplancton , Animales , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Zooplancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Insecticidas/toxicidad , Copépodos/efectos de los fármacos , Agua Dulce , Cladóceros/efectos de los fármacos
14.
Toxicon X ; 22: 100195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606385

RESUMEN

Mice are routinely used in snake venom research but are costly and subject to pain and suffering. The crustacean Artemia salina could be an alternative to mice, but data to support its adoption in snake venom research is limited. The aim of the present study was to evaluate the suitability of A. salina as a surrogate of mice in assessing the toxicity of venoms and the preclinical efficacy of antivenoms. The toxicity of venoms from 22 snakes of medical importance in sub-Saharan Africa was evaluated in mice (intraperitoneally; i.p. and intravenously; i.v.) and in A. salina. Subsequently, the capacity of a commercial antivenom to neutralize the toxicity of these venoms in mice and A. salina was investigated. There was a positive correlation between the i.v. median lethal doses (LD50s) and the i.p. LD50s in mice (r = 0.804; p < 0.0001), a moderate correlation between the i.v. LD50s in mice and the median lethal concentrations (LC50s) in A. salina (r = 0.606; p = 0.003), and a moderate correlation between the i.p. LD50s in mice and the LC50s in A. salina (r = 0.426; p = 0.048). Moreover, there was a strong correlation between the i.p. median effective doses (ED50s) and the i.v. ED50s in mice (r = 0.941, p < 0.0001), between the i.p. ED50s in mice and the ED50s in A. salina (r = 0.818, p < 0.0001), and between the i.v. ED50s in mice and the ED50s in A. salina (r = 0.972, p < 0.0001). These findings present A. salina as a promising candidate for reducing reliance on mice in snake venom research. Future investigations should build upon these findings, addressing potential limitations and expanding the scope of A. salina in venom research and antivenom development.

15.
Regul Toxicol Pharmacol ; 149: 105617, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561146

RESUMEN

Accumulating evidence has shown that the abnormal toxicity test (ATT) is not suitable as a quality control batch release test for biologics and vaccines. The purpose of the current study was to explore the optimal ATT experimental design for an adenoviral vector-based vaccine product to avoid false positive results following the standard test conditions stipulated in the Pharmacopoeias. ATT were conducted in both mice and guinea pigs based on methods in Pharmacopeias, with modifications to assess effects of dose volume and amount of virus particles (VPs). The results showed intraperitoneal (IP) dosing at human relevant dose and volume (i.e., VPs), as required by pharmacopeia study design, resulted in false positive findings not associated with extraneous contaminants of a product. Considering many gene therapy products use adeno associated virus as the platform for transgene delivery, data from this study are highly relevant in providing convincing evidence to show the ATT is inappropriate as batch release test for biologics, vaccine and gene therapy products. In conclusion, ATT, which requires unnecessary animal usage and competes for resources which otherwise can be spent on innovative medicine research, should be deleted permanently as batch release test by regulatory authorities around the world.


Asunto(s)
Vectores Genéticos , Pruebas de Toxicidad , Animales , Cobayas , Pruebas de Toxicidad/métodos , Ratones , Reacciones Falso Positivas , Femenino , Adenoviridae/genética , Masculino , Vacunas
16.
Environ Pollut ; 350: 123934, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588971

RESUMEN

In the framework of a safe-by-design approach, we previously assessed the eco-safety of nanostructured cellulose sponge (CNS) leachate on sea urchin reproduction. It impaired gamete quality, gamete fertilization competence, and embryo development possibly due to the leaching of chemical additives used during the CNS synthesis process. To extend this observation and identify the component(s) that contribute to CNS ecotoxicity, in the present study, we individually screened the cytotoxic effects on sea urchin Arbacia lixula and Paracentrotus lividus gametes and embryos of the three main constituents of CNS, namely cellulose nanofibers, citric acid, and branched polyethylenimine. The study aimed to minimize any potential safety risk of these components and to obtain an eco-safe CNS. Among the three CNS constituents, branched polyethylenimine resulted in the most toxic agent. Indeed, it affected the physiology and fertilization competence of male and female gametes as well as embryo development in both sea urchin species. These results are consistent with those previously reported for CNS leachate. Moreover, the characterisation of CNS leachate confirmed the presence of detectable branched polyethylenimine in the conditioned seawater even though in a very limited amount. Altogether, these data indicate that the presence of branched polyethylenimine is a cause-effect associated with a significant risk in CNS formulations due to its leaching upon contact with seawater. Nevertheless, the suggested safety protocol consisting of consecutive leaching treatments and conditioning of CNS in seawater can successfully ameliorate the CNS ecotoxicity while maintaining the efficacy of its sorbent properties supporting potential environmental applications.


Asunto(s)
Celulosa , Ácido Cítrico , Nanofibras , Polietileneimina , Reproducción , Erizos de Mar , Contaminantes Químicos del Agua , Animales , Celulosa/toxicidad , Celulosa/química , Polietileneimina/toxicidad , Polietileneimina/química , Ácido Cítrico/química , Ácido Cítrico/toxicidad , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Nanofibras/toxicidad , Nanofibras/química , Femenino , Erizos de Mar/efectos de los fármacos , Masculino , Paracentrotus/efectos de los fármacos
17.
Environ Toxicol Chem ; 43(6): 1285-1299, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558477

RESUMEN

Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Embrión no Mamífero , Pruebas de Toxicidad , Contaminantes Químicos del Agua , Animales , Pruebas de Toxicidad/métodos , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Alternativas a las Pruebas en Animales , Cyprinidae , Crustáceos/efectos de los fármacos , Compuestos de Anilina/toxicidad , Peces
18.
J Funct Biomater ; 15(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535244

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) are metal oxide nanomaterials, which are important for several applications: antibacterial, anthelmintic, antiprotozoal and antitumoral, among others. These applications are mainly related to the ability to spontaneously produce and induce the production of reactive oxygen species that are important components for the destruction of pathogens and tumor cells. While trying to potentiate ZnO NPs, studies have associated these NPs with silver oxide (AgO) or silver (Ag) NPs. It has already been reported that this combination (Ag-ZnO/AgO NPs) is able to enhance the microbicidal potential. Although possessing much potential for several purposes, it is important to evaluate whether this association also poses the risk of toxicity to cells and experimental models. Therefore, this work aimed to evaluate the toxicity of various Ag-ZnO/AgO NP nanocomposites, in vitro and in vivo. Accordingly, ZnO nanocrystals and nanocomposites with various concentrations of AgO (ZnO:5Ag, ZnO:9Ag or ZnO:11Ag) were used in different cytotoxicity models: Galleria mellonella (G. mellonella), cell lines (VERO and RAW 264.7) and C57BL/6 mice. In the G. mellonella model, four concentrations were used in a single dose, with subsequent evaluation of mortality. In the case of cells, serial concentrations starting at 125 µg/mL were used, with subsequent cytotoxicity assessment. Based on the safe doses obtained in G. mellonella and cell models, the best doses were used in mice, with subsequent evaluations of weight, biochemistry as also renal and liver histopathology. It was observed that the toxicity, although low, of the nanocomposites was dependent upon the concentration of AgO used in association with ZnO NPs, both in vitro and in vivo.

19.
Sci Total Environ ; 926: 171803, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508264

RESUMEN

Urban stormwater is an alternative water source used to mitigate water resource shortages, and ensuring the safety of stormwater reuse is essential. An in-depth understanding of both individual pollutant concentrations/loads in stormwater and holistic stormwater quality can be used to comprehensively evaluate how safely stormwater can be reused. The toxicity test takes all pollutants present in water samples into account, and the results reflect the integrated effect of these pollutants. In this study, the influence of urban stormwater sourced from different land uses on microalgae (Chlorella pyrenoidosa) and the possible toxicity mechanisms were investigated. The results showed that urban stormwater, particularly residential road stormwater, significantly inhibited microalgal growth. The chlorophyll contents of microalgae exposed to residential road stormwater were relatively lower, while the corresponding values were relatively higher for microalgae exposed to grassland road stormwater. Additionally, the antioxidant-related metabolism of microalgae could be dysregulated due to exposure to urban stormwater. A possible toxicity mechanism is that urban stormwater influences metabolic pathways related to chlorophyll synthesis and further hinders photosynthesis and hence microalgal growth. To resist oxidative stress and maintain regular microalgal cell activities, the ribosome metabolism pathway was upregulated. The research results contribute to elucidating the toxicity effects of urban stormwater and hence provide useful insight for ensuring the safety of stormwater reuse. It is also worth noting that the study outcomes can only represent the influence of land use on stormwater toxicity, while the impacts of other factors (particularly rainfall-runoff characteristics) have not been considered. Therefore, the consideration of all influential factors of stormwater is strongly recommended to generate more robust results in the future and provide more effective guidance for real practices related to stormwater reuse safety.


Asunto(s)
Chlorella , Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Lluvia , Contaminantes Ambientales/toxicidad , Agua , Clorofila
20.
Biosci Rep ; 44(3)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38391133

RESUMEN

Rapeseed cake serves as a by-product in the oil extraction industry, characterized by its elevated protein content. However, the presence of antinutritional factors limits the utilization of rapeseed cake as a viable protein source. In this study, different doses of γ-irradiation were used to irradiate rapeseed cake and rapeseed protein isolate was extracted through a modified alkaline solution and acid precipitation method from rapeseed cake. The chemical composition and in vivo acute toxicity of rapeseed protein isolate were determined. The protein recovery rate of rapeseed protein isolate was 39.08 ± 3.01% after irradiation, while the content of antinutritional factors was significantly reduced. Moreover, γ-irradiation did not have any experimentally related effects on clinical observations or clinicopathology in mice. Overall, the reduced antinutrients and increased functional properties suggest that the irradiation of rapeseed cake (<9 kGy) could be utilized as a pre-treatment in the development of rapeseed cake-based value-added protein products.


Asunto(s)
Brassica napus , Brassica rapa , Animales , Ratones , Brassica napus/química , Brassica rapa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA