Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Metab ; 80: 101883, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237896

RESUMEN

OBJECTIVE: Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and modulation of neurocircuits implicated in homeostatic and hedonic feeding. METHODS: Effects of TAAR1 agonists (ulotaront, RO5166017 and/or RO5263397) on body weight, food intake and/or metabolic parameters were investigated in rats fed a high-fat diet (HFD) and in a mouse model of diet-induced obesity (DIO). Body weight effects were also determined in a rat and mouse model of olanzapine-, and corticosterone-induced body weight gain, respectively. Glucose tolerance was assessed in lean and diabetic db/db mice and fasting plasma glucose and insulin examined in DIO mice. Effects on gastric emptying were evaluated in lean mice and rats. Drug-induced neurocircuit modulation was evaluated in mice using whole-brain imaging of c-fos protein expression. RESULTS: TAAR1 agonists improved oral glucose tolerance by inhibiting gastric emptying. Sub-chronic administration of ulotaront in rats fed a HFD produced a dose-dependent reduction in body weight, food intake and liver triglycerides compared to vehicle controls. In addition, a more rapid reversal of olanzapine-induced weight gain and food intake was observed in HFD rats switched to ulotaront or RO5263397 treatment compared to those switched to vehicle. Chronic ulotaront administration also reduced body weight and improved glycemic control in DIO mice, and normalized corticosterone-induced body weight gain in mice. TAAR1 activation increased neuronal activity in discrete homeostatic and hedonic feeding centers located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures. CONCLUSION: The current data demonstrate that TAAR1 agonists, as a class, not only lack APD-induced metabolic liabilities but can reduce body weight and improve glycemic control in rodent models. The underlying mechanisms likely include TAAR1-mediated peripheral effects on glucose homeostasis and gastric emptying as well as central regulation of energy balance and food intake.


Asunto(s)
Corticosterona , Control Glucémico , Receptores Acoplados a Proteínas G , Humanos , Ratas , Ratones , Animales , Olanzapina , Peso Corporal , Aumento de Peso , Modelos Animales de Enfermedad , Glucosa
2.
Sleep Med ; 107: 202-211, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209427

RESUMEN

BACKGROUND: Ulotaront (SEP-363856) is a novel agonist at trace amine-associated receptor 1 and serotonin 5-HT1A receptors in clinical development for the treatment of schizophrenia. Previous studies demonstrated ulotaront suppresses rapid eye movement (REM) sleep in both rodents and healthy volunteers. We assessed acute and sustained treatments of ulotaront on REM sleep and symptoms of cataplexy and alertness in subjects with narcolepsy-cataplexy. METHODS: In a multicenter, double-blind, placebo-controlled, randomized, 3-way crossover study, ulotaront was evaluated in 16 adults with narcolepsy-cataplexy. Two oral doses of ulotaront (25 mg and 50 mg) were administered daily for 2 weeks and compared with matching placebo (6-treatment sequence, 3-period, 3-treatment). RESULTS: Acute treatment with both 25 mg and 50 mg of ulotaront reduced minutes spent in nighttime REM compared to placebo. A sustained 2-week administration of both doses of ulotaront reduced the mean number of short-onset REM periods (SOREMPs) during daytime multiple sleep latency test (MSLT) compared to placebo. Although cataplexy events decreased from the overall mean baseline during the 2-week treatment period, neither dose of ulotaront statistically separated from placebo (p = 0.76, 25 mg; p = 0.82, 50 mg), and no significant improvement in patient and clinician measures of sleepiness from baseline to end of the 2-week treatment period occurred in any treatment group. CONCLUSIONS: Acute and sustained treatment with ulotaront reduced nighttime REM duration and daytime SOREMPs, respectively. The effect of ulotaront on suppression of REM did not demonstrate a statistical or clinically meaningful effect in narcolepsy-cataplexy. REGISTRATION: ClinicalTrials.gov identifier: NCT05015673.


Asunto(s)
Cataplejía , Narcolepsia , Humanos , Cataplejía/tratamiento farmacológico , Cataplejía/diagnóstico , Estudios Cruzados , Narcolepsia/tratamiento farmacológico , Narcolepsia/diagnóstico , Piranos/uso terapéutico , Adulto
3.
Sleep Med ; 101: 578-586, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584503

RESUMEN

BACKGROUND: Isolated REM sleep behavior disorder (RBD) is a potentially injurious parasomnia lacking an established treatment. Ulotaront is a trace amine-associated receptor 1 (TAAR1) agonist with 5-HT1A receptor agonist activity that has demonstrated efficacy in patients with schizophrenia. In a single dose challenge study in humans, ulotaront 50 mg demonstrated significant REM suppressant effects. We now report post-hoc exploratory analyses designed to evaluate the effect of ulotaront on quantitative REM sleep without atonia (RSWA). METHODS: Young healthy adult men (ages 19-35) were randomized to double-blind, cross-over treatment (after 7-day wash-out) with single doses of ulotaront (50 mg or 10 mg) versus placebo followed by polysomnography (PSG) on each of the nights following treatment. Quantitative RSWA was analyzed in a blinded fashion using established visual and automated methods. RESULTS: Subjects received 50 mg (n = 11) or 10 mg (n = 9) of ulotaront. Treatment with ulotaront 50 mg was associated with lower RSWA (p < 0.05), with greatest RSWA reduction (vs. placebo) observed in subjects with RSWA levels above the mean on the baseline night. RSWA levels were similar between treatment with ulotaront 10 mg and placebo. CONCLUSION: Treatment with ulotaront 50 mg (but not 10 mg) was associated with reductions in RSWA levels in healthy subjects, especially in subjects with higher baseline RSWA levels, providing proof-of-concept for ulotaront efficacy in reducing RSWA levels. However, whether ulotaront might have efficacy as a treatment for human RBD awaits double-blind trials with ulotaront in clinical RBD populations.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Sueño REM , Masculino , Adulto , Humanos , Adulto Joven , Voluntarios Sanos , Hipotonía Muscular , Trastorno de la Conducta del Sueño REM/complicaciones
4.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887159

RESUMEN

Worldwide, approximately 27 million people are affected by Alzheimer's disease (AD). AD pathophysiology is believed to be caused by the deposition of the ß-amyloid peptide (Aß). Aß can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aß seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aß-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aß infusion in Aß-treated mice. In vitro data showed that Aß 1-42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aß. Further studies are needed to better understand the interplay between TAAR1/Aß and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aß-induced cognitive impairments, such as AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/tratamiento farmacológico , Aminas/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato
5.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947997

RESUMEN

Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepressant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders.


Asunto(s)
Antipsicóticos/uso terapéutico , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Antipsicóticos/farmacología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Humanos , Receptores Acoplados a Proteínas G/agonistas , Esquizofrenia/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
6.
Neurosci Biobehav Rev ; 131: 192-210, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34537265

RESUMEN

There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.


Asunto(s)
Trastornos del Humor , Receptores Acoplados a Proteínas G , Humanos , Sistema Límbico/metabolismo , Trastornos del Humor/tratamiento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Recompensa
7.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202687

RESUMEN

Targeting trace amine-associated receptor 1 (TAAR1) receptor continues to offer an intriguing opportunity to develop innovative therapies in different pharmacological settings. Pursuing our endeavors in the search for effective and safe human TAAR1 (hTAAR1) ligands, we synthesized a new series of 1-amidino-4-phenylpiperazine derivatives (1-16) based on the application of a combined pharmacophore model/scaffold simplification strategy for an in-house series of biguanide-based TAAR1 agonists. Most of the novel compounds proved to be more effective than their prototypes, showing nanomolar EC50 values in functional activity at hTAAR1 and low general cytotoxicity (CC50 > 80 µM) when tested on the Vero-76 cell line. In this new series, the main determinant for TAAR1 agonism ability appears to result from the appropriate combination between the steric size and position of the substituents on the phenyl ring rather than from their different electronic nature, since both electron-withdrawing and electron donor groups are permitted. In particular, the ortho-substitution seems to impose a more appropriate spatial geometry to the molecule that entails an enhanced TAAR1 potency profile, as experienced, in the following order, by compounds 15 (2,3-diCl, EC50 = 20 nM), 2 (2-CH3, EC50 = 30 nM), 6 (2-OCH3, EC50 = 93 nM) and 3 (2-Cl, EC50 = 160 nM). Apart from the interest in them as valuable leads for the development of promising hTAAR1 agonists, these simple small molecules have further allowed us to identify the minimal structural requirements for producing an efficient hTAAR1 targeting ability.

8.
Int J Mol Sci ; 21(6)2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32183490

RESUMEN

In the two decades since its discovery, a large body of evidence has amassed to highlight the potential of 3-iodothyronamine (T1AM) as an antiobesity drug, whose pleiotropic signaling actions profoundly impact energy metabolism. In the present review, we recapitulate the most relevant properties of T1AM, including its structural and functional relationship to thyroid hormone, its endogenous levels, molecular targets, as well as its genomic and non-genomic effects on metabolism elicited in experimental models after exogenous administration. The physiological and pathophysiological relevance of T1AM in the regulation of energy homeostasis and metabolism is also discussed, along with its potential therapeutic applications in metabolic disturbances. Finally, we examine a number of T1AM analogs that have been recently developed with the aim of designing novel pharmacological agents for the treatment of interlinked diseases, such as metabolic and neurodegenerative disorders, as well as additional synthetic tools that can be exploited to further explore T1AM-dependent mechanisms and the physiological roles of trace amine-associated receptor 1 (TAAR1)-mediated effects.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Síndrome Metabólico , Enfermedades Neurodegenerativas , Receptores Acoplados a Proteínas G/metabolismo , Tironinas/uso terapéutico , Animales , Humanos , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
9.
Front Pharmacol ; 9: 222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593543

RESUMEN

Trace amine-associated receptors (TAARs) belong to the class A G-protein-coupled receptors (GPCR) and are evolutionary related to aminergic receptors. TAARs have been identified to mediate effects of trace amines. TAAR1 signaling is mainly mediated via activation of the Gs/adenylyl cyclase pathway. In addition to classical trace amines, TAAR1 can also be activated by the thyroid hormone derivative 3-iodothyronamine (3-T1AM). Pharmacological doses of 3-T1AM induced metabolic and anapyrexic effects, which might be centrally mediated in the hypothalamus in rodents. However, the observed anapyrexic effect of 3-T1AM persists in Taar1 knock-out mice which raises the question whether further GPCRs are potential targets for 3-T1AM and mediate the observed physiological effect. Anapyrexia has been observed to be related to action on aminergic receptors such as the serotonin receptor 1b (5-HT1b). This receptor primarily activates the Gi/o mediated pathway and PLC signaling through the Gßγ of Gi/o. Since the expression profiles of TAAR1 and 5-HT1b overlap, we questioned whether 3-T1AM may activate 5-HT1b. Finally, we also evaluated heteromerization between these two GPCRs and tested signaling under co-expressed conditions. In this study, we showed, that 3-T1AM can induce Gi/o signaling through 5-HT1b in a concentration of 10 µM. Strikingly, at 5-HT1b the ligand 3-T1AM only activates the Gi/o mediated reduction of cAMP accumulation, but not PLC activation. Co-stimulation of 5-HT1b by both ligands did not lead to additive or synergistic signaling effects. In addition, we confirmed the capacity for heteromerization between TAAR1 and 5-HT1b. Under co-expression of TAAR1 and HTR1b, 3-T1AM action is only mediated via TAAR1 and activation of 5-HT1b is abrogated. In conclusion, we found evidence for 5-HT1b as a new receptor target for 3-T1AM, albeit with a different signaling effect than the endogenous ligand. Altogether, this indicates a complex interrelation of signaling effects between the investigated GPCRs and respective ligands.

10.
Pharmacol Res ; 103: 206-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26640076

RESUMEN

Given the recent evidence indicating that amphetamine derivatives may also act as direct agonists of the G protein-coupled trace amine-associated receptor 1 (TAAR1), we hypothesized that TAAR1 could contribute to the reinforcing and addictive properties of amphetamines. Accordingly, the present study aimed to investigate the role of TAAR1 in the effects of psychostimulants by analyzing context-dependent sensitization and conditioned place preference (CPP) to d-amphetamine (AMPH) in TAAR1-KO mice. In context-dependent sensitization experiment, TAAR1-KO mice showed higher conditioned locomotor responses compared to wild-type mice. In the CPP test, TAAR1-KO animals were also more sensitive to priming-induced reinstatement of AMPH-induced conditioned place preference (CPP) than wild type mice. Importantly, saline-treated and AMPH-treated mice lacking TAAR1 demonstrated significant alterations in the total levels and phosphorylation of the critical subunit of NMDA glutamate receptors, GluN1, in the striatum, suggesting a role of TAAR1 in the modulation of frontostriatal glutamate transmission; this effect could underlie the observed alterations in conditioning processes. In conclusion, our data suggest that TAAR1 receptors play an inhibitory role with respect to conditioned responses to AMPH by modulating, at least in part, corticostriatal glutamate transmission.


Asunto(s)
Anfetamina/farmacología , Condicionamiento Operante/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Animales , Conducta Animal/efectos de los fármacos , Cuerpo Estriado/metabolismo , Femenino , Locomoción/efectos de los fármacos , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-28317038

RESUMEN

Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing) the effects of TAAR1 on the glutamatergic system allowing for optimization of this system. This will lead to a normalized and homeostatic release of NAc dopamine. This proposed optimization, and not enhanced activation of TAAR1, should lead to well-being of the individual. Hyper-activation instead of optimizing the TAAR1 system unfortunately will lead to a prolonged hypodopaminergic state and as such, will cause enhanced craving for not only psychoactive substances, but also other drug-related and even non-drug related RDS behaviors. This hypothesis will require extensive research, which seems warranted based on the global epidemic of drug and behavioral addictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA