Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Theranostics ; 14(15): 5793-5808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346543

RESUMEN

Background: Heart failure with preserved ejection fraction (HFpEF) is a predominant type of heart failure. Exploring new pathogenesis and identifying potential novel therapeutic targets for HFpEF is of paramount importance. Methods: HFpEF mouse model was established by the "Multiple-hit" strategy, in that 18- to 22-month-old female C57B6/J mice fed with a high-fat diet were further challenged with chronic infusion of Angiotensin II. RNA sequencing analysis showed that USP7 was significantly increased in the heart of HFpEF mice. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis, in conjunction with co-immunoprecipitation (Co-IP) techniques, identified expression of SMAD3, the key molecule of endothelial-to-mesenchymal transition (EndMT), was also significantly elevated. USP7 endothelium-specific knockout mice was generated to investigate the involvement of USP7 in HFpEF. The biological significance of the interaction between USP7 and SMAD3 was further explored. Results: USP7 promotes EndMT and cardiac fibrosis by binding to SMAD3 directly via its UBL (Ubiquitin-like) domain and cysteine at position 223 of USP7, leading SMAD3 deubiquitination to maintain the stability of SMAD3 by removing the K63 ubiquitin chain and preventing the degradation of SMAD3 by proteasomal process. USP7 also promotes SMAD3 phosphorylation and nuclear translocation, thereby aggravating EndMT and cardiac fibrosis. Endothelium-specific USP7 knockout led to improvement of HFpEF phenotypes and reduction of cardiac fibrosis. Overexpression of SMAD3 in endothelium-specific knockout HFpEF mice reversed the protective effects of USP7 knockout in this HFpEF mouse model. Conclusion: Our results indicated that USP7 is one of the key pathogenic molecules of HFpEF, and knocking out USP7 could attenuate HFpEF injury by promoting the degradation of SMAD3. USP7 and SMAD3 inhibition might be potential therapeutic options for HFpEF.


Asunto(s)
Fibrosis , Insuficiencia Cardíaca , Ratones Noqueados , Proteína smad3 , Volumen Sistólico , Peptidasa Específica de Ubiquitina 7 , Animales , Proteína smad3/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Ratones , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Fibrosis/metabolismo , Femenino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humanos , Transición Epitelial-Mesenquimal/genética , Miocardio/metabolismo , Miocardio/patología
2.
Front Oncol ; 14: 1427663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346740

RESUMEN

Introduction: TP53 is one of the most frequently mutated genes among all cancers, and TP53 mutants occur more than 40% in colorectal cancers (CRCs). Accumulation of mutant p53 may augment colorectal cancer stem cells (CCSCs) phenotype and enhance colorectal tumorigenesis. Thus, reducing the level of mutant p53 protein is an attractive anticancer strategy. Methods: CSC-enriched cancer cells were obtained by tumor sphere formation assay. The effects of USP7 on the proliferation of cancer cells were determined by MTS and colony formation assays. Wound healing assay was used to test cell migratory abilities. qPCR and western blotting assays were performed to verify the mRNA and protein levels of CSC markers, USP7 and p53. Co-immunoprecipitation assay was used to test the interaction effects between USP7 and p53. Results: In this study, we found that USP7 and mutant p53 were dramatically elevated in CSC-enriched colorectal cancer cells and USP7 expression was positively associated with self-renewal and maintenance of CCSCs. USP7 regulated cell growth, stemness and migration of colorectal cancer cells. USP7 depletion significantly reduced proliferation of cancer cells and suppressed the self-renewal of CSC-enriched colorectal cancer cells. Further studies indicated that USP7 knockdown could significantly decrease mutant p53 protein levels both in CRCs and CSC-enriched colorectal cancer cells. Moreover, mutant p53 was stabilized by USP7 and they interacted with each other. Furthermore, USP7 inhibitor P5091 also diminished CCSCs self-renewal and reduced mutant p53 levels. Conclusion: Taken together, our findings demonstrated that USP7 involved in the modulation of CCSCs stemness, as well as a critical target for clinical treatment of cancers with different p53 mutations.

3.
Mol Divers ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298085

RESUMEN

The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.

4.
Adv Sci (Weinh) ; : e2405620, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321430

RESUMEN

Mitochondrial-nuclear communication plays a vital role in maintaining cellular homeostasis. MOTS-c, a short peptide derived from the 12S rRNA of mitochondrial DNA, has been suggested as a retrograde mitochondrial signal. Although recent clinical studies have suggested a possible link between MOTS-c and human cancer, the role of MOTS-c in tumorigenesis has yet to be investigated. Here, MOTS-c levels are found to be reduced in both serum and tumor tissues from ovarian cancer (OC) patients, which are associated with poor patients' prognosis. Exogenous MOTS-c inhibits the proliferation, migration and invasion of OC cells, and induces cell cycle arrest and apoptosis. Mechanistically, MOTS-c interacts with LARS1 and promotes its ubiquitination and proteasomal degradation. In addition, USP7 was identified as a deubiquitinase of LARS1, and MOTS-c can attenuates USP7-mediated LARS1 deubiquitination by competing with USP7 for binding to LARS1. Besides, LARS1 was found to be increased and play an important oncogenic function in OC. More importantly, MOTS-c displays a marked anti-tumor effect on OC growth without systemic toxicity in vivo. In conclusion, this study reveals a crucial role of MOTS-c in OC and provides a possibility for MOTS-c as a therapeutic target for the treatment of this manlignacy.

6.
J Biol Chem ; 300(9): 107672, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128723

RESUMEN

The ubiquitin-proteasome system (UPS), which involves E3 ligases and deubiquitinates (DUBs), is critical for protein homeostasis. The epigenetic reader ZMYND8 (zinc finger MYND-type containing 8) has emerged as an oncoprotein, and its protein levels are elevated in various types of cancer, including breast cancer. However, the mechanism by which ZMYND8 protein levels are increased in cancer remains elusive. Although ZMYND8 has been reported to be regulated by the E3 ligase FBXW7, it is still unknown whether ZMYND8 could be modulated by DUBs. Here, we identified USP7 (ubiquitin carboxyl-terminal hydrolase 7) as a bona fide DUB for ZMYND8. Mechanically, USP7 directly binds to the PBP (PHD-BRD-PWWP) domain of ZMYND8 via its TRAF (tumor necrosis factor receptor-associated factor) domain and UBL (ubiquitin-like) domain and removes F-box and WD repeat domain containing 7 (FBXW7)-catalyzed poly-ubiquitin chains on lysine residue 1034 (K1034) within ZMYND8, thereby stabilizing ZMYND8 and stimulating the transcription of ZMYND8 target genes ZEB1 (zinc finger E-box binding homeobox 1) and VEGFA (Vascular Endothelial Growth Factor A). Consequently, USP7 enhances the capacity of breast cancer cells for migration and invasion through antagonizing FBXW7-mediated ZMYND8 degradation. Importantly, the protein levels of USP7 positively correlates with those of ZMYND8 in breast cancer tissues. These findings delineate an important layer of migration and invasion regulation by the USP7-ZMYND8 axis in breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Invasividad Neoplásica , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Femenino , Línea Celular Tumoral , Epigénesis Genética , Células HEK293 , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas Supresoras de Tumor
7.
Proc Natl Acad Sci U S A ; 121(36): e2409346121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190345

RESUMEN

Meiosis is a form of cell division that is essential to sexually reproducing organisms and is therefore highly regulated. Each event of meiosis must occur at the correct developmental stage to ensure that chromosomes are segregated properly during both meiotic divisions. One unique meiosis-specific structure that is tightly regulated in terms of timing of assembly and disassembly is the synaptonemal complex (SC). While the mechanism(s) for assembly and disassembly of the SC are poorly understood in Drosophila melanogaster, posttranslational modifications, including ubiquitination and phosphorylation, are known to play a role. Here, we identify a role for the deubiquitinase Usp7 in the maintenance of the SC in early prophase and show that its function in SC maintenance is independent of the meiotic recombination process. Using two usp7 shRNA constructs that result in different knockdown levels, we have shown that the presence of SC through early/mid-pachytene is critical for normal levels and placement of crossovers.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Complejo Sinaptonémico , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Meiosis , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Masculino , Intercambio Genético
8.
Eur J Med Chem ; 277: 116752, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39133975

RESUMEN

USP7 is one of the most studied deubiquitinating enzymes, which is involved in the regulation of multiple cell signaling pathways and has been shown to be associated with the occurrence and progression of a variety of cancers. Inhibitors targeting USP7 have been studied by several teams, but most of them lack selectivity and have low activities. Herein, we reported a serious of pyrrole[2,3-d]pyrimidin-4-one derivatives through scaffold hopping of recently reported 4-hydroxypiperidine compounds. The representative compound Z33 (YCH3124) exhibited highly potent USP7 inhibition activity as well as anti-proliferative activity against four kinds of cancer cell lines. Further study revealed that YCH3124 effectively inhibited the downstream USP7 pathway and resulted in the accumulation of both p53 and p21 in a dose-dependent manner. Notably, YCH3124 disrupted cell cycle progression through restricting G1 phase and induced significant apoptosis in CHP-212 cells. In summary, our efforts provided a series of novel pyrrole[2,3-d]pyrimidin-4-one analogs as potent USP7 inhibitors with excellent anti-cancer activity.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Pirimidinas , Pirroles , Peptidasa Específica de Ubiquitina 7 , Humanos , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Pirroles/farmacología , Pirroles/química , Pirroles/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Línea Celular Tumoral , Estructura Molecular , Relación Dosis-Respuesta a Droga , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Pirimidinonas/farmacología , Pirimidinonas/química , Pirimidinonas/síntesis química , Ciclo Celular/efectos de los fármacos
9.
Toxicol Appl Pharmacol ; 491: 117075, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173720

RESUMEN

Artesunate (ART) is a derivative of artemisinin and has anti-inflammatory, anti-tumor, and anti-angiogenic properties. Although ART has been implicated in osteoarthritis (OA), the mechanism needs to be further dissected. Here, we explored the effects of ART on the development of OA and the underlying mechanism using destabilization of the medial meniscus (DMM) surgical instability model. Mice with OA were developed using DMM and treated with ART. The pathological morphology of knee joint tissues was examined, and the degeneration of joint cartilage was assessed. Mouse knee chondrocytes were isolated and induced with IL-1ß, followed by ART treatment. ART alleviates OA in mice by elevating ubiquitin carboxyl-terminal hydrolase 7 (USP7) expression, and USP7 inhibitor (P22077) treatment mitigated the protective effects of ART on chondrocytes. We also showed that USP7 mediated the deubiquitination of forkhead box protein O1 (FoxO1), while FoxO1 alleviated chondrocyte injury. In addition, FoxO1 promoted metastasis-associated protein MTA1 (MTA1) transcription, and downregulation of MTA1 exacerbated chondrocyte injury. Our study identifies that USP7/FoxO1/MTA1 is a key signaling cascade in the treatment of ART on OA.


Asunto(s)
Artesunato , Condrocitos , Proteína Forkhead Box O1 , Ratones Endogámicos C57BL , Osteoartritis , Peptidasa Específica de Ubiquitina 7 , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Ratones , Masculino , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Transactivadores/metabolismo , Transactivadores/genética , Transducción de Señal/efectos de los fármacos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética/efectos de los fármacos
10.
Clin Transl Med ; 14(8): e1763, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107958

RESUMEN

BACKGROUND: Breast cancer (BC) is one of the most prevalent malignant tumours that threatens women health worldwide. It has been reported that circular RNAs (circRNAs) play an important role in regulating tumour progression and tumour microenvironment (TME) remodelling. METHODS: Differentially expression characteristics and immune correlations of circRNAs in BC were verified using high-throughput sequencing and bioinformatic analysis. Exosomes were characterised by nanoparticle transmission electron microscopy and tracking analysis. The biological function of circ-0100519 in BC development was demonstrated both in vitro and in vivo. Western blotting, RNA pull-down, RNA immunoprecipitation, flow cytometry, and luciferase reporter were conducted to investigate the underlying mechanism. RESULTS: Circ-0100519 was significant abundant in BC tumour tissues and related to poor prognosis. It can be encapsulated into secreted exosomes, thereby promoting BC cell invasion and metastasis via inducing M2-like macrophages polarisation.Mechanistically, circ-0100519 acted as a scaffold to enhance the interaction between the deubiquitinating enzyme ubiquitin-specific protease 7 (USP7) and nuclear factor-like 2 (NRF2) in macrophages, inducing the USP7-mediated deubiquitination of NRF2. Additionally, HIF-1α could function as an upstream effector to enhance circ-0100519 transcription. CONCLUSIONS: Our study revealed that exosomal circ-0100519 is a potential biomarker for BC diagnosis and prognosis, and the HIF-1α inhibitor PX-478 may provide a therapeutic target for BC.


Asunto(s)
Neoplasias de la Mama , Exosomas , Factor 2 Relacionado con NF-E2 , ARN Circular , Peptidasa Específica de Ubiquitina 7 , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Femenino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Exosomas/metabolismo , Exosomas/genética , Macrófagos/metabolismo , Ratones , Progresión de la Enfermedad , Animales , Línea Celular Tumoral
11.
J Appl Toxicol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39142713

RESUMEN

Pneumonia is a serious and life-threatening lung inflammation with high morbidity and mortality. Accumulating evidence has suggested that esculin, a derivative of coumarin, possesses potent anti-inflammatory effects. This study is designed to explore the pharma role and underlying mechanism of esculin against lipopolysaccharides (LPS)-induced pneumonia. TC-1 cells were stimulated by LPS to mimic the inflammatory injury model in vitro. Cell viability, proliferation, and apoptosis were determined using MTT assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry. Interleukin-1ß and tumor necrosis factor α levels were analyzed using an enzyme-linked immunosorbent assay. Reactive oxygen species and superoxide dismutase were examined using special assay kits. Macrophage polarization was detected using flow cytometry. Mitogen-activated protein kinase 14 (MAPK14) level was detected by real-time quantitative polymerase chain reaction. MAPK14 and ubiquitin-specific protease 7 (USP7) protein levels were determined using western blot assay. After Ubibrowser database prediction, the interaction between USP7 and MAPK14 was verified using a Co-immunoprecipitation assay. The biological role of esculin was verified in LPS-challenged ALI mice in vivo. Here, we found that esculin significantly relieved LPS-induced TC-1 cell proliferation inhibition, and apoptosis, inflammatory response, oxidative stress, and M1-type macrophage polarization promotion. MAPK14 and USP7 expressions were enhanced in LPS-treated TC-1 cells, which was partly abolished by esculin treatment. Overexpressing MAPK14 attenuated the repression of esculin on LPS-triggered TC-1 cell injury. At the molecular level, USP7 interacted with MAPK14 and maintained its stability by removing ubiquitin. Moreover, esculin repressed the progression of pneumonia in vivo by regulating MAPK14. Taken together, esculin exposure could mitigate LPS-induced TC-1 cell injury partly by targeting the USP7/MAPK14 axis, providing a better understanding of the role of esculin in the anti-inflammatory therapeutics for pneumonia.

12.
Front Mol Neurosci ; 17: 1446686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135741

RESUMEN

Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.

13.
Proc Natl Acad Sci U S A ; 121(34): e2315759121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145935

RESUMEN

Ubiquitination status of proliferating cell nuclear antigen (PCNA) is crucial for regulating DNA lesion bypass. After the resolution of fork stalling, PCNA is subsequently deubiquitinated, but the underlying mechanism remains undefined. We found that the N-terminal domain of ATAD5 (ATAD5-N), the largest subunit of the PCNA-unloading complex, functions as a scaffold for Ub-PCNA deubiquitination. ATAD5 recognizes DNA-loaded Ub-PCNA through distinct DNA-binding and PCNA-binding motifs. Furthermore, ATAD5 forms a heterotrimeric complex with UAF1-USP1 deubiquitinase, facilitating the deubiquitination of DNA-loaded Ub-PCNA. ATAD5 also enhances the Ub-PCNA deubiquitination by USP7 and USP11 through specific interactions. ATAD5 promotes the distinct deubiquitination process of UAF1-USP1, USP7, and USP11 for poly-Ub-PCNA. Additionally, ATAD5 mutants deficient in UAF1-binding had increased sensitivity to DNA-damaging agents. Our results ultimately reveal that ATAD5 and USPs cooperate to efficiently deubiquitinate Ub-PCNA prior to its release from the DNA in order to safely deactivate the DNA repair process.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Unión al ADN , Antígeno Nuclear de Célula en Proliferación , Ubiquitina Tiolesterasa , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/genética , Ubiquitina/metabolismo , Daño del ADN , Unión Proteica , Proteasas Ubiquitina-Específicas
14.
Discov Med ; 36(187): 1616-1626, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190377

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a long-term, progressive, and irreversible pulmonary interstitial disease. The activation of Smad family member 2 (Smad2) and Smad3 transcription factors by transforming growth factor ß-1 (TGF-ß1) is a critical event in the pathogenesis of IPF. However, there is still a lack of understanding regarding the molecular mechanisms governing Smad2 and Smad3 proteins. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase that plays a vital role in regulating protein stability within cells. However, its regulation of the TGF-ß signaling pathway and its significance in IPF remain undiscovered. This study aims to clarify the function of USP7 in the TGF-ß signaling pathway, while simultaneously exploring the specific molecular mechanisms involved. Additionally, this study seeks to evaluate the therapeutic potential of targeted USP7 inhibitors in IPF, thereby providing novel insights for the diagnosis and management of IPF. METHODS: We first detected the expression of USP7 in lung tissues of mice with Bleomycin (BLM)-induced pulmonary fibrosis and in Beas-2B cells treated with or without TGF-ß1 through Western blot analysis. Subsequently, we explored the influence of USP7 on fibrotic processes and the TGF-ß1 signaling pathway, utilizing in vitro and in vivo studies. Finally, we assessed the effectiveness of USP7-specific inhibitors in an IPF murine model. RESULTS: In the present study, USP7 was found to de-ubiquitinate Smad2 and Smad3, consequently increasing their stability and promoting the TGF-ß1-induced production of profibrotic proteins including α-smooth muscle actin (α-SMA) and fibronectin 1 (FN-1). Inhibition or knockdown of USP7 resulted in decreased levels of Smad2 and Smad3 proteins, leading to reduced expression of FN-1, Collagen Type I Alpha 1 Chain (Col1A1), and α-SMA induced by TGF-ß1 in human pulmonary epithelial cells. These findings demonstrate that overexpression of USP7 reduces Smad2/3 ubiquitination, whereas inhibition or knockdown of USP7 enhances their ubiquitination. USP7 is abundantly expressed in IPF lungs. The expressions of USP7, Smad2, and Smad3 were upregulated in bleomycin-induced lung injury. The USP7 inhibitor P22077 reduced the expression of FN-1 and type I collagen as well as Smad2/3 and collagen deposition in lung tissue in a model of pulmonary fibrosis induced by bleomycin. CONCLUSIONS: This study demonstrates that USP7 promotes TGF-ß1 signaling by stabilizing Smad2 and Smad3. The contribution of USP7 to the progression of IPF indicates it may be a viable treatment target.


Asunto(s)
Bleomicina , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Peptidasa Específica de Ubiquitina 7 , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Proteína smad3/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Ratones , Transducción de Señal/efectos de los fármacos , Humanos , Proteína Smad2/metabolismo , Bleomicina/toxicidad , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Ubiquitinación , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Masculino , Ratones Endogámicos C57BL , Línea Celular , Pulmón/patología , Pulmón/metabolismo , Modelos Animales de Enfermedad
15.
Cell Rep ; 43(8): 114584, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39106181

RESUMEN

The transcriptional coactivator Yorkie (Yki) regulates organ size by promoting cell proliferation. It is unclear how cells control Yki activity when exposed to harmful stimuli such as oxidative stress. In this study, we show that oxidative stress inhibits the binding of Yki to Scalloped (Sd) but promotes the interaction of Yki with another transcription factor, forkhead box O (Foxo), ultimately leading to a halt in cell proliferation. Mechanistically, Foxo normally exhibits a low binding affinity for Yki, allowing Yki to form a complex with Sd and activate proliferative genes. Under oxidative stress, Usp7 deubiquitinates Foxo to promote its interaction with Yki, thereby activating the expression of proliferation suppressors. Finally, we show that Yki is essential for Drosophila survival under oxidative stress. In summary, these findings suggest that oxidative stress reprograms Yki from a proliferation-promoting factor to a proliferation suppressor, forming a self-protective mechanism.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila , Factores de Transcripción Forkhead , Proteínas Nucleares , Estrés Oxidativo , Transactivadores , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Factores de Transcripción Forkhead/metabolismo , Transactivadores/metabolismo , Proteínas Nucleares/metabolismo , Drosophila melanogaster/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Unión Proteica , Ubiquitinación , Drosophila/metabolismo , Proteínas Señalizadoras YAP
16.
Neurol Res ; : 1-10, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007840

RESUMEN

BACKGROUND: Ubiquitin-specific protease 7 (USP7) has been found to be associated with motor function recovery after spinal cord injury (SCI). Therefore, its role and mechanism in SCI process need further exploration. METHODS: SCI rat models were established via performing laminectomy at the T9-T11 spinal vertebrae and cutting spinal cord tissues. SCI cell models were constructed by inducing PC12 cells with lipopolysaccharide (LPS). The protein levels of USP7, nuclear respiratory factor 1 (NRF1), Krüppel-like factor 7 (KLF7) and apoptosis-related markers were detected by western blot. Cell viability and apoptosis were tested by cell counting kit-8 assay and flow cytometry. The contents of inflammatory factors were examined using ELISA. The interaction between NRF1 and USP7 or KLF7 was analyzed by co-immunoprecipitation assay, chromatin immunoprecipitation assay and dual-luciferase reporter assay, respectively. RESULTS: USP7 was downregulated in SCI rat models and LPS-induced PC12 cells. Overexpressed USP7 promoted viability, while repressed apoptosis and inflammation in LPS-induced PC12 cells. USP7 could stabilize NRF1 protein expression via deubiquitination, and NRF1 knockdown reversed the protective effect of USP7 against LPS-induced PC12 cell injury. NRF1 is bound to KLF7 promoter to enhance its transcription. NRF1 overexpression inhibited LPS-induced PC12 cell inflammation and apoptosis via increasing KLF7 expression. CONCLUSION: USP7 alleviated inflammation and apoptosis in LPS-induced PC12 cells via NRF1/KLF7 axis, indicating that targeting of USP7/NRF1/KLF7 axis might be a promising treatment strategy for SCI.

17.
Arch Physiol Biochem ; : 1-8, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066661

RESUMEN

Background: This study aimed to explore the molecular mechanism of homeodomain-interacting protein kinase 2 (HIPK2) in diabetic foot ulcers (DFU).Methods: High glucose (HG)-induced human umbilical vein endothelial cells (HUVECs) were used to construct DFU cell models. Cell functions were determined using CCK8 assay, EdU assay, flow cytometry, transwell assay, wound healing assay and tube formation assay. Quantitative real-time PCR and western blot were applied to measure the gene expression.Results: HG treatment suppressed HUVECs proliferation, invasion, migration, and angiogenesis, while enhanced apoptosis. HIPK2 was overexpressed in DFU patients, and its knockdown alleviated HG-induced HUVECs dysfunctions. USP7 stabilised HIPK2 protein by reducing its ubiquitination. USP7 overexpression promoted HG-induced HUVECs dysfunctions, and HIPK2 upregulation also reversed the regulation of USP7 knockdown on HG-induced HUVECs dysfunctions. USP7/HIPK2 axis inhibited the activity of PI3K/AKT pathway.Conclusion: Our study revealed that USP7-stabilised HIPK2 contributed to HG-induced HUVECs dysfunctions, thus accelerating DFU process.

18.
Cell Rep ; 43(6): 114366, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38879877

RESUMEN

p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231. USP7 phosphorylation is essential for its deubiquitination activity toward p53. USP7 also deubiquitinates CHK2 at K119 and K131, increasing CHK2 stability and creating a positive feedback loop between CHK2 and USP7. Compared to peri-tumor tissues, thyroid cancer and colon cancer tissues show higher CHK2 and phosphorylated USP7 (S168, T231) levels, and these levels are positively correlated. Collectively, our results uncover a phosphorylation-deubiquitination positive feedback loop involving the CHK2-USP7 axis that supports the stabilization of p53 and the maintenance of cell homeostasis.


Asunto(s)
Quinasa de Punto de Control 2 , Estrés Oxidativo , Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación , Quinasa de Punto de Control 2/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Fosforilación , Retroalimentación Fisiológica , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Transducción de Señal , Línea Celular Tumoral , Estabilidad Proteica , Animales
19.
Cell Rep ; 43(5): 114194, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38735043

RESUMEN

Class switch recombination (CSR) diversifies the effector functions of antibodies and involves complex regulation of transcription and DNA damage repair. Here, we show that the deubiquitinase USP7 promotes CSR to immunoglobulin A (IgA) and suppresses unscheduled IgG switching in mature B cells independent of its role in DNA damage repair, but through modulating switch region germline transcription. USP7 depletion impairs Sα transcription, leading to abnormal activation of Sγ germline transcription and increased interaction with the CSR center via loop extrusion for unscheduled IgG switching. Rescue of Sα transcription by transforming growth factor ß (TGF-ß) in USP7-deleted cells suppresses Sγ germline transcription and prevents loop extrusion toward IgG CSR. Mechanistically, USP7 protects transcription factor RUNX3 from ubiquitination-mediated degradation to promote Sα germline transcription. Our study provides evidence for active transcription serving as an anchor to impede loop extrusion and reveals a functional interplay between USP7 and TGF-ß signaling in promoting RUNX3 expression for efficient IgA CSR.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Inmunoglobulina A , Cambio de Clase de Inmunoglobulina , Activación Transcripcional , Peptidasa Específica de Ubiquitina 7 , Animales , Humanos , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Ratones Endogámicos C57BL , Estabilidad Proteica , Factor de Crecimiento Transformador beta/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Ubiquitinación
20.
Biochem Biophys Res Commun ; 722: 150149, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788355

RESUMEN

OBJECTIVE: The objective of this study was to examine the potential of USP7 as a target for senolytic therapy and to investigate the molecular mechanism by which its inhibitor selectively induced apoptosis in senescent HDF and enhanced DFU wound healing. METHODS: Clinical samples of DFU were collected to detect the expression of USP7 and aging-related proteins using immunohistochemistry and Western blot. In addition, ß-galactosidase staining, qPCR, flow cytometry, ROS and MMP kits, and Western blot were used to analyze the biological functions of P5091 on senescence, cycle, and apoptosis. RNAseq was employed to further analyze the molecular mechanism of P5091. Finally, the DFU rat model was established to evaluate the effect of P5091 on wound healing. RESULTS: The expression of USP7 and p21 were increased in DFU clinical samples. After treatment with d-glucose (30 mM, 7 days), ß-galactosidase staining was deepened, proliferation rate decreased. USP7 inhibitors (P5091) could reduce the release of SASP factors, activate the production of ROS, and reduce MMP. In addition, it induced apoptosis and selectively clears senescent cells through the p53 signaling pathway. Finally, P5091 can improve diabetic wound healing in rats. CONCLUSION: This study clarified the molecular mechanism of USP7 inhibitor (P5091) selectively inducing apoptosis of high glucose senescent HDF cells. This provides a new senolytics target and experimental basis for promoting DFU wound healing.


Asunto(s)
Senescencia Celular , Transducción de Señal , Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Cicatrización de Heridas , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Animales , Cicatrización de Heridas/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Senescencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Pie Diabético/tratamiento farmacológico , Pie Diabético/metabolismo , Pie Diabético/patología , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Tiofenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA