Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.374
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124871, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39096670

RESUMEN

Different enantiomer forms of amino acids play different roles in multifarious fields, and improper use will cause irreversible effects. Therefore, the identification of chiral amino acids is a vital issue in the field of pharmaceutical analysis. Herein, a chiral sensing system of ß-cyclodextrin coated silver nanoparticle (ß-CD@AgNPs) with peroxidase-like activity was designed for the fast and efficient colorimetric identification of tryptophan (Trp) enantiomers based on the difference in binding capacity between D/L-Trp and ß-CD. The results showed the satisfactory linearity for detecting D/L-Trp over the concentration range from 0.2 to 4 mM with a LOD of 0.16 and 0.18 mM, respectively. Moreover, the absorbance increased linearly with the rise of D-Trp concentration percentage in the Trp enantiomer mixture. The proposed method avoided the use of natural enzymes and improved the stability due to the protective effect of cyclodextrin, which provided a new idea for selective colorimetric recognition and detection of D/L-Trp based on cyclodextrin.

2.
Food Chem ; 460(Pt 2): 140622, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39089014

RESUMEN

Tryptamine is a neuromodulator of the central nervous system. It is also a biogenic amine, formed by the microbial decarboxylation of L-tryptophan. Tryptamine accumulation in cheese has been scarcely examined. No studies are available regarding the factors that could influence its accumulation. Determining the tryptamine content and identifying the factors that influence its accumulation could help in the design of functional tryptamine-enriched cheeses without potentially toxic concentrations being reached. We report the tryptamine concentration of 300 cheese samples representing 201 varieties. 16% of the samples accumulated tryptamine, at between 3.20 mg kg-1 and 3012.14 mg kg-1 (mean of 29.21 mg kg-1). 4.7% of cheeses accumulated tryptamine at higher levels than those described as potentially toxic. Moreover, three technological/metabolic/environmental profiles associated with tryptamine-containing cheese were identified, as well as the hallmark varieties reflecting each. Such knowledge could be useful for the dairy industry to control the tryptamine content of their products.

3.
Food Chem ; 459: 140259, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39089197

RESUMEN

2-Aminoacetophenone is an off-flavor that can result from tryptophan degradation via riboflavin-photosensitized reaction. This study investigates the impact of light exposure, provided by a UV-C source, oxygen concentrations and transition metals on the formation of 2-aminoacetophenone in model wine containing tryptophan and riboflavin. Irrespective of oxygen and transition metals, >85% of tryptophan were degraded via first-order kinetics to unknown product(s). However, longer light exposure and more oxygen caused 2-aminoacetophenone concentrations to increase. Transition metals decelerated the 2-aminoacetophenone formation and acetaldehyde was formed suggesting photo-Fenton reaction occurred as a competitive reaction. The degradation rate of riboflavin inclined with less oxygen and in the presence of transition metals due to the depletion of oxygen by photo-Fenton reaction. Oxygen plays an important role in the regeneration of riboflavin and therefore must be seen as an intensifier for light-induced 2-aminoacetophenone formation. This paper provides new insights into riboflavin-photosensitized reactions.

4.
Int J Tryptophan Res ; 17: 11786469241266312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092002

RESUMEN

Tryptophan is an essential amino acid and plays an important role in several metabolic processes relevant for the human health. As the main metabolic pathway for tryptophan along the kynurenine axis is involved in inflammatory responses, changed metabolite levels can be used to monitor inflammatory diseases such as ulcerative colitis. As a progenitor of serotonin, altered tryptophan levels have been related to several neurogenerative diseases as well as depression or anxiety. While tryptophan concentrations are commonly evaluated in serum, a non-invasive detection approach using saliva might offer significant advantages, especially during long-term treatments of patients or elderly. In order to estimate whether active transport processes for tryptophan might contribute to a potential correlation between blood and saliva tryptophan concentrations, we investigated tryptophan's transport across an established oral mucosa in vitro model. Interestingly, treatment with tryptophan revealed a concentration dependent secretion of tryptophan and the presence of a saturable transporter while transport studies with deuterated tryptophan displayed increased permeability from the saliva to the blood compartment. Protein analysis demonstrated a distinct expression of L-type amino acid transporter 1 (LAT1), the major transporter for tryptophan, and exposure to inhibitors (2 -amino-2-norbornanecarboxylic acid (BCH), L-leucine) led to increased tryptophan levels on the saliva side. Additionally, exposure to tryptophan in equilibrium studies resulted in a regulation of LAT1 at the mRNA level. The data collected in this study suggest the participation of active transport mechanisms for tryptophan across the oral mucosa epithelium. Future studies should investigate the transport of tryptophan across salivary gland epithelia in order to enable a comprehensive understanding of tryptophan exchange at the blood-saliva barrier.

5.
Mol Pain ; : 17448069241275097, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093627

RESUMEN

Chronic pain is a debilitating symptom with a significant negative impact on the quality of life and socioeconomic status, particularly among adults and the elderly. Major Depressive Disorder (MDD) stands out as one of the most important comorbid disorders accompanying chronic pain. The kynurenine pathway serves as the primary route for tryptophan degradation and holds critical significance in various biological processes, including the regulation of neurotransmitters, immune responses, cancer development, metabolism, and inflammation. This review encompasses key research studies related to the kynurenine pathway in the context of headache, neuropathic pain, gastrointestinal disorders, fibromyalgia, chronic fatigue syndrome, and MDD. Various metabolites produced in the kynurenine pathway, such as kynurenic acid and quinolinic acid, exhibit neuroprotective and neurotoxic effects, respectively. Recent studies have highlighted the significant involvement of kynurenine and its metabolites in the pathophysiology of pain. Moreover, pharmacological interventions targeting the regulation of the kynurenine pathway have shown therapeutic promise in pain management. Understanding the underlying mechanisms of this pathway presents an opportunity for developing personalized, innovative, and non-opioid approaches to pain treatment. Therefore, this narrative review explores the role of the kynurenine pathway in various chronic pain disorders and its association with depression and chronic pain.

6.
Comput Biol Med ; 180: 108954, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094327

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are attractive drug targets for cancer immunotherapy. After disappointing results of the epacadostat as a selective IDO inhibitor in phase III clinical trials, there is much interest in the development of the TDO selective inhibitors. In the current study, several data analysis methods and machine learning approaches including logistic regression, Random Forest, XGBoost and Support Vector Machines were used to model a data set of compounds retrieved from ChEMBL. Models based on the Morgan fingerprints revealed notable fragments for the selective inhibition of the IDO, TDO or both. Multiple fragment docking was performed to find the best set of bound fragments and their orientation in the space for efficient linking. Linking the fragments and optimization of the final molecules were accomplished by means of an artificial intelligence generative framework. Finally, selectivity of the optimized molecules was assessed and the top 4 lead molecules were filtered through PAINS, Brenk and NIH filters. Results indicated that phenyloxalamide, fluoroquinoline, and 3-bromo-4-fluroaniline confer selectivity towards the IDO inhibition. Correspondingly, 1-benzyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione was found to be an integral fragment for the selective inhibition of the TDO by constituting a coordination bond with the Fe atom of heme. In addition, furo[2,3-c]pyridine-2,3-diamine was found as a common fragment for inhibition of the both targets and can be used in the design of the dual target inhibitors of the IDO and TDO. The new fragments introduced here can be a useful building blocks for incorporation into the selective TDO or dual IDO/TDO inhibitors.

7.
Sci Total Environ ; : 175137, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094642

RESUMEN

Cross-border flow of untreated sewage from Mexico into the USA via the Tijuana River is public health issue with negative consequences for coastal communities. Here we evaluate the potential application of fluorescence-based, submersible tryptophan-like (TRP) and humic-like (CDOM) fluorescence sensors for real-time tracking of wastewater pollution in an estuarine environment. Sonde fluorescence measurements were compared with benchtop fluorescence, fecal indicator bacteria (FIB) concentrations, and real-time specific conductivity measurements in the Tijuana River Estuary during dry and wet weather conditions, and with and without cross-border flow. TRP and CDOM fluorescence concentrations were low during times without cross-border flow and two-three orders of magnitude higher during storm events and after cross-border sewage flow events. Major deterioration in water quality, including hypoxic conditions, was observed after consistent, long-term cross-border sewage flow. Real-time TRP and CDOM fluorescence concentrations had a significant linear relationship with fecal indicator bacteria (FIB) concentrations during dry weather periods with cross-border flow (p < 0.001) but were poorly correlated during stormflow and during less polluted periods with no cross-border flow. TRP and CDOM fluorescence acquired on discrete samples using a benchtop fluorometer correlated significantly (p < 0.001) with FIB concentrations under all cross-border flow conditions. Based on these relationships, the greatest amount of untreated wastewater in the estuary's surface layer during cross-border flow events was estimated at >80 % and occurred during neap tides, when concentrated, sewage-laden freshwater flowed over dense saline seawater due to stratification and lack of mixing in the estuary. These results are important because exposure to untreated sewage poses severe health risks for residents and visitors to adjacent coastal areas. While benchtop fluorescence was more effective for estimating the degree of wastewater pollution, submersible TRP and CDOM sensors provided a real-time alert of sewage contamination, which can be utilized in other sewage impacted estuarine environments.

8.
Psychol Res Behav Manag ; 17: 2875-2883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104768

RESUMEN

Objective: To investigate the association between single nucleotide polymorphisms (SNPs) of tryptophan hydroxylase 2 (TPH2) (rs11178997, rs11178998, and rs120074175) and negative life events in adolescent depression with Non-suicidal self-injury (NSSI). Methods: Genomic DNA was extracted from 197 adolescents with depression (participants group, including NSSI group and non-NSSI group), as well as from 100 healthy controls (control group), in northern China. PCR technology was utilized to amplify DNA fragments and detect genotypes in both groups. The Adolescent Life Event Scale (ASLEC) was employed to conduct a questionnaire survey among the participants and control groups. Differences in allele and genotype frequency distribution between the two groups were analyzed using the X^2 test, while generalized multifactor dimensionality reduction (GMDR) was used to analyze gene-environment interactions. Results: Significant differences were observed in ASLEC scores between the control group and both the NSSI group and non-NSSI group (P<0.05). Additionally, significant differences were found in the interpersonal relationship factor and punishment factor between the NSSI group and non-NSSI group (P < 0.05). Moreover, a significant difference was identified in SNP genotype of rs11178997 between the depression group (NSSI group + non-NSSI group) and control group (P<0.05). GMDR analysis revealed an interaction among rs11178997, rs11178998, and ASLEC. Conclusion: Adolescents with depression, particularly females, may exhibit a tendency to employ NSSI as an emotional coping mechanism when confronted with greater family and interpersonal challenges. The AT genotype of TPH2 gene locus rs11178997 is more prevalent among adolescents with depression. Furthermore, the occurrence of NSSI may be associated with an interaction involving polymorphic sites rs11178997 and rs11178998 along with life events.

9.
Sci China Life Sci ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39110402

RESUMEN

Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39110245

RESUMEN

Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.

11.
J Inflamm Res ; 17: 4105-4116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948195

RESUMEN

Purpose: We aimed to explore changes in plasma and urine indole lactic acid (ILA) levels and the relationship between inflammation and ILA in chronic kidney disease (CKD) patients and healthy people. Patients and Methods: Forty-seven CKD patients and 30 healthy individuals were included in this study. One-way ANOVA was used for variables with normal distribution and homogeneous variance. A rank-sum test was performed for non-normally distributed variables. Correlation analyses were performed using Pearson's or Spearman correlation analyses. Independent relationship between patients and CKD was analyzed using ordinal and binary logistic regressions. Receiver operating characteristic (ROC) curve was used. Results: Plasma and urine ILA levels were positively correlated (r = 0.51, P < 0.01). Plasma ILA was positively correlated with BMI, age, creatinine, BUN, triglycerides, and uric acid and negatively correlated with hemoglobin levels. Urine ILA levels were positively correlated with age, creatinine, BUN, and uric acid and negatively correlated with hemoglobin and albumin levels. Ordered logistic regression analysis showed that CKD was significantly correlated with plasma ILA (OR=4.49, P < 0.01), urinary ILA (OR=2.14,P < 0.01), urea levels (OR=1.43, P < 0.01) and hemoglobin levels (OR=0.95, P < 0.01) were significantly related. ROC curves indicated that plasma and urinary ILA were reliable predictors of CKD. CKD was correlated with plasma, urine ILA (OR=5.92, P < 0.01; OR=2.79, P < 0.01) and Hs-CRP (OR=2.45, P < 0.01). Conclusion: Plasma and urine ILA can potentially be used as biomarkers of CKD and inflammatory status.

12.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961329

RESUMEN

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Asunto(s)
Frutas , Perfilación de la Expresión Génica , Metabolómica , Hojas de la Planta , Prunus persica , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo
13.
Alzheimers Res Ther ; 16(1): 167, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068471

RESUMEN

BACKGROUND: Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further. METHODS: Here we investigate sex differences in cerebrospinal fluid concentrations of seven KP metabolites and sex-specific associations with established AD biomarkers and neopterin, an indicator of neuroinflammation. This study included 311 patients with symptomatic AD and 105 age-matched cognitively unimpaired (CU) controls, followed for up to 5 years. RESULTS: We found sex differences in KP metabolites in the AD group, with higher levels of most metabolites in men, while there were no sex differences in the CU group. In line with this, more KP metabolites were significantly altered in AD men compared to CU men, and there was a trend in the same direction in AD women. Furthermore, we found sex-specific associations between kynurenic acid and the kynurenic acid/quinolinic acid ratio with neopterin, but no sex differences in the associations between KP metabolites and clinical progression. DISCUSSION: In our cohort, sex differences in KP metabolites were restricted to AD patients. Our results suggest that dysregulation of the KP due to increased inflammation could contribute to higher AD risk in women.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Ácido Quinurénico , Neopterin , Caracteres Sexuales , Humanos , Neopterin/líquido cefalorraquídeo , Femenino , Masculino , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Ácido Quinurénico/líquido cefalorraquídeo , Ácido Quinurénico/metabolismo , Anciano , Biomarcadores/líquido cefalorraquídeo , Persona de Mediana Edad , Quinurenina/metabolismo , Quinurenina/líquido cefalorraquídeo , Anciano de 80 o más Años , Factores Sexuales
14.
Front Psychol ; 15: 1414852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070588

RESUMEN

Introduction: Due to an inhibited tryptophan resorption, patients with fructose malabsorption are expected to experience decreased serotonin synthesis. A deficiency of serotonin may cause internalizing mental disorders like depression and anxiety, and a fructose-oriented eating behavior may affect these symptoms. Methods: The parents of 24 children and adolescents with a currently diagnosed fructose malabsorption aged 4;00-13;02 years (M = 8.10, SD = 2.05), the parents of 12 patients with a currently confirmed combination of fructose and lactose malabsorption aged 4;00-12;11 years (M = 8.07, SD = 2.11) and the parents of a comparative sample of 19 healthy participants aged 5;00 to 17;07 years (M = 9.06, SD = 3.04) were interviewed. The interviews were conducted using a screening questionnaire of the German "Diagnostic System of Mental Disorders in children and adolescents based on the ICD-10 and DSM-5 DISYPS-III" and a self-developed questionnaire on eating, leisure and sleeping behavior. Results: On standardized scales parents of children with fructose malabsorption reported higher levels of Depression compared to symptoms of Attention-Deficit/Hyperactivity Disorders (ADHD) and Oppositional Defiant and Conduct Disorders (ODD/CD). Compared to healthy controls, for patients with fructose malabsorption, higher symptom levels of Depression and Anxiety were reported. With regard to eating behavior, within the group with a combination of fructose and lactose malabsorption, a strong positive association between an increased fruit sugar consumption and higher levels of Anxiety and Obsessive-Compulsive Disorders/Tics were found. Discussion: These results suggest a close association between fructose malabsorption and elevated internalizing psychological symptoms in children and adolescents.Clinical trial registration:https://drks.de/search/en/trial/DRKS00031047, DRKS-ID [DRKS00031047].

15.
Heliyon ; 10(13): e34189, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071576

RESUMEN

Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.

16.
Nutrients ; 16(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39064819

RESUMEN

The objective of this cross-sectional study was to explore sleep patterns and the potential relationship between sleep and tryptophan intake among Spanish university students. A total of 11,485 students self-reported their sleep and dietary patterns and habits. Tryptophan intake was calculated using a food intake matrix and results were presented as quartiles of total intake. Short sleep duration prevalence was 51.0%, with males exhibiting a significantly higher frequency. A total of 55.0% of participants presented inadequate sleep efficiency, with males again presenting a higher rate. Median tryptophan intake was 692.16 ± 246.61 mg/day, 731.84 ± 246.86 mg/day in males and 677.24 ± 244.87 mg/day in females (p = 0.001). Dietary tryptophan intake below the first quartile (<526.43 mg/day) was associated with a higher risk of short sleep duration in males (1.26; 95%CI: 1.02-1.55) and females (1.19; 95%CI: 1.05-1.34) and with the Athens Insomnia Scale insomnia in males (2.56; 95%CI: 1.36-4.82) and females (1.47; 95%CI: 1.10-2.05). Regarding academic specializations, females in the humanities field showed a higher risk of Athens Insomnia Scale insomnia due to low tryptophan intake (Q1: 3.15; 95% CI: 1.04-9.55 and Q2: 3.41; 95%CI: 1.01-11.5). In summary, lower tryptophan consumption appears to be associated with poorer sleep quality in Spanish university students; however, other social factors affecting students may also influence sleep quality. These findings have important implications for nutritional recommendations aimed at enhancing tryptophan intake to improve sleep quality.


Asunto(s)
Sueño , Estudiantes , Triptófano , Humanos , Masculino , Femenino , Triptófano/administración & dosificación , Estudiantes/estadística & datos numéricos , Universidades , España/epidemiología , Estudios Transversales , Sueño/fisiología , Adulto Joven , Conducta Alimentaria , Adulto , Dieta/estadística & datos numéricos , Adolescente , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Factores Sexuales
17.
Pharmaceutics ; 16(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39065567

RESUMEN

Glioma is characterized by strong immunosuppression and excessive angiogenesis. Based on existing reports, it can be speculated that the resistance to anti-angiogenic drug vascular endothelial growth factor A (VEGFA) antibody correlates to the induction of novel immune checkpoint indoleamine 2,3-dioxygenase 1 (IDO1), while IDO1 has also been suggested to be related to tumor angiogenesis. Herein, we aim to clarify the potential role of IDO1 in glioma angiogenesis and the mechanism behind it. Bioinformatic analyses showed that the expressions of IDO1 and angiogenesis markers VEGFA and CD34 were positively correlated and increased with pathological grade in glioma. IDO1-overexpression-derived-tryptophan depletion activated the general control nonderepressible 2 (GCN2) pathway and upregulated VEGFA in glioma cells. The tube formation ability of angiogenesis model cells could be inhibited by IDO1 inhibitors and influenced by the activity and expression of IDO1 in condition medium. A significant increase in serum VEGFA concentration and tumor CD34 expression was observed in IDO1-overexpressing GL261 subcutaneous glioma-bearing mice. IDO1 inhibitor RY103 showed positive anti-tumor efficacy, including the anti-angiogenesis effect and upregulation of natural killer cells in GL261 glioma-bearing mice. As expected, the combination of RY103 and anti-angiogenesis agent sunitinib was proved to be a better therapeutic strategy than either monotherapy.

18.
Biomolecules ; 14(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062529

RESUMEN

Early detection of cancer via biomarkers is vital for improving patient survival rates. In the case of skin cancers, low-molecular-weight biomarkers can penetrate the skin barrier, enabling non-invasive sampling at an early stage. This study focuses on detecting tryptophan (Trp) and kynurenine (Kyn) on the surface of reconstructed 3D melanoma and melanocyte models. This is examined in connection with IDO-1 and IL-6 expression in response to IFN-γ or UVB stimulation, both crucial factors of the melanoma tumor microenvironment (TME). Using a polystyrene scaffold, full-thickness human skin equivalents containing fibroblasts, keratinocytes, and melanocytes or melanoma cells were developed. The samples were stimulated with IFN-γ or UVB, and Trp and Kyn secretion was measured using HPLC-PDA and HPLC-MS. The expression of IDO-1 and IL-6 was measured using RT-qPCR. Increased Trp catabolism to Kyn was observed in IFN-γ-stimulated melanoma and melanocyte models, along with higher IDO-1 expression. UVB exposure led to significant changes in Kyn levels but only in the melanoma model. This study demonstrates the potential of skin surface Trp and Kyn monitoring to capture TME metabolic changes. It also lays the groundwork for future in vivo studies, aiding in understanding and monitoring skin cancer progression.


Asunto(s)
Biomarcadores de Tumor , Indolamina-Pirrol 2,3,-Dioxigenasa , Interleucina-6 , Quinurenina , Melanocitos , Melanoma , Neoplasias Cutáneas , Triptófano , Quinurenina/metabolismo , Humanos , Triptófano/metabolismo , Melanoma/metabolismo , Melanoma/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-6/metabolismo , Interferón gamma/metabolismo , Interferón gamma/farmacología , Línea Celular Tumoral , Microambiente Tumoral , Rayos Ultravioleta
19.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063026

RESUMEN

Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, and ß-muricholic acid, in the liver and feces. In addition, liraglutide significantly decreased tryptophan metabolites, including L-tryptophan, serotonin, 5-hydroxy indole-3-acetic acid, L-kynurenine, and xanthurenic acid, in the colon, whereas it significantly increased indole-3-propionic acid. Moreover, the administration of liraglutide remarkably decreased the expression of apical sodium-dependent bile acid transporter, which mediates BA uptake across the apical brush border member in the ileum, ileal BA binding protein, and fibroblast growth factor 15 in association with decreased expression of the BA-activated nuclear receptor farnesoid X receptor and the heteromeric organic solute transporter Ostα/ß, which induces BA excretion, in the ileum. Liraglutide acutely decreased body weight and blood glucose levels in association with decreases in plasma insulin and serotonin levels in food-deprived mice. These findings suggest the potential of liraglutide as a novel inhibitor of primary BAs and serotonin in the colon.


Asunto(s)
Ácidos y Sales Biliares , Colon , Receptor del Péptido 1 Similar al Glucagón , Liraglutida , Serotonina , Animales , Liraglutida/farmacología , Serotonina/metabolismo , Ácidos y Sales Biliares/metabolismo , Ratones , Colon/metabolismo , Colon/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Masculino , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Triptófano/metabolismo , Triptófano/farmacología , Triptófano/análogos & derivados , Ratones Endogámicos C57BL , Íleon/metabolismo , Íleon/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ácidos Cólicos , Proteínas de Transporte de Membrana , Simportadores
20.
Int Immunopharmacol ; 138: 112610, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38963982

RESUMEN

BACKGROUND: Traditional Chinese medicine, JianpiJiedu decoction (JPJDF), has been utilized in colorectal cancer (CRC) treatment for over forty years. The potential of JPJDF to inhibit CRC through modulation of intestinal microbiota and their metabolites remains uncertain. AIMS: This study aims to further investigate the therapeutic mechanisms of JPJDF in CRC. METHODS: CAC mouse models were developed using azoxymethane (AOM) and dextran sulfate sodium (DSS). Intestinal tissues and contents underwent 16S rRNA gene sequencing and untargeted metabolomics analysis. Serum levels of IL-1ß and TNF-α were measured using ELISA. Immunohistochemistry was utilized to assess the expression of Ki67, ZO-1, Occludin, CD68, and CD206. Furthermore, western blotting was performed to evaluate the protein expression of AhR and NF-κB. RESULTS: JPJDF inhibited colorectal tumourigenesis in AOM/DSS treated mice, while also suppressing tumor cell proliferation and upregulating the expression of tight junction proteins. The results of 16S rRNA gene sequencing analysis revealed that JPJDF altered intestinal microbiota composition by increasing the abundance of beneficial bacteria. Additionally, JPJDF reduced tryptophan metabolites, effectively alleviating inflammation and significantly restoring intestinal barrier function in CAC mice. Molecular biology experiments confirmed that JPJDF suppressed the expression levels of AhR and M2-type tumor-associated macrophages, thereby promoting anti-tumor immunity and exerting inhibitory effects on CAC growth. CONCLUSION: JPJDF can regulate the tryptophan metabolism-AhR pathway by modulating the gut microbiota, reducing intestinal inflammation, improving intestinal barrier function, enhancing anti-tumor immunity, and effectively inhibiting CAC growth.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Receptores de Hidrocarburo de Aril , Transducción de Señal , Triptófano , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Triptófano/metabolismo , Ratones , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Masculino , Sulfato de Dextran , Ratones Endogámicos C57BL , Azoximetano , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA