Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
1.
Free Radic Biol Med ; 223: 42-52, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033829

RESUMEN

Contrast-induced acute kidney injury (CI-AKI) is a prevalent cause of renal dysfunction among hospitalized patients, yet the precise pathogenesis and effective therapeutic strategies remain elusive. In this study, we investigated the role of tubular ferroptosis in both experimental CI-AKI models and in primary tubular epithelial cells (PTECs) treated with ioversol. Using whole exome sequencing, we identified metallothioneins (MTs) as being among the most significantly downregulated genes following ioversol exposure. Our findings reveal that overexpression of Mt1 mitigates, whereas suppression of Mt-1 exacerbates, ioversol-induced tubular ferroptosis. Interestingly, the level of MTF1 (metal regulatory transcription factor 1), a principal regulator of Mt1, was found to increase in response to ioversol treatment. We further elucidated that ioversol activates LATS1 (Large tumor suppressor homolog 1), a kinase that promotes the phosphorylation and nuclear translocation of MTF1, thereby inhibiting its transcriptional activity for Mt1. Both genetic and pharmacological inhibition of LATS1 reversed the ioversol-induced suppression of Mt-1. From a therapeutic perspective, the LATS1 inhibitor TDI-011536, in combination with zinc acetate, was administered to a rodent model of CI-AKI. Our data indicate that this combination synergistically upregulates Mt1 expression and provides protection against contrast media-induced tubular ferroptosis. In summary, our study demonstrates that the reduction of Mt-1 contributes to tubular ferroptosis associated with CI-AKI. We show that contrast media activate LATS1, which in turn suppresses the transcriptional activity of MTF1 for Mt1. Herein, the combination of zinc acetate and a LATS1 inhibitor emerges as a potential therapeutic approach for the treatment of CI-AKI.

2.
Mol Clin Oncol ; 21(2): 54, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38978976

RESUMEN

Chest computed tomography (CT) revealed a focal ground glass opacity (GGO) with a minimal solid area in a 75-year-old man. The shadow was located in the periphery of the right upper lobe and measured 11 mm in diameter. The patient had a medical history of metachronous prostate and gastric cancers. The patient had been treated with androgen deprivation therapy for prostate cancer for 12 years and underwent subtotal gastrectomy for triple gastric cancers 7 months before. Since primary lung adenocarcinoma was suspected, CT-assisted percutaneous needle biopsy was performed. Histology revealed the sheet-like and trabecular proliferation of atypical cells, suggesting that the lesion was moderately to poorly differentiated adenocarcinoma. Adenocarcinoma cells showed subepithelial extension causing the thickening of alveolar walls. A tumor thrombus was not detected in the blood or lymphatic vessels. Immunohistochemistry revealed that carcinoma cells were negative for cytokeratin 7 (CK7), CK20, thyroid transcription factor-1 and CDX2 and positive for prostate-specific antigen and P504S. Based on these findings, the patient was diagnosed with metastatic carcinoma from prostate cancer. The disease remained stable for 4 months after the diagnosis, and no new lesions were observed on chest CT. Metastatic carcinoma rarely presents with focal GGO. Lung biopsy is necessary to identify the pathology of the lesion, and the primary site needs to be confirmed by immunohistochemistry with specific markers, particularly in a case of metachronous multiple cancers. A tumor thrombus, which is suggestive of lymphangitic carcinomatosis or pulmonary tumor thrombotic microangiopathy, also needs to be evaluated.

3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000475

RESUMEN

Metallothioneins (MTs) are non-enzymatic metal-binding proteins widely found in animals, plants, and microorganisms and are regulated by metal-responsive transcription factor 1 (MTF1). MT and MTF1 play crucial roles in detoxification, antioxidation, and anti-apoptosis. Therefore, they are key factors allowing organisms to endure the toxicity of heavy metal pollution. Phascolosoma esculenta is a marine invertebrate that inhabits intertidal zones and has a high tolerance to heavy metal stress. In this study, we cloned and identified MT and MTF1 genes from P. esculenta (designated as PeMT and PeMTF1). PeMT and PeMTF1 were widely expressed in all tissues and highly expressed in the intestine. When exposed to 16.8, 33.6, and 84 mg/L of zinc ions, the expression levels of PeMT and PeMTF1 in the intestine increased first and then decreased, peaking at 12 and 6 h, respectively, indicating that both PeMT and PeMTF1 rapidly responded to Zn stress. The recombinant pGEX-6p-1-MT protein enhanced the Zn tolerance of Escherichia coli and showed a dose-dependent ABTS free radical scavenging ability. After RNA interference (RNAi) with PeMT and 24 h of Zn stress, the oxidative stress indices (MDA content, SOD activity, and GSH content) and the apoptosis indices (Caspase 3, Caspase 8, and Caspase 9 activities) were significantly increased, implying that PeMT plays an important role in Zn detoxification, antioxidation, and anti-apoptosis. Moreover, the expression level of PeMT in the intestine was significantly decreased after RNAi with PeMTF1 and 24 h of Zn stress, which preliminarily proved that PeMTF1 has a regulatory effect on PeMT. Our data suggest that PeMT and PeMTF1 play important roles in the resistance of P. esculenta to Zn stress and are the key factors allowing P. esculenta to endure the toxicity of Zn.


Asunto(s)
Metalotioneína , Factores de Transcripción , Zinc , Metalotioneína/genética , Metalotioneína/metabolismo , Animales , Zinc/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factor de Transcripción MTF-1 , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Apoptosis/efectos de los fármacos , Filogenia , Secuencia de Aminoácidos , Regulación de la Expresión Génica/efectos de los fármacos , Clonación Molecular
4.
J Gynecol Oncol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38991944

RESUMEN

BACKGROUND: The existence of activating transcription factor 1 (ATF1) could be employed as a clinical marker in the context of cervical cancer development, although its specific mechanism has not been fully clarified. METHODS: To evaluate the presence of ATF1, miR-630, and myelin and lymphocyte protein 2 (MAL2) in cervical malignancies, we conducted quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot assays; further studied the expansion, migration, invasion and epithelial-mesenchymal transition (EMT) of cervical carcinoma cells using colony formation assay, transwell, loss cytometry, Western blot. Chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) were used to verify that ATF1 could directly transcriptionally repress miR-630; dual luciferase reporter assay and RIP assay were employed to confirm that miR-630 targeted to repress MAL2. RESULTS: In cervical cancer cases, elevated ATF1 expression and reduced miR-630 expression were detected, displaying a negative relationship between them. Inhibition of ATF1 hindered the growth, migration, infiltration, and EMT in cervical carcinoma cells, while upregulation of miR-630 mitigated the aggressive characteristics of these cells. ATF1 was found to transcriptionally repress miR-630 by TransmiR and ALGGEN prediction and ChIP validation. MicroRNA modulates gene expression and affects cancer progression, and we discovered that miR-630 regulates cancer progression by targeting and inhibiting MAL2. CONCLUSION: ATF1, which modulates the miR-630/MAL2 pathway, affects the EMT process and cervical carcinoma cell growth and spread. Therefore, ATF1 may serve as a promising marker and treatment target for cervical malignancies intervention.

5.
J Med Primatol ; 53(4): e12724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39014527

RESUMEN

In this report, we describe the gross, histopathology, and immunohistochemical findings of a thyroblastoma that arose in the right lobe of the thyroid gland in a 2-month-old rhesus macaque (Macaca mulatta).


Asunto(s)
Macaca mulatta , Enfermedades de los Monos , Neoplasias de la Tiroides , Animales , Enfermedades de los Monos/patología , Enfermedades de los Monos/diagnóstico , Neoplasias de la Tiroides/veterinaria , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/diagnóstico , Masculino , Femenino
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928125

RESUMEN

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Asunto(s)
Tejido Adiposo , Hígado Graso , Leptina , Hígado , Epiplón , Humanos , Leptina/metabolismo , Femenino , Masculino , Hígado/metabolismo , Persona de Mediana Edad , Epiplón/metabolismo , Epiplón/patología , Tejido Adiposo/metabolismo , Adulto , Hígado Graso/metabolismo , Hígado Graso/patología , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Resistencia a la Insulina , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética
7.
Transl Cancer Res ; 13(5): 2437-2450, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881929

RESUMEN

Background: In recent years, there are few reports on non-SMC condensin I complex subunit G (NCAPG) in osteosarcoma. Our study aims to explore the biological role of NCAPG in osteosarcoma and its underlying molecular mechanism and to further clarify the reasons for the abnormal expression of NCAPG in osteosarcoma. Methods: Here, we mined The Cancer Genome Atlas (TCGA) Program public database through bioinformatics methods, analyzed the differential expression of NCAPG in sarcoma tissue and normal tissue, and explored the relationship between NCAPG expression level and sarcoma tissue differentiation, including tumor recurrence, metastasis, and patient survival. Next, the transcription factors responsible for the abnormal expression of NCAPG in osteosarcoma tumors were predicted by multiple online website tools and verified via cellular experiments. Subsequently, loss of function and cell phenotype experiments were performed to confirm the effect of NCAPG on the malignant biological behavior of osteosarcoma cells. Mechanistically, by reviewing the literature, we found that NCAPG can affect the malignant progression of many solid tumors by regulating the Wnt/ß-catenin signaling pathway. Therefore, we preliminarily investigated the potential effect of NCAPG on this pathway via western blot experiments in osteosarcoma. Results: Increased expression of NCAPG was found in sarcoma compared to normal tissues, which was positively correlated with poor differentiation, metastasis, and poor prognosis. Combining the transcription factor prediction results, correlation analysis, and expression level in the TCGA public database with validation outcomes of in vitro cell assays, we found that E2F transcription factor 1 (E2F1) regulated the increased expression of NCAPG in osteosarcoma. The results of cell phenotype experiments showed that silencing NCAPG could inhibit the proliferation, migration, and invasion of osteosarcoma cells. The preliminary mechanistic investigation suggested that NCAPG may affect osteosarcoma progression through the Wnt/ß-catenin pathway. Conclusions: Our data reveal that E2F1 facilitates NCAPG expression in osteosarcoma by regulating the transcription of the NCAPG gene. Up-regulation of NCAPG promotes osteosarcoma progression via the Wnt/ß-catenin signaling axis.

8.
BMC Cancer ; 24(1): 635, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38783241

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a non-small cell carcinoma. Ribonuclease/angiogenin inhibitor 1 (RNH1) exerts multiple roles in virous cancers. E2F1 is a critical transcription factor involved in the LUAD development. Here, we analyze the expression of RNH1 in LUAD patients, investigate the biological function of RNH1 in LUAD, and demonstrate its potential mechanisms through E2F1 in LUAD. METHODS: In the present study, we presented the expression of RNH1 in LUAD based on the database and confirmed it by western blot detection of RNH1 in human LUAD tissues. Lentiviral infection was constructed to silence or overexpress RNH1 in NCI-H1395 and NCI-H1437 cells. We assess the role of RNH1 on proliferation in LUAD cells by MTT assay, colony formation assays, and cell cycle detection. Hoechst staining and flow cytometry were used to evaluate the effects of RNH1 on apoptosis of LUAD cells. The function of RNH1 in invasion and migration was investigated by Transwell assay. Dual luciferase assay, ChIP detection, and pull-down assay were conducted to explore the association of E2F1 in the maintenance of RNH1 expression and function. The regulation of E2F1 on the functions of RNH1 in LUAD cells was explored. Mouse experiments were performed to confirm the in-vivo role of RNH1 in LUAD. mRNA sequencing indicated that RNH1 overexpression altered the expression profile of LUAD cells. RESULTS: RNH1 expression in LUAD tissues of patients was presented in this work. Importantly, RNH1 knockdown improved the proliferation, migration and invasion abilities of cells and RNH1 overexpression produced the opposite effects. Dual luciferase assay proved that E2F1 bound to the RNH1 promoter (-1064 ∼ -1054, -1514 ∼ -1504) to reduce the transcriptional activity of RNH1. ChIP assay indicated that E2F1 DNA was enriched at the RNH1 promoter (-1148 ∼ -943, -1628 ∼ -1423). Pull-down assays also showed the association between E2F1 and RNH1 promoter (-1148 ∼ -943). E2F1 overexpression contributed to the malignant behavior of LUAD cells, while RNH1 overexpression reversed it. High-throughput sequencing showed that RNH1 overexpression induced multiple genes expression changes, thereby modulating LUAD-related processes. CONCLUSION: Our study demonstrates that binding of E2F1 to the RNH1 promoter may lead to inhibition of RNH1 expression and thus promoting the development of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Movimiento Celular , Proliferación Celular , Factor de Transcripción E2F1 , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Animales , Femenino , Humanos , Masculino , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos
9.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241254588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758016

RESUMEN

PURPOSE: The abnormal function and survival of chondrocytes result in articular cartilage failure, which may accelerate the onset and development of osteoarthritis (OA). This study is aimed to investigate the role of LINC01094 in chondrocyte apoptosis. METHODS: The viability and apoptosis of lipopolysaccharide (LPS)-induced chondrocytes were evaluated through CCK-8 assay and flow cytometry analysis, respectively. The expression levels of LINC01094, miR-577 and MTF1 were detected by qRT-PCR. Dual luciferase reporter tests were implemented for the verification of targeted relationships among them. Western blotting was employed to measure the levels of pro-apoptotic proteins (Caspase3 and Caspase9). RESULTS: The viability of LPS-induced chondrocytes was overtly promoted by loss of LINC01094 or miR-577 upregulation, but could be repressed via MTF1 overexpression. The opposite results were observed in apoptosis rate and the levels of Caspase3 and Caspase9. LINC01094 directly bound to miR-577, while MTF1 was verified to be modulated by miR-577. Both LINC01094 and MTF1 were at high levels, whereas miR-577 was at low level in OA synovial fluid and LPS-induced chondrocytes. Furthermore, the highly expressed miR-577 abolished the influences of MTF1 overexpression on LPS-induced chondrocytes. CONCLUSIONS: Silencing of LINC01094 represses the apoptosis of chondrocytes through upregulating miR-577 expression and downregulating MTF1 levels, providing a preliminary insight for the treatment of OA in the future.


Asunto(s)
Apoptosis , Condrocitos , MicroARNs , Osteoartritis , ARN Largo no Codificante , Factores de Transcripción , Condrocitos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factor de Transcripción MTF-1 , Células Cultivadas , Técnicas de Silenciamiento del Gen , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Lipopolisacáridos
10.
Oncol Lett ; 28(1): 303, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38774453

RESUMEN

NK2 homeobox 1 (NKX2-1) copy number alterations (CNAs) are frequently observed in lung cancer. However, little is known about the complete landscape of focal alterations in NKX2-1 copy number (CN), their clinical significance and their therapeutic implications in non-small cell lung cancer (NSCLC). The correlations between NKX2-1 expression and EGFR driver mutations and programmed death ligand 1 (PD-L1) co-expression were studied using immunohistochemistry and PCR from the tumors of recruited Filipino patients (n=45). Clinical features of NSCLC with NKX2-1 CNAs were resolved at the tumor and clonal levels using the molecular profiles of patients with lung adenocarcinoma and lung squamous cell carcinoma from The Cancer Genome Atlas (n=1,130), and deconvoluted single-cell RNA-seq data from the Bivona project (n=1,654), respectively. Despite a significant and positive correlation between expression and CN (r=0.264; P<0.001), NKX2-1 CNAs exerted a stronger influence on the combined EGFR and PD-L1 status of NSCLC tumors than expression. NKX2-1 CN gain was prognostic of favorable survival (P=0.018) and a better response to targeted therapy. NKX2-1 CN loss predicted a worse survival (P=0.041). Mutational architecture in the Y-chromosome differentiated the two prognostic groups. There were 19,941 synonymous mutations and 1,408 genome-wide CN perturbations associated with NKX2-1 CNAs. Tumors with NKX2-1 CN gain expressed lymphocyte markers more heterogeneously than those with CN loss. Higher expression of tumor-infiltrating lymphocyte gene signatures in CN gain was prognostic of longer disease-free survival (P=0.005). Tumors with NKX2-1 CN gain had higher B-cell (P<0.001) and total T-cell estimates (P=0.003). NKX2-1 CN loss was associated with immunologically colder tumors due to higher M2 macrophage infiltrates (P=0.011) and higher expression of immune checkpoint proteins, CD274 (P=0.025), VTCN1 (P<0.001) and LGALS9 (P=0.002). In conclusion, NKX2-1 CNAs are associated with tumors that exhibit clinically diverse characteristics, and with unique oncogenic, immunological and prognostic signatures.

11.
World J Diabetes ; 15(5): 958-976, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38766439

RESUMEN

BACKGROUND: Synaptotagmins (SYTs) are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones. However, few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy (DR) through Ca2+/glucose transporter-1 (GLUT1) and the possible regulatory mechanism of SYTs. AIM: To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR. METHODS: DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells (ARPE-19). Bioinformatics analysis, reverse transcriptase-polymerase chain reaction, Western blot, flow cytometry, ELISA, HE staining, and TUNEL staining were used for analysis. RESULTS: Six differentially expressed proteins (SYT2, SYT3, SYT4, SYT7, SYT11, and SYT13) were found between the DR and control groups, and SYT4 was highly expressed. Hyperglycemia induces SYT4 overexpression, manipulates Ca2+ influx to induce GLUT1 fusion with the plasma membrane, promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake, induces ARPE-19 cell apoptosis, and promotes DR progression. Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR, resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane, and these effects were blocked by oe-Parkin treatment. Moreover, dysregulation of the myelin transcription factor 1 (Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process, and this process was inhibited in the oe-MYT1-treated group. CONCLUSION: Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.

12.
Anticancer Res ; 44(5): 2159-2170, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677751

RESUMEN

BACKGROUND/AIM: Both mesonephric adenocarcinoma (MA) and mesonephric-like adenocarcinoma (MLA) express thyroid transcription factor 1 (TTF1). TTF1 is also considered a highly sensitive and specific diagnostic marker for primary lung adenocarcinoma (PLA). However, distinguishing PLA from pulmonary metastatic MA/MLA (PMM) based on the expression of TTF1 alone can be difficult. This study aimed to investigate the expression of TTF1 and paired box 8 (PAX8) and assess their value in distinguishing PMM from PLA. PATIENTS AND METHODS: We reviewed the electronic medical records and pathology slides of eight PMM cases. We conducted immunostaining for TTF1 and PAX8 in 6, 8, and 21 cases of primary MA/MLA, PMM, and PLA, respectively. RESULTS: Two patients with stage IB uterine MLA developed lung metastases at 5 and 57 months after hysterectomy. Solitary pulmonary nodules were suspected to be primary lung cancer in two patients. Compared to primary tumors, all matched PMMs exhibited reduced TTF1 immunoreactivity. In contrast, the majority of PLAs showed uniform and intense TTF1 expression. All except one PMM exhibited diffuse and strong PAX8 expression, while only one PLA showed focal and weak PAX8 expression. CONCLUSION: Immunostaining for TTF1 and PAX8 can help in distinguishing PMM from PLA in the diagnosis of pulmonary lesions detected in patients with a history of MA/MLA.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Biomarcadores de Tumor , Proteínas de Unión al ADN , Inmunohistoquímica , Neoplasias Pulmonares , Factor de Transcripción PAX8 , Femenino , Humanos , Masculino , Adenocarcinoma/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/secundario , Adenocarcinoma/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/secundario , Biomarcadores de Tumor/metabolismo , Diagnóstico Diferencial , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Factor de Transcripción PAX8/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Factores de Transcripción/metabolismo
13.
J Neuroendocrinol ; 36(6): e13395, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38631695

RESUMEN

Anti-pituitary-specific transcription factor-1 (PIT-1) hypophysitis, a paraneoplastic syndrome resulting from an autoimmune response against PIT-1, typically manifests with undetectable levels of growth hormone (GH) and prolactin (PRL), and significantly low levels of serum thyroid-stimulating hormone (TSH) at diagnosis. These hormonal levels are highly specific to this disease and serve as key diagnostic indicators. Herein, we present a detailed clinical course of a 69-year-old male with a history of gastric cancer and lymph node metastases who developed anti-PIT-1 hypophysitis after the initiation of immune checkpoint inhibitor (ICI) therapy, specifically nivolumab, oxaliplatin, and capecitabine. The patient was referred to our department owing to decreased TSH, free triiodothyronine (T3), and free thyroxine (T4) levels after two doses of nivolumab. Initially suspected as central hypothyroidism due to ICI-related hypophysitis, further assessment confirmed the diagnosis of anti-PIT-1 hypophysitis. Notably, GH, PRL, and TSH levels markedly declined, leading to complete deficiencies 2 months after the first nivolumab dose-a pattern consistent with that of previous cases of anti-PIT-1 hypophysitis. Therefore, this report not only presents an atypical subset of ICI-related hypophysitis but also delineates the process of hormone impairment leading to complete deficiencies in anti-PIT-1 hypophysitis. This case highlights the importance of vigilant monitoring for endocrine issues in patients undergoing ICI therapy, given the escalating incidence of immune-related adverse events associated with the extensive use of ICI therapy for various cancers.


Asunto(s)
Hipofisitis , Inhibidores de Puntos de Control Inmunológico , Humanos , Masculino , Anciano , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Hipofisitis/inducido químicamente , Hipofisitis/tratamiento farmacológico , Factor de Transcripción Pit-1 , Hipofisitis Autoinmune/tratamiento farmacológico , Hipofisitis Autoinmune/diagnóstico , Nivolumab/efectos adversos , Nivolumab/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Autoanticuerpos/sangre
14.
Lab Invest ; 104(6): 102058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626874

RESUMEN

In clinical practice, programmed death ligand 1 (PD-L1) detection is prone to nonspecific staining due to the complex cellular composition of pleural effusion smears. In this study, diaminobenzidine (DAB) and 3-amino-9-ethylcarbazole (AEC) immunohistochemistry double staining was performed to investigate PD-L1 expression in tumor cells from malignant pleural effusion (MPE). MPE was considered as a metastasis in non-small cell lung cancer patients; thus, the heterogeneity between metastatic and primary lung cancer was revealed as well. Ninety paired specimens of MPE cell blocks and matched primary lung cancer tissues from non-small cell lung cancer patients were subjected to PD-L1 and thyroid transcription factor-1(TTF-1)/p63 immunohistochemistry double staining. Two experienced pathologists independently evaluated PD-L1 expression using 3 cutoffs (1%, 10%, and 50%). PD-L1 expression in MPE was strongly correlated with that in matched primary lung cancer tissues (R = 0.813; P < .001). Using a 4-tier scale (cutoffs: 1%, 10%, and 50%), the concordance was 71.1% (Cohen's κ = .534). Using a 2-tier scale, the concordance was 75.6% (1%, Cohen's κ = 0.53), 78.9% (10%, Cohen's κ = 0.574), and 95.6% (50%, Cohen's κ = 0.754). The rates of PD-L1 positivity in MPE (56.7%) were higher than that in lung tissues (32.2%). All 27 discordant cases had higher scores in MPE. The double-staining method provided superior identification of PD-L1-positive tumor cells on a background with nonspecific staining. In conclusion, PD-L1 expression was moderately concordant between metastatic MPE cell blocks and matched primary lung carcinoma tissues, with variability related to tumor heterogeneity. MPE should be considered to detect PD-L1 when histological specimens are unattainable, especially when PD-L1 expression is >50%. PD-L1 positivity rates were higher in MPE. Double staining can improve PD-L1 detection by reducing false-negative/positive results.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Inmunohistoquímica , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patología , Anciano de 80 o más Años , Adulto , Biomarcadores de Tumor/metabolismo
15.
Cell Commun Signal ; 22(1): 227, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610001

RESUMEN

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck. Vasculogenic mimicry (VM) is crucial for tumor growth and metastasis and refers to the formation of fluid channels by invasive tumor cells rather than endothelial cells. However, the regulatory mechanisms underlying VM during the malignant progression of LSCC remain largely unknown. METHODS: Gene expression and clinical data for LSCC were obtained from the TCGA and Gene GEO (GSE27020) databases. A risk prediction model associated with VM was established using LASSO and Cox regression analyses. Based on their risk scores, patients with LSCC were categorized into high- and low-risk groups. The disparities in immune infiltration, tumor mutational burden (TMB), and functional enrichment between these two groups were examined. The core genes in LSCC were identified using the machine learning (SVM-RFE) and WGCNA algorithms. Subsequently, the involvement of bone morphogenetic protein 2 (BMP2) in VM and metastasis was investigated both in vitro and in vivo. To elucidate the downstream signaling pathways regulated by BMP2, western blotting was performed. Additionally, ChIP experiments were employed to identify the key transcription factors responsible for modulating the expression of BMP2. RESULTS: We established a new precise prognostic model for LSCC related to VM based on three genes: BMP2, EPO, and AGPS. The ROC curves from both TCGA and GSE27020 validation cohorts demonstrated precision survival prediction capabilities, with the nomogram showing some net clinical benefit. Multiple algorithm analyses indicated BMP2 as a potential core gene. Further experiments suggested that BMP2 promotes VM and metastasis in LSCC. The malignant progression of LSCC is promoted by BMP2 via the activation of the PI3K-AKT signaling pathway, with the high expression of BMP2 in LSCC resulting from its transcriptional activation by runt-related transcription factor 1 (RUNX1). CONCLUSION: BMP2 predicts poor prognosis in LSCC, promotes LSCC VM and metastasis through the PI3K-AKT signaling pathway, and is transcriptionally regulated by RUNX1. BMP2 may be a novel, precise, diagnostic, and therapeutic biomarker of LSCC.


Asunto(s)
Proteína Morfogenética Ósea 2 , Neoplasias de Cabeza y Cuello , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Células Endoteliales , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Transducción de Señal
16.
Mol Med Rep ; 29(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577930

RESUMEN

Emerging scientific evidence has suggested that the long non­coding (lnc)RNA differentiation antagonizing non­protein coding RNA (DANCR) serves a significant role in human tumorigenesis and cancer progression; however, the precise mechanism of its function in breast cancer remains to be fully understood. Therefore, the objective of the present study was to manipulate DANCR expression in MCF7 and MDA­MB­231 cells using lentiviral vectors to knock down or overexpress DANCR. This manipulation, alongside the analysis of bioinformatics data, was performed to investigate the potential mechanism underlying the role of DANCR in cancer. The mRNA and/or protein expression levels of DANCR, miR­34c­5p and E2F transcription factor 1 (E2F1) were assessed using reverse transcription­quantitative PCR and western blotting, respectively. The interactions between these molecules were validated using chromatin immunoprecipitation and dual­luciferase reporter assays. Additionally, fluorescence in situ hybridization was used to confirm the subcellular localization of DANCR. Cell proliferation, migration and invasion were determined using 5­ethynyl­2'­deoxyuridine, wound healing and Transwell assays, respectively. The results of the present study demonstrated that DANCR had a regulatory role as a competing endogenous RNA and upregulated the expression of E2F1 by sequestering miR­34c­5p in breast cancer cells. Furthermore, E2F1 promoted DANCR transcription by binding to its promoter in breast cancer cells. Notably, the DANCR/miR­34c­5p/E2F1 feedback loop enhanced cell proliferation, migration and invasion in breast cancer cells. Thus, these findings suggested that targeting DANCR may potentially provide a promising future therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Retroalimentación , Hibridación Fluorescente in Situ , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo
17.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474017

RESUMEN

Ubiquitin-specific protease 7 inhibitors (USP7i) are considered a novel class of anticancer drugs. Cancer cells occasionally become insensitive to anticancer drugs, known as chemoresistance, by acquiring multidrug resistance, resulting in poor clinical outcomes in patients with cancer. However, the chemoresistance of cancer cells to USP7i (P22077 and P5091) and mechanisms to overcome it have not yet been investigated. In the present study, we generated human cancer cells with acquired resistance to USP7i-induced cell death. Gene expression profiling showed that heat stress response (HSR)- and unfolded protein response (UPR)-related genes were largely upregulated in USP7i-resistant cancer cells. Biochemical studies showed that USP7i induced the phosphorylation and activation of heat shock transcription factor 1 (HSF1), mediated by the endoplasmic reticulum (ER) stress protein kinase R-like ER kinase (PERK) signaling pathway. Inhibition of HSF1 and PERK significantly sensitized cancer cells to USP7i-induced cytotoxicity. Our study demonstrated that the ER stress-PERK axis is responsible for chemoresistance to USP7i, and inhibiting PERK is a potential strategy for improving the anticancer efficacy of USP7i.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Peptidasa Específica de Ubiquitina 7/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Antineoplásicos/farmacología
18.
Thorac Cancer ; 15(13): 1112-1116, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528648

RESUMEN

High-grade fetal lung adenocarcinoma (H-FLAC) is a rare type of tumor. There have been no reports demonstrating the degree of metastatic susceptibility of this tumor type. In this report, we describe a case in which 15% of the adenocarcinoma components were H-FLAC diagnosed as the cause of lymph node metastasis. A 75-year-old man presented with suspected primary lung cancer (clinical stage IIA, T2bN0M0) and underwent left upper lobectomy and superior mediastinal lymph node dissection. Postoperative histopathology revealed lung cancer with only lobar bronchial lymph node (#11) metastasis. Approximately 60% of the invasive adenocarcinoma showed a papillary morphology, 25% showed a lepidic morphology, and 15% showed a fetal morphology. The histomorphological and immunohistological features of #11 metastasis were similar to those of H-FLAC. Herein, we report a rare and important case of H-FLAC with proven lymph node metastasis, showing that even a small amount of H-FLAC tissue can cause metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Metástasis Linfática , Humanos , Masculino , Anciano , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/cirugía , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Ganglios Linfáticos/patología , Clasificación del Tumor
19.
J Cell Mol Med ; 28(2): e18017, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38229475

RESUMEN

Understanding the mechanisms underlying metastasis in hepatocellular carcinoma (HCC) is crucial for developing new therapies against this fatal disease. Deubiquitinase ubiquitin-specific protease 11 (USP11) belongs to the deubiquitinating family and has previously been reported to play a critical role in cancer pathogenesis. Although it has been established that USP11 can facilitate the metastasis and proliferation ability of HCC, the underlying regulatory mechanisms are poorly understood. The primary objective of this research was to reveal hitherto undocumented functions of USP11 during HCC progression, especially those related to metabolism. Under hypoxic conditions, USP11 was found to significantly impact the glycolysis of HCC cells, as demonstrated through various techniques, including RNA-Seq, migration and colony formation assays, EdU and co-immunoprecipitation. Interestingly, we found that USP11 interacted with the HIF-1α complex and maintained HIF-1α protein stability by removing ubiquitin. Moreover, USP11/HIF-1α could promote glycolysis through the PDK1 and LDHA pathways. In general, our results demonstrate that USP11 promotes HCC proliferation and metastasis through HIF-1α/LDHA-induced glycolysis, providing new insights and the experimental basis for developing new treatments for this patient population.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular , Hipoxia , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular Tumoral , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
20.
Adv Sci (Weinh) ; 11(12): e2305677, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225750

RESUMEN

Pathological cardiac hypertrophy is the leading cause of heart failure and has an extremely complicated pathogenesis. TEA domain transcription factor 1 (TEAD1) is recognized as an important transcription factor that plays a key regulatory role in cardiovascular disease. This study aimed to explore the role of TEAD1 in cardiac hypertrophy and to clarify the regulatory role of small ubiquitin-like modifier (SUMO)-mediated modifications. First, the expression level of TEAD1 in patients with heart failure, mice, and cardiomyocytes is investigated. It is discovered that TEAD1 is modified by SUMO1 during cardiac hypertrophy and that the process of deSUMOylation is regulated by SUMO-specific protease 1 (SENP1). Lysine 173 is an essential site for TEAD1 SUMOylation, which affects the protein stability, nuclear localization, and DNA-binding ability of TEAD1 and enhances the interaction between TEAD1 and its transcriptional co-activator yes-associated protein 1 in the Hippo pathway. Finally, adeno-associated virus serotype 9 is used to construct TEAD1 wild-type and KR mutant mice and demonstrated that the deSUMOylation of TEAD1 markedly exacerbated cardiomyocyte enlargement in vitro and in a mouse model of cardiac hypertrophy. The results provide novel evidence that the SUMOylation of TEAD1 is a promising therapeutic strategy for hypertrophy-related heart failure.


Asunto(s)
Insuficiencia Cardíaca , Sumoilación , Humanos , Ratones , Animales , Cardiomegalia , Factores de Transcripción/metabolismo , Insuficiencia Cardíaca/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción de Dominio TEA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA