Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.138
Filtrar
1.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003052

RESUMEN

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Asunto(s)
Acidithiobacillus , Antimonio , Sulfatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efectos de los fármacos , Sulfatos/metabolismo , Compuestos Férricos , Oxidación-Reducción , Minería , Hierro/metabolismo
2.
Stem Cell Res Ther ; 15(1): 351, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380125

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) are recognized for their potential in regenerative medicine, attributed to their multipotent differentiation capabilities and immunomodulatory properties. Despite this potential, the classification and detailed characterization of MSCs, especially those derived from specific tissues like the pancreas, remains challenging leading to a proliferation of terminology in the literature. This study aims to address these challenges by providing a thorough characterization of human pancreatic islets-derived mesenchymal stromal cells (hPD-MSCs). METHODS: hPD-MSCs were isolated from donor islets using enzymatic digestion, immortalized through lentiviral transduction of human telomerase reverse transcriptase (hTERT). Cells were characterized by immunostaining, flow cytometry and multilineage differentiation potential into adipogenic and osteogenic lineages. Further a transcriptomic analysis was done to compare the gene expression profiles of hPD-MSCs with other mesenchymal cells. RESULTS: We show that hPD-MSCs express the classical MSC features, including morphological characteristics, surface markers expression (CD90, CD73, CD105, CD44, and CD106) and the ability to differentiate into both adipogenic and osteogenic lineages. Furthermore, transcriptomic analysis revealed distinct gene expression profiles, showing notable similarities between hPD-MSCs and pancreatic stellate cells (PSCs). The study also identified specific genes that distinguish hPD-MSCs from MSCs of other origins, including genes associated with pancreatic function (e.g., ISL1) and neural development (e.g., NPTX1, ZNF804A). A novel gene with an unknown function (ENSG00000286190) was also discovered. CONCLUSIONS: This study enhances the understanding of hPD-MSCs, demonstrating their unique characteristics and potential applications in therapeutic strategies. The identification of specific gene expression profiles differentiates hPD-MSCs from other mesenchymal cells and opens new avenues for research into their role in pancreatic function and neural development.


Asunto(s)
Diferenciación Celular , Islotes Pancreáticos , Células Madre Mesenquimatosas , Células Estrelladas Pancreáticas , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/citología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Osteogénesis/genética , Células Cultivadas , Adipogénesis/genética
3.
Gen Comp Endocrinol ; : 114617, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368755

RESUMEN

The ricefield eel (Monopterus albus) is inherently timid and highly sensitive to stress. Our previous studies have shown that low-temperature weather could significantly affect the sperm vitality of ricefield eels. This study aims to investigate the regulatory mechanism of low-temperature effects on testicular function and sperm vitality in ricefield eels. The ricefield eels were initially reared at low (10 °C) and normal (25 °C) temperatures for 24 h. Low temperatures were found to induce the expression of pituitary pro-opiomelanocortin (POMC) and testes insulin-like growth factor-binding protein 1 (IGFBP1) mRNA expression, suggesting that the reduction in sperm vitality could be attributed to the activation of the stress axis. Moreover, the results indicated a significant decrease in sperm occupancy and count in the testes, along with a reduced percentage of motile sperm. Subsequent transcriptome analysis showed substantial inhibition of reproductive hormone genes (gnrh1, lh, and fsh) in the brain and pituitary, and downregulation of meiosis-related genes (dmc1, rec8, and sycp3) in the testes. These findings suggest that low temperatures might disrupt testicular development and spermatogenesis by inhibiting the reproductive axis. Metabolomics analysis then demonstrated a significant reduction in the levels of metabolites related to glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle in the testes after low-temperature treatment. Interestingly, the expression of zona pellucida sperm-binding proteins 3 and 4 (ZP3 and ZP4), which may affect sperm vitality and spermatogenesis, was significantly induced by low temperatures in the testes. In conclusion, these findings suggested that low temperatures might affect testicular function and sperm vitality by simultaneously activating the stress axis and inhibiting the reproductive axis and energy metabolism in the testes.

4.
Cancer Immunol Immunother ; 73(12): 247, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358558

RESUMEN

The development of immunotherapies has proved to be clinically encouraging to re-establish the immune function modified by the expression of immune inhibitory molecules in tumors. However, there are still patients with poor survival rates following treatment. The elucidation of molecular mechanisms triggered by the neo-expression of particular IC in tumors would constitute a major step toward better understanding tumor evolution and would help to design future clinical protocols. To this end, we investigate the modifications triggered by the neo-expression of the immune checkpoints HLA-G in ccRCC tumor cells. We demonstrate, for the first time, that HLA-G modifies key genes implicated mainly in tumor development, angiogenesis, calcium flow and mitochondria dynamics. The involvement of HLA-G on the expression of genes belonging to these pathways such as ADAM-12, NCAM1 and NRP1 was confirmed by the CRISPR/Cas9-mediated edition of HLA-G. The data reveal multifaceted roles of HLA-G in tumor cells which are far beyond the well-known function of HLA-G in the immune anti-tumor response. This warrants further investigation of HLA-G and these new partners in tumors of different origin so as to propose future new treatments to improve health patient's outcome.


Asunto(s)
Antígenos HLA-G , Humanos , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Antígenos HLA-G/inmunología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Sistemas CRISPR-Cas , Neuropilina-1/genética , Neuropilina-1/metabolismo , Inmunoterapia/métodos
5.
Sci Rep ; 14(1): 23361, 2024 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375519

RESUMEN

Pedicel length is a crucial agronomic trait of cucumbers. Fruit deformation can occur When the pedicel is too long or too short. Moreover, an appropriate pedicel length is advantageous for mechanized harvesting. Therefore, it is essential to investigate the molecular regulatory mechanisms underlying cucumber pedicel length. In the current study, we obtained a short pedicel mutant through EMS mutagenesis and discovered that the reduced cell number was the primary cause of the shortened pedicel. Upon analyzing the hormone content, we found that the level of trans zeatin in the long-pedicel material was significantly higher than that in the short-pedicel material. Further transcriptome sequencing analysis revealed that differentially expressed genes were enriched in cytokinin synthesis-related pathways. Based on these results, the present study concluded that cucumber pedicel length is regulated by genes related to the cytokinin synthesis pathway and that differences in length result from differences in zeatin content and cell number.


Asunto(s)
Cucumis sativus , Citocininas , Frutas , Regulación de la Expresión Génica de las Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Citocininas/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Mutación , Transcriptoma , Zeatina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Vet Res ; 55(1): 130, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375812

RESUMEN

Capsular polysaccharide is an important virulence factor of Glaesserella parasuis. An acapsular mutant displays multiple phenotype variations, while the underlying mechanism for these variations is unknown. In this study, we created an acapsular mutant by deleting the wza gene in the capsule locus. We then used transcriptome analysis to compare the gene expression profiles of the wza deletion mutant with those of the parental strain to understand the possible reasons for the phenotypic differences. The mutant Δwza, which has a deleted wza gene, secreted less polysaccharide and lost its capsule structure. The Δwza exhibited increased autoagglutination, biofilm formation and adherence to eukaryotic cells, while the complementary strain C-Δwza partially restored the phenotype. Transcriptome analysis revealed several differentially expressed genes (DEGs) in Δwza, including up-regulated outer membrane proteins and proteins involved in peptidoglycan biosynthesis, suggesting that wza deletion affects the cell wall homeostasis of G. parasuis. Transcriptome analysis revealed the contribution of non-coding RNAs in the regulation of DEGs. Moreover, a new virulence-associated trimeric autotransporter, VtaA31 is upregulated in Δwza. It is responsible for enhanced autoagglutination but not for enhanced biofilm formation and adherence to eukaryotic cells in Δwza. In conclusion, these data indicate that wza affects the expression of multiple genes, especially those related to cell wall synthesis. Furthermore, they provide evidence that vtaA31 is involved in the autoagglutination of G. parasuis.


Asunto(s)
Perfilación de la Expresión Génica , Haemophilus parasuis , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidad , Haemophilus parasuis/fisiología , Virulencia , Perfilación de la Expresión Génica/veterinaria , Animales , Biopelículas , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Transcriptoma , Enfermedades de los Porcinos/microbiología , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
Breed Sci ; 74(2): 93-102, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39355622

RESUMEN

Salt tolerance has been an important issue as a solution for soil salinization and groundwater depletion. To challenge this issue, genetic diversity of wild plants must be harnessed. Here we report a discovery of a candidate gene for salt tolerance in Vigna nakashimae, one of the coastal species in the genus Vigna. Using intraspecific variation, we performed a forward genetic analysis and identified a strong QTL region harboring ~200 genes. To further narrow down the candidate genes, we performed a comparative transcriptome analysis, using the genome sequence of azuki bean (V. angularis) as a reference. However the detected differentially-expressed genes (DEGs) did not include those related to salt tolerance. As we suspected that the target gene in V. nakashimae is missing in V. angularis, we sequenced the whole genome sequence of V. nakashimae with long-reads. By re-analyzing the transcriptome data with the new reference genome, we successfully identified POCO1 as a candidate gene, which was missing not only in V. angularis but also in the salt-sensitive accession of V. nakashimae. Further comparative analysis revealed that the tolerant genotypes conserved the ancestral form of the locus, while the sensitive genotypes did not. We also emphasize the pitfalls in our study, such as position effect in a growth chamber, missing important genes in the reference genome, and limited reproducibility of RNA-seq experiments.

8.
Mol Ecol ; : e17536, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360493

RESUMEN

Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.

9.
Heliyon ; 10(17): e36727, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296030

RESUMEN

Liver fibrosis is a critical global health challenge, often leading to severe liver diseases without timely intervention. Choline deficiency has been linked to metabolic dysfunction associated steatohepatitis (MASH) and liver fibrosis, suggesting choline supplementation as a potential therapeutic approach. This study aimed to explore the therapeutic potential of choline supplementation in liver fibrosis resolution and its effects on cholesterol homeostasis using a mouse model with induced liver fibrosis. Our findings reveal that choline supplementation significantly decreases blood lactate dehydrogenase (LDH) and non-high-density lipoprotein cholesterol (non-HDL-C) levels. Transcriptome analysis showed that choline supplementation primarily induces genes related to cholesterol homeostasis, suggesting a significant impact on liver cholesterol synthesis. However, choline supplementation did not significantly alter the expression of fibrosis-related, choline metabolism-related, or epigenetics-related genes. This study provides novel insights into the role of choline in liver health and cholesterol metabolism, potentially informing treatments for liver fibrosis and related conditions.

10.
Mar Biotechnol (NY) ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269589

RESUMEN

Pyropia yezoensis is an important economic macroalga widely cultivated in the East Asia countries of China, Korea, and Japan. The ATP-binding cassette (ABC) transporter gene family is one of the largest transporter families in all forms of life involved in various biological processes. The characteristics of ABC transporter genes in P. yezoensis (PyABC) and their functions in stress resistance, however, remain largely unknown. In this study, PyABCs were identified and characterized their expression patterns under low-temperature stress. A total of 48 PyABCs transporters were identified and divided into eight subfamilies, which are mostly predicted as membrane-binding proteins. The cis-elements of phytohormone and low-temperature response were distinguished in promoter sequences of PyABCs. Transcriptome analysis showed that PyABCs are involved in response to low-temperature stress. Among them, 12 PyABCs were significantly up-regulated after 24 h of exposure to low temperature (2 °C). Further quantitative RT-PCR analysis corroborated the highest expression happened at 24 for detected genes of PyABCC8, PyABCF3, and PyABCI1, extraordinarily for PyABCF3, and followed by decreased expression at 48 h. The expression of PyABCI1 was generally low in all tested strains. Whereas, in a strain of P. yezoensis with lower tolerance to low temperature, the expression was observed higher in PyABCC1, PyABCC8, and remarkably high in PyABCF3. This study provided valuable information on ABC gene families in P. yezoensis and their functional characteristics, especially on low-temperature resistance, and would help to understand the adaptive mechanisms of P. yezoensis to adverse environments.

11.
Plant Physiol Biochem ; 216: 109124, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39276672

RESUMEN

With global climate change, the frequent occurrence of intense rainfall and aggravation of waterlogging disasters have severely threatened the plant growth and fruit quality of grapevines, which are commercially important fruit crops worldwide. There is accordingly an imperative to clarify the responses of grapevine to waterlogging and to propose appropriate remedial measures. Strigolactone (SL) is a phytohormone associated with plant abiotic stress tolerance, while, its function in plant responses to waterlogging stress remain undetermined. In this study, systematic analyses of the morphology, physiology, and transcriptome changes in grapevine leaves and roots under post-waterlogging and GR24 (a synthetic analog of SL) treatments were performed. Morphological and physiological changes in grapevines in response to post-waterlogging stress, including leaf wilting and yellowing, leaf senescence, photosynthesis inhibition, and increased anti-oxidative systems, could be alleviated by the application of GR24. Moreover, transcriptome analysis revealed that the primary gene functions induced by post-waterlogging stress changed over time; however, they were consistently associated with carbohydrate metabolism. The GR24-induced leaf genes were closely associated with carbohydrate metabolism, photosynthesis, antioxidant systems, and hormone signal transduction, which were considered vital aspects that were influenced by GR24 in grapevine to induce post-waterlogging tolerance. Concerning the roots, an enhancement of microtubules and cytoskeleton for cell construction in GR24 application was proposed to facilitate root system recovery after waterlogging. With this study, we comprehend the knowledge regarding the responses of grapevines to post-waterlogging and the ameliorative effect of GR24 with the insight to the transcriptome changes during these processes.

12.
Pestic Biochem Physiol ; 204: 106086, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277399

RESUMEN

Actinomycetes have emerged as significant biocontrol resources due to their rich array of bioactive natural products. While much research has historically focused on secondary metabolites isolated from their fermentation broth, there remains a dearth of reports on their volatile organic compounds (VOCs). Here, strain ML27, isolated from soil, was identified as Streptomyces albidoflavus based on morphological features, physiological, biochemical, and molecular characteristics (16S rRNA, atpD, recA, and rpoB gene sequences). VOCs from S. albidoflavus strain ML27 were effectively captured using solid-phase microextraction (SPME) and tentatively identified through gas chromatography-mass spectrometry (GC/MS). Among these compounds, 4-ethyl-1,2-dimethoxybenzene exhibited broad-spectrum antifungal activity and demonstrated efficacy in controlling citrus anthracnose, with a control efficacy of 86.67%. Furthermore, the inhibitory mechanism of 4-ethyl-1,2-dimethoxybenzene against Colletotrichum gloeosporioides was revealed. Results indicated that 4-ethyl-1,2-dimethoxybenzene induced swelling, deformity, and breakage in C. gloeosporioides mycelia, and significantly inhibited spore germination. Transcriptome analysis revealed that 4-ethyl-1,2-dimethoxybenzene inhibited the growth and development of C. gloeosporioides primarily by disrupting energy metabolism and the integrity of the cell wall and membrane. Based on these results, it is promising to develop 4-ethyl-1,2-dimethoxybenzene as a novel biopesticide for controlling citrus anthracnose.


Asunto(s)
Colletotrichum , Enfermedades de las Plantas , Streptomyces , Colletotrichum/efectos de los fármacos , Streptomyces/metabolismo , Streptomyces/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Citrus/microbiología , Anisoles/farmacología , Anisoles/química , Fungicidas Industriales/farmacología , Antifúngicos/farmacología
13.
Biotechnol Biofuels Bioprod ; 17(1): 121, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272202

RESUMEN

From both economic and environmental perspectives, ethylene glycol, the principal constituent in the degradation of PET, emerges as an optimal feedstock for microbial cell factories. Traditional methods for constructing Escherichia coli chassis cells capable of utilizing ethylene glycol as a non-sugar feedstock typically involve overexpressing the genes fucO and aldA. However, these approaches have not succeeded in enabling the exclusive use of ethylene glycol as the sole source of carbon and energy for growth. Through ultraviolet radiation-induced mutagenesis and subsequent laboratory adaptive evolution, an EG02 strain emerged from E. coli MG1655 capable of utilizing ethylene glycol as its sole carbon and energy source, demonstrating an uptake rate of 8.1 ± 1.3 mmol/gDW h. Comparative transcriptome analysis guided reverse metabolic engineering, successfully enabling four wild-type E. coli strains to metabolize ethylene glycol exclusively. This was achieved through overexpression of the gcl, hyi, glxR, and glxK genes. Notably, the engineered E. coli chassis cells efficiently metabolized the 87 mM ethylene glycol found in PET enzymatic degradation products following 72 h of fermentation. This work presents a practical solution for recycling ethylene glycol from PET waste degradation products, demonstrating that simply adding M9 salts can effectively convert them into viable raw materials for E. coli cell factories. Our findings also emphasize the significant roles of genes associated with the glycolate and glyoxylate degradation I pathway in the metabolic utilization of ethylene glycol, an aspect frequently overlooked in previous research.

14.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272461

RESUMEN

Saccharopolyspora is a key microorganism in the fermentation of traditional fermented foods, capable of producing saccharifying and liquefying enzymes at elevated temperatures. However, the specific mechanisms and regulatory pathways governing Saccharopolyspora's response to ambient temperatures are not yet fully understood. In this study, the morphological differences in Saccharopolyspora rosea screened from traditional handmade wheat Qu at different temperatures were initially explored. At 37 °C, the mycelium exhibited abundant growth and radiated in a network-like pattern. As the temperature increased, the mycelium aggregated into clusters. At 50 °C, it formed highly aggregated ellipsoidal structures, with the mycelium distributed on the spherical surface. Subsequently, we assessed the biomass, saccharifying enzyme activity and liquefying enzyme activity of Saccharopolyspora rosea cultured at 37 °C, 42 °C and 50 °C. Furthermore, transcriptome analysis demonstrated that Saccharopolyspora rosea employs mechanisms related to the carbon metabolism, the TCA cycle, glycine, serine and threonine metabolisms, and microbial metabolism in diverse environments to coordinate its responses to changes in environmental temperature, as verified by the expression of typical genes. This study enhances our understanding of the differences in high-temperature enzyme production by Saccharopolyspora, and offers valuable guidance for the traditional fermented food industry to drive innovation.

15.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273241

RESUMEN

Heat stress inhibits plant growth and productivity. Among the main regulators, B-box zinc-finger (BBX) proteins are well-known for their contribution to plant photomorphogenesis and responses to abiotic stress. Our research pinpoints that SlBBX31, a BBX protein harboring a conserved B-box domain, serves as a suppressor of plant growth and heat tolerance in tomato (Solanum lycopersicum L.). Overexpressing (OE) SlBBX31 in tomato exhibited yellowing leaves due to notable reduction in chlorophyll content and net photosynthetic rate (Pn). Furthermore, the pollen viability of OE lines obviously decreased and fruit bearing was delayed. This not only affected the fruit setting rate and the number of plump seeds but also influenced the size of the fruit. These results indicate that SlBBX31 may be involved in the growth process of tomato, specifically in terms of photosynthesis, flowering, and the fruiting process. Conversely, under heat-stress treatment, SlBBX31 knockout (KO) plants displayed superior heat tolerance, evidenced by their improved membrane stability, heightened antioxidant enzyme activities, and reduced accumulation of reactive oxygen species (ROS). Further transcriptome analysis between OE lines and KO lines under heat stress revealed the impact of SlBBX31 on the expression of genes linked to photosynthesis, heat-stress signaling, ROS scavenging, and hormone regulation. These findings underscore the essential role of SlBBX31 in regulating tomato growth and heat-stress resistance and will provide valuable insights for improving heat-tolerant tomato varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotosíntesis , Termotolerancia/genética , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Clorofila/metabolismo
16.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273397

RESUMEN

Fusarium head blight (FHB), caused by the Fusarium graminearum species complex, is a destructive disease in wheat worldwide. The lack of FHB-resistant germplasm is a barrier in wheat breeding for resistance to FHB. Thinopyrum elongatum is an important relative that has been successfully used for the genetic improvement of wheat. In this study, a translocation line, YNM158, with the YM158 genetic background carrying a fragment of diploid Th. elongatum 7EL chromosome created using 60Co-γ radiation, showed high resistance to FHB under both field and greenhouse conditions. Transcriptome analysis confirmed that the horizontal transfer gene, encoding glutathione S-transferase (GST), is an important contributor to FHB resistance in the pathogen infection stage, whereas the 7EL chromosome fragment carries other genes regulated by F. graminearum during the colonization stage. Introgression of the 7EL fragment affected the expression of wheat genes that were enriched in resistance pathways, including the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, plant-pathogen interaction, and the mitogen-activated protein kinase (MAPK) signaling pathway at different stages after F. graminearium infection. This study provides a novel germplasm for wheat resistance to FHB and new insights into the molecular mechanisms of wheat resistance to FHB.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Triticum , Fusarium/patogenicidad , Triticum/microbiología , Triticum/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Transcriptoma/genética , Translocación Genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/microbiología , Interacciones Huésped-Patógeno/genética
17.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273696

RESUMEN

Oyster mushroom spherical virus (OMSV) is a mycovirus that inhibits mycelial growth, induces malformation symptoms, and decreases the yield of fruiting bodies in Pleurotus ostreatus. However, the pathogenic mechanism of OMSV infection in P. ostreatus is poorly understood. In this study, RNA sequencing (RNA-seq) was conducted, identifying 354 differentially expressed genes (DEGs) in the mycelium of P. ostreatus during OMSV infection. Verifying the RNA-seq data through quantitative real-time polymerase chain reaction on 15 DEGs confirmed the consistency of gene expression trends. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses highlighted the pivotal role of primary metabolic pathways in OMSV infection. Additionally, significant changes were noted in the gene expression levels of carbohydrate-active enzymes (CAZymes), which are crucial for providing the carbohydrates needed for fungal growth, development, and reproduction by degrading renewable lignocellulose. The activities of carboxymethyl cellulase, laccase, and amylase decreased, whereas chitinase activity increased, suggesting a potential mechanism by which OMSV influenced mycelial growth through modulating CAZyme activities. Therefore, this study provided insights into the pathogenic mechanisms triggered by OMSV in P. ostreatus.


Asunto(s)
Virus Fúngicos , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Micelio , Pleurotus , Pleurotus/genética , Virus Fúngicos/genética , Micelio/crecimiento & desarrollo , Micelio/genética , Transcriptoma , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ontología de Genes
18.
J Sci Food Agric ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311036

RESUMEN

BACKGROUND: As a novel type of extracellular polysaccharide produced by Sphingomonas sp., welan gum has been widely applied in various fields because of its excellent properties. The study has improved the fermentation process. RESULTS: The initial sucrose concentration, temperature and stirring speed were set to 20 g L-1, 33 °C and 400 rpm, respectively, and 13.3 g L-1 sucrose was added at 24, 40 and 56 h. The temperature and stirring speed were then set at 28 °C and 600 rpm from 24 to 48 h and 28 °C and 600 rpm from 48 to 72 h, respectively. As a result, welan gum production, dry cell weight, sucrose conversion rate and viscosity were correspondingly increased to 38.60 g L-1, 5.47 g L-1, 0.64 g g-1 and 3779 mPa·s, respectively. In addition, the mechanism by which fermentation strategy promotes welan gum synthesis was investigated by transcriptome analysis. CONCLUSION: Improving respiration and ATP supply, reducing unnecessary protein synthesis, and alleviating competition between cell growth and welan gum synthesis contribute to promoting the fermentation performance of Sphingomonas sp., thus providing a practical strategy for efficient welan gum production. © 2024 Society of Chemical Industry.

19.
Cell Struct Funct ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39322562

RESUMEN

The liver is a complex organ with a highly organized structure in which tight junctions (TJs) play an important role in maintaining their function by regulating barrier properties and cellular polarity. Dysfunction of TJs is associated with liver diseases, including progressive familial intrahepatic cholestasis (PFIC). In this study, we investigated the molecular alterations in a liver-specific ZO-1 and ZO-2 double-knockout (DKO) mouse model, which exhibits features resembling those of PFIC4 patients with mutations in the ZO-2 gene. RNA-seq analysis revealed the upregulation of genes involved in the oxidative stress response, xenobiotic metabolism, and cholesterol metabolism in DKO livers. Conversely, the expression of genes regulated by HNF4α was lower in DKO livers than in the wild-type controls. Furthermore, age-associated analysis elucidated the timing and progression of these pathway changes as well as alterations in molecules related to TJs and apical polarity. Our research uncovered previously unknown implications of ZO-1 and ZO-2 in liver physiology and provides new insights into the molecular pathogenesis of PFIC4 and other tight junction-related liver diseases. These findings contribute to a better understanding of the complex mechanisms underlying liver function and dysfunction and may lead to the development of novel therapeutic strategies for liver diseases associated with tight junction impairment.Key words: tight junctions, ZO-1/ZO-2 knockout mouse, liver, transcriptome analysis, molecular pathological progression.

20.
Chemosphere ; 365: 143374, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306112

RESUMEN

The widespread occurrence of perfluorooctane sulfonate (PFOS) and the mass production and application of graphene oxide (GO) lead to their inevitable release and interaction in the environment, which may enhance associated toxic impacts on aquatic organisms. This study elucidates the induction of apoptosis by 60-day chronic single and mixture exposures to environmentally relevant levels of PFOS (0.5 µg/L and 5 µg/L) and GO (1 mg/L) in adult marine medaka Oryzias melastigma. Results showed a significant increase (p < 0.05) in reactive oxygen species (ROS) levels, the apoptotic positive rate in livers, and activities of caspases 3, 8, and 9 in all treated groups compared to the control. PFOS individual and PFOS-GO combined exposures significantly impacted fish growth, upregulated expressions of six apoptosis-related genes including p53, apaf1, il1b, tnfa, bcl2l1, bax, as well as enriched cell cycle and p53 signaling pathways (transcriptomic analysis) related to apoptosis compared to control group. Besides higher ROS production, GO also had a higher binding affinity to proteins than PFOS, especially to caspase 8 as revealed by molecular docking. Overall, PFOS induced ROS-p53-caspase apoptosis pathway through multi-gene regulation during single or mixture exposure, while GO single exposure induced apoptosis through tissue damage and ROS-caspase pathway activation and direct docking with caspase 8 to activate the caspase cascade. Under co-exposure, the PFOS-induced apoptotic pathway overshadowed the GO-induced pathway, due to competition for limited active sites on caspases. These findings will contribute to a better understanding of the apoptosis mechanism and ecological risks of nanomaterials and per- and polyfluoroalkyl substances in marine ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA