Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.209
Filtrar
1.
J Hazard Mater ; 480: 135741, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39259997

RESUMEN

In this work, Fe3+-doped and -NH2-grafted montmorillonite-based material was prepared and the adsorption ability for uranium(VI) was verified. The microstructure and pore size distribution of the montmorillonite-based material were investigated by N2 adsorption-desorption analyzer and scanning electron microscopy. The surface groups and composition were analyzed by Fourier transform infrared spectrometer, X-ray photoelectron spectrometer and X-ray diffractometer, which proved the successful doping of Fe3+ and grafting of -NH2. In the adsorption study, the adsorption reached equilibrium within 100 min with a maximum adsorption capacity of 661.2 mg/g at pH = 6 and a high adsorption efficiency of 99.4 % at low uranium(VI) concentration (pH = 6, m/V = 0.5 g/L). The mechanism study showed that the strong synergistic complexation of -OH and -NH2 for uranium(VI) played a decisive role in the adsorption process and the transport function of interlayer bound water could also enhance the adsorption probability of uranium(VI) species. These results were far superior to other reported similar materials, which proved that the Fe3+-doped and -NH2-grafted montmorillonite-based material possessed an extremely high application potential in adsorption, providing a new route for the modification of montmorillonite.

2.
J Environ Radioact ; 279: 107523, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222598

RESUMEN

Coal fly ash (CFA) is an essential raw material in brickmaking industry worldwide. There are some coal mines with a relatively high content of uranium (U) in the Xinjiang region of China that are yet understudied. The CFA from these coal mines poses substantial environmental risks due to the concentrated uranium amount after coal burning. In this paper, we demonstrated a calcifying ureolytic bacterium Halomonas sp. SBC20 for its biocementation of U in CFA based on microbially induced calcite precipitation (MICP). Rectangle-shaped CFA bricks were made from CFA using bacterial cells, and an electric testing machine tested their compressive strength. U distribution pattern and immobility against rainfall runoff were carefully examined by a five-stage U sequential extraction method and a leaching column test. The microstructural changes in CFA bricks were characterized by FTIR and SEM-EDS methods. The results showed that the compressive strength of CFA bricks after being cultivated by bacterial cells increased considerably compared to control specimens. U mobility was significantly decreased in the exchangeable fraction, while the U content was markedly increased in the carbonate-bound fraction after biocementation. Much less U was released in the leaching column test after the treatment with bacterial cells. The FTIR and SEM-EDX methods confirmed the formation of carbonate precipitates and the incorporation of U into the calcite surfaces, obstructing the release of U into the surrounding environments. The technology provides an effective and economical treatment of U-contaminated CFA, which comes from coal mines with high uranium content in the Xinjiang region, even globally.


Asunto(s)
Biodegradación Ambiental , Carbonato de Calcio , Ceniza del Carbón , Uranio , Uranio/metabolismo , Ceniza del Carbón/química , Carbonato de Calcio/química , China , Halomonas/metabolismo , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/metabolismo
3.
Chemosphere ; : 143251, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233301

RESUMEN

Activated carbon (AC) systems and reverse osmosis (RO) systems are commonly used point-of-use (POU) water filtration systems for removing trace-level contaminants in tap water to protect human health. However, limited research has been done to evaluate their effectiveness in removing heavy metals like manganese (Mn) and uranium (U), or to assess the potential for undesired microbial growth within POU systems, which can reduce their treatment efficiency. This study aimed to systematically evaluate the removal of metals and assimilable organic carbon (AOC) in POU systems. AC systems were operated to 200% of their designed treatment capacities and RO systems were run for three weeks. The results showed that AC systems were generally ineffective at removing metals from drinking water, while RO systems effectively removed them. Both Mn and U were poorly removed by AC systems. Calcium (Ca) and magnesium (Mg) were poorly removed by AC systems, with efficiencies of less than 1%. Iron (Fe) removal by AC systems varied between 61% and 84%. Copper (Fe), likely due to its low influent concentration (<30 µg L-1), was effectively removed by AC systems with efficiencies over 95%. In contrast, RO systems consistently removed all metals effectively. Mn and U removal in RO systems exceeded 95%, while Ca, Mn, Fe, and Cu were all removed with efficiencies greater than 98%. AOC was effectively removed from all AC and RO systems, but with high variability in removal efficiency, which is likely attributed to the heterogeneity of biofilm and microbial growth within the POU systems. The new knowledge generated from this study can improve our understanding of chemical contaminant removal in POU systems and inform the development of better strategies for designing and operating POU systems to remove chemical contaminants in drinking water and mitigate their associated health risks.

4.
Microb Ecol ; 87(1): 111, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39231820

RESUMEN

In this study, we investigated the effect of detoxifying substances on U(VI) removal by bacteria isolated from mine soil. The results demonstrated that the highest U(VI) removal efficiency (85.6%) was achieved at pH 6.0 and a temperature of 35 °C, with an initial U(VI) concentration of 10 mg/L. For detoxifying substances, signaling molecules acyl homoserine lactone (AHLs, 0.1 µmol/L), anthraquinone-2, 6-disulfonic acid (AQDS, 1 mmol/L), reduced glutathione (GSH, 0.1 mmol/L), selenium (Se, 1 mg/L), montmorillonite (MT, 1 g/L), and ethylenediaminetetraacetic acid (EDTA, 0.1 mmol/L) substantially enhanced the bacterial U(VI) removal by 34.9%, 37.4%, 54.5%, 35.1%, 32.8%, and 47.8% after 12 h, respectively. This was due to the alleviation of U(VI) toxicity in bacteria through detoxifying substances, as evidenced by lower malondialdehyde (MDA) content and higher superoxide dismutase (SOD) and catalase (CAT) activities for bacteria exposed to U(VI) and detoxifying substances, compared to those exposed to U(VI) alone. FTIR results showed that hydroxyl, carboxyl, phosphorus, and amide groups participated in the U(VI) removal. After exposure to U(VI), the relative abundances of Chryseobacterium and Stenotrophomonas increased by 48.5% and 12.5%, respectively, suggesting their tolerance ability to U(VI). Gene function prediction further demonstrated that the detoxifying substances AHLs alleviate U(VI) toxicity by influencing bacterial metabolism. This study suggests the potential application of detoxifying substances in the U(VI)-containing wastewater treatment through bioremediation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Minería , Microbiología del Suelo , Uranio , Uranio/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Acil-Butirolactonas/metabolismo , Glutatión/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo
5.
Sci Rep ; 14(1): 20474, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227658

RESUMEN

The emergence of the Middle Palaeolithic, and its variability over time and space are key questions in the field of prehistoric archaeology. Many sites have been documented in the south-eastern margins of the Massif central and the middle Rhône valley, a migration path that connects Northern Europe with the Mediterranean. Well-dated, long stratigraphic sequences are essential to understand Neanderthals dynamics and demise, and potential interactions with Homo sapiens in the area, such as the one displayed at the Maras rock shelter ("Abri du Maras"). The site is characterised by exceptional preservation of archaeological remains, including bones dated using radiocarbon (14C) and teeth using electron spin resonance combined with uranium series (ESR/U-series). Optically stimulated luminescence was used to date the sedimentary deposits. By combining the new ages with previous ones using Bayesian modelling, we are able to clarify the occupation time over a period spanning 200,000 years. Between ca. 250 and 40 ka, the site has been used as a long-term residence by Neanderthals, specifically during three interglacial periods: first during marine isotopic stage (MIS) 7, between 247 ± 34 and 223 ± 33 ka, and then recurrently during MIS 5 (between 127 ± 17 and 90 ± 9 ka) and MIS 3 (up to 39,280 cal BP).


Asunto(s)
Arqueología , Hombre de Neandertal , Datación Radiométrica , Animales , Datación Radiométrica/métodos , Francia , Humanos , Fósiles , Diente/anatomía & histología , Sedimentos Geológicos/análisis , Teorema de Bayes , Huesos/anatomía & histología , Espectroscopía de Resonancia por Spin del Electrón/métodos , Uranio/análisis , Historia Antigua
6.
Artículo en Inglés | MEDLINE | ID: mdl-39250596

RESUMEN

The abundance of uranium (U(VI)) reserves in seawater makes it crucial to develop economically efficient methods for uranium extraction from seawater. In this work, an enhanced polyamidoxime porous membrane (PAOM) was fabricated by pre-in situ amidoxime modification combined with nonsolvent-induced phase separation (NIPS). The strategy of in situ modification of the polyacrylonitrile (PAN) solution served to enhance the homogeneity of the reaction and avoid the destruction of the membrane matrix and pore structure. Compared with the control sample (AOPM), PAOM possessed better mechanical strength and hydrophilicity. The introduction of polyvinylpyrrolidone (PVP) formed a porous structure in PAOM, improving spatial accessibility and facilitating the diffusion transport and capture of UO22+ inside the membrane. The more uniform and abundant distribution of amidoxime groups in PAOM gave it ultrahigh adsorption capacity and selectivity. The equilibrium adsorption capacity and Kd value of PAOM were 1.72 and 5.51 times higher than those of AOPM. Meanwhile, PAOM also demonstrated good recyclability, with only a 6.15% decrease in adsorption capacity after seven cycles. Additionally, PAOM exhibited excellent dynamic adsorption performance, and after 14 days of continuous filtration and adsorption, PAOM could extract 2.03 mg·g-1 U(VI) from natural seawater.

7.
Int J Environ Health Res ; : 1-12, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252394

RESUMEN

In this study we evaluate the uranium and radon concentrations in groundwater from the Province of Safi. The samples were collected from 58 wells across five communes and analyzed using the LR-115 type II detector. Results indicate that uranium concentrations ranged from the Limit of Detection (LLD) to 3.73 µg/l, with a mean of 0.72 µg/l, well below the World Health Organization's safe limit of 30 µg/l. Radon levels varied from LLD to 2.39 Bq/l, with an average of 0.60 Bq/l, also below the United States Environmental Protection Agency's limit of 11 Bq/l. The estimated total annual effective dose due to uranium and radon ranged from 3.47 to 18.84 µSv/y, with an average of 7.54 µSv/y, which is significantly lower than the European Commission's recommended limit of 100 µSv/y. This investigation represents the first study of uranium and radon levels in groundwater in the Province of Safi, providing valuable data for future research and public health.

8.
J Hazard Mater ; 479: 135739, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243536

RESUMEN

Bioelectrochemical system (BES) is a promising technology for uranium recovery, which also enables simultaneous electricity generation. However, the bioelectrochemical recovery of uranium is hindered by its slow process due to the low reduction potential provided by microorganisms. Herein, we developed an innovative bioelectrochemical-photocatalytic system (BEPS) that combines the advantages of BES and photocatalysis, achieving enhanced uranium removal and recovery. The photogenerated electrons in BEPS possess a more negative reduction potential and stronger reduction capability than microbial electrons in BES, significantly accelerating uranium reduction and deposition on the electrode surface. Moreover, the electrons from the bioanode combine with photogenerated holes through the external circuit, effectively inhibiting the recombination of charge carriers. The BEPS significantly enhances uranium removal efficiency, kinetic, and electricity generation through a synergistic coupling mechanism between the bioanode and photocathode. Notably, the UO2 deposited on the electrode surface exhibited a recovery efficiency of 98.21 ± 1.37%, and the regenerated electrode sustained its photoelectric response and uranium removal capabilities. Our findings highlight the potential of the BEPS as an effective technology for uranium recovery and electricity generation.

9.
Int J Biol Macromol ; 279(Pt 3): 135314, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236941

RESUMEN

The composite of a polyelectrolyte combination of chitosan and phytic acid (CsPa) and its entrapped form in polyacrylamide (PAAmCsPa) were synthesized. The composites were characterized by a number of methods including ATR-FTIR, SEM-EDX, XRD and XPS. The adsorptive properties of CsPa and PAAmCsPa were analyzed and modelled for UO22+ and methylene blue (MB+). The results showed that the composites exhibited physico-chemical properties that were both inherited from the components as well as unique to them. The isotherms of UO22+ and MB+ were L-type Giles isotherms. The adsorption kinetics followed the pseudo-second-order model, in contrast to the Langmuir model, which predicts first-order kinetics for both species. According to the Weber-Morris model, the nature of the adsorption process was ion exchange and/or complex formation for both composites and ions. The thermodynamics showed that the adsorption process was endothermic (ΔH > 0), with increasing entropy (ΔS > 0) and spontaneous (ΔG < 0). The reusability tests of the composites for UO22+ adsorption showed that the composites were substantially reusable for 6 cycles. The composites were selective for UO22+ over MB+ ions, and UO22+ adsorption increased significantly when MB+ adsorbed composites were used. Reproducible measurements demonstrating the storability of the composites were obtained over a period of approximately one year.

10.
Environ Sci Technol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136670

RESUMEN

Surface water and sediments from the Jackpile mine, St. Anthony mine, Rio Paguate, Rio Moquino, and Mesita Dam areas near Pueblo of Laguna, New Mexico, were analyzed for 226Ra and U using gamma (γ) spectroscopy and inductively coupled plasma mass spectroscopy, respectively. Activity ratios for 226Ra/238U for solid samples range from 0.34 ± 0.13 to 16 ± 2.9, which reflect uranium transport and accumulation (<1), relatively pristine material in secular equilibrium (1), and removal of uranium by weathering (>1). Concentrations ranging from 80 to 225 µg L-1 U were detected in unfiltered water samples near the Jackpile mine. Water samples upstream and downstream from the mine contained concentrations ranging from 12 to 15 µg L-1 U. Water samples collected from the North Pit standing pond in the Jackpile mine contained as much as 1560 pCi L-1 of 226Ra, and passing the water through a 0.2 µM filter did not substantially reduce the activity of 226Ra in the water. 234Th and 226Ra are in secular equilibrium in this water, while radon gas was lost from the water. The results of the current study provide insight into the distribution of U-series radionuclides in the Pueblo of Laguna area, including detection of high levels of radioactivity in water at some locations within the Jackpile mine.

11.
Environ Sci Technol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141319

RESUMEN

Large quantities of uranium-containing radioactive wastewater are typically generated during nuclear fuel cycle processes. Despite significant efforts, efficient capture of migratable hexavalent uranium U(VI) is still a huge challenge due to its acidity, radioactivity, coexisting organics, and high impurity cation abundance in wastewater. Herein, we have fabricated all-polymer-based 0D/2D C4N/C6N7 homostructure hybrids with an S-scheme electronic configuration by coordinating the band engineering of semiconductors to enrich uranium species from the complex wastewater environment. The sample can capture over 97% of U(VI) in the actual concentration of nuclear industrial reprocessing wastewater; also, the U(VI) enrichment ratio still exceeds 95% when the irradiation dose (including α, ß, and γ) is up to 100 kGy. Density functional theory and X-ray absorption spectroscopy demonstrate that the aggregation of charge carriers on the surface of the sample regulates the electron-rich microenvironment, thus accelerating the reduction conversion of single electron reaction uranium disproportionation. It is expected that this work can provide more insight into other functional materials, thereby promoting uranium removal advancements in nuclear wastewater.

12.
Nanomaterials (Basel) ; 14(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120402

RESUMEN

Uranium is the most important fuel for nuclear power operations, and the safe supply of its resources is the key to the development of nuclear power in China. Because of the complex seawater environment and extremely low uranium concentration, extracting uranium from natural seawater poses a significant challenge. In this study, a polyamidoxime-phosphorylated cellulose nanofibril composite aerogel was prepared as an adsorbent for uranium extraction from seawater. An adsorption kinetics test, equilibrium adsorption isotherm model fitting, an adsorption-desorption cycle test, and a selectivity test were carried out to evaluate the adsorption performance of the composite aerogel for uranium extraction. The adsorption capacities for the initial concentrations of 4 and 8 ppm in uranium-spiked pure water were 96.9 and 204.3 mg-U/g-Ads, respectively. The equilibrium uranium adsorption capacities of uranium-spiked simulated seawater were 38.9 and 51.7 mg-U/g-Ads, respectively. The distribution coefficient KD of uranium was calculated to be 2.5 × 107 mL/g. The results show that the polyamidoxime-phosphorylated cellulose nanofiber composite aerogels prepared in this study have the advantages of low cost and high uranium selectivity for uranium extraction from seawater.

13.
Small ; : e2403684, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096108

RESUMEN

The prevalent π-π interactions in 2D covalent organic frameworks (COFs) impart a certain flexibility to the structures, making the stacking of COF layers susceptible to external stimuli and introducing some structural disorder. Recent research indicates that the flexibility between COF layers and the associated disorder significantly influence their selective adsorption performance toward gas molecules. However, the adsorption process in a solution environment is more complex compared to gas-phase adsorption, involving interactions between adsorbents and adsorbates, as well as the solvation effects of flexible 2D COFs. Therefore, the inherent flexibility and disorder in 2D COFs under solution conditions and their impact on the adsorption performance of metal ions have not been observed yet. Herein, the synthesis of a novel carboxyl-functionalized COF featuring stable ß-ketoenamine and benzimidazole linkages, named DMTP-COOH, is presented. DMTP-COOH exhibits excellent selective adsorption capability for uranium, with significantly different adsorption capacities observed after treatment with different solvents. This notable difference in adsorption capacity is observed under varying pH, concentration, time, and even in the presence of multiple competing ions. This work represents the first observation of the significant impact of solvent soaking treatment on the selective adsorption performance of COFs for uranium under liquid conditions.

14.
J Colloid Interface Sci ; 677(Pt A): 470-480, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39098280

RESUMEN

Photocatalysis has emerged as a extremely promising green technology for the treatment of uranium-containing wastewater. This study focuses on the fabrication of Ti3C2Tx/Cd0.8Zn0.2S composites with Schottky junctions through the in-situ growth of Cd0.8Zn0.2S on Ti3C2Tx nanosheets, enabling efficient photoreduction of U(VI) without the requirement of sacrificial agents. The results demonstrate that the Ti3C2Tx/Cd0.8Zn0.2S composites achieve remarkable 99.48 % U(VI) reduction efficiency within 60 min in a 100 ppm uranium solution. Furthermore, the removal rate remains above 90 % after five cycles. The formation of Schottky heterojunctions by Ti3C2Tx and Cd0.8Zn0.2S leads to the generation of an internal electric field that significantly promotes the rapid separation and transfer of photogenerated carriers, thereby enhancing the photocatalytic reduction efficiency of Ti3C2Tx/Cd0.8Zn0.2S-3:100 (TC/CZS-3:100). A considerable amount of electrons accumulate on Ti3C2Tx via the Schottky barrier, effectively facilitating the reduction of U(VI) to U(IV). As a co-catalyst, Ti3C2Tx enhances the photocatalytic performance and stability of Cd0.8Zn0.2S. Moreover, the practical application in the waste liquid of rare earth tailings reveals that the removal rate can be as high as 91.24 %. This research is of significant value in the development of effective photocatalysts for the elimination of uranium from wastewater.

15.
J Colloid Interface Sci ; 677(Pt A): 435-445, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39098277

RESUMEN

Extraction uranium (VI) (U(VI)) from wastewater and seawater is highly important for environmental protection and life safety, but it remains a great challenge. In this work, the growth of the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles on the tannic acid (TA)-3-aminopropyltriethoxysilane (APTES) modified PVDF (TAP) membrane was designed to obtain an excellent U(VI) adsorbent. The zeolite imidazolate framework composite membrane (TAPP-ZIF-60) was prepared through polyethyleneimine (PEI) bridging strategy and temperature regulation strategy in solvothermal method. The coordination bond between PEI and ZIF-8 and the covalent bond between PEI and TAP are essential in forming stable composite membrane. TAPP-ZIF with different properties was synthesized through a temperature regulation process and the TAPP-ZIF prepared at 60 °C has the uniform morphology and good performance. The adsorption capacity of TAPP-ZIF-60 is 153.68 mg/g (C0 = 95.01 mg/L and pH = 8.0) and water permeability is 5459 L m-2 h-1 bar-1. After ten adsorption-desorption cycles, it is proved that TAPP-ZIF-60 has good repeatability and stability. In addition, the TAPP-ZIF-60 composites membrane has a good inhibitory effect on Staphylococcus aureus and Escherichia coli. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis reveal that the coordination between TAPP-ZIF-60 and uranyl ions is the primary factor contributing to the high adsorption capacity.

16.
Environ Monit Assess ; 196(9): 779, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096402

RESUMEN

The present study focused on the distribution of uranium in groundwater samples collected from various sources in the Chikkaballapur district and its associated risk in humans. Seventy-five groundwater samples were collected during pre-monsoon and post-monsoon seasons and were analysed for uranium concentration along with different water quality parameters. The uranium concentration ranged from 0.23 to 285.23 µg/L in the pre-monsoon season and from 0.02 to 107.87 µg/L in the post-monsoon season. More than 90% of samples, except a few, were under the safe limits of 60 µg/L as directed by the Department of Atomic Energy (DAE) of India's Atomic Energy Regulatory Board (AERB). The study analysed physicochemical parameters like pH, total dissolved solids (TDS), nitrate, total hardness, phosphate, sulphate and fluoride in collected water samples. Out of all samples, few samples noted higher values of TDS, nitrate and fluoride. Their correlation along with uranium is detailed in the study. Owing to its slightly elevated content, an evaluation of the radiological and chemical hazards associated with uranium consumption was analysed. When the risk resulting from chemical toxicity was evaluated, relatively few samples had a hazard quotient (HQ) score higher than 1, which suggested that the people were vulnerable to chemical danger. This study also evaluates the dangers of elevated uranium levels in groundwater samples to the general public's health. It also acknowledges the importance of routinely evaluating and treating the drinking water sources in the region.


Asunto(s)
Agua Subterránea , Uranio , Contaminantes Radiactivos del Agua , Uranio/análisis , India , Agua Subterránea/química , Medición de Riesgo , Contaminantes Radiactivos del Agua/análisis , Humanos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Monitoreo de Radiación
17.
Sci Rep ; 14(1): 18828, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138280

RESUMEN

The global challenge of on-site detection of highly enriched uranium (HEU), a substance with considerable potential for unauthorized use in nuclear security, is a critical concern. Traditional passive nondestructive assay (NDA) techniques, such as gamma-ray spectroscopy with high-purity germanium detectors, face significant challenges in detecting HEU when it is shielded by heavy metals. Addressing this critical security need, we introduce an on-site detection method for lead-shielded HEU employing a transportable NDA system that utilizes the 252Cf rotation method with a water Cherenkov neutron detector. This cost-effective NDA system is capable of detecting 4.17 g of 235U within a 12 min measurement period using a 252Cf source of 3.7 MBq. Integrating this system into border control measures can enhance the prevention of HEU proliferation significantly and offer robust deterrence against nuclear terrorism.

18.
Sci Rep ; 14(1): 17992, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097624

RESUMEN

In the study presented here, the initial (that is, before the start of the process of natural hydrochemical influence) mineral formula of metamict polycrase in the composition of granite pegmatites of the Baltic Shield, applying an uranium natural half-leaching period, was calculated. To investigate the characteristics of immobilization of actinides in the studied polycrase, the absolute and relative uranium contents are compared with the corresponding uranium contents in the original betafite of the same deposit and age. It has been shown that over its geological history, betafite has lost up to 80% of its original uranium content. The proportion of uranium preserved in polycrase is twice as high. It is concluded that the difference in the relative content of uranium (27.3 wt% in polycrase and 31.6 wt% in betafite) cannot be the only reason for the complete oxidation of uranium in betafite, given that in polycrase 30% of uranium is preserved in the tetravalent state. It is more likely that the oxidation of uranium in betafite was primarily a result of the low ionicity of the chemical bonds compared to that in polycrase. This allows us to consider minerals of the euxenite group to be quite promising as matrix materials for the immobilization of actinides. At the same time, an opinion was expressed on the advisability of further comparative studies of Nb-Ta-Ti-oxides of the mineral groups AB2O6 and A2B2O7 for their use at the final stage of the nuclear fuel cycle.

19.
Angew Chem Int Ed Engl ; : e202413071, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103902

RESUMEN

A rapid in situ synthesis of electrochromic covalent organic frameworks (EC-COFs) was proposed by using green electrochemical interface polymerization of N,N,N',N'-tetrakis(p-aminophenyl)p-phenylenediamine (TPDA) and 2,5-dihydroxy-p-phenylenedicarboxaldehyde (DHBD). The synthetized TPDA-DHBD films exhibit stable polymorphic colour variations under different applied potentials, which can be attributed to the redox state changes of bis(triphenylamine) and imine electroactive functional groups within the COFs skeleton. TPDA-DHBD represents markedly different electrochromisms from red to cyan due to the steric hindrance effect caused by the presence of UO22+, demonstrating the unique tunability of COFs materials. This work offers a new feasible idea for rapid EC-COFs synthesis and tunable EC-COFs realization.

20.
Chemosphere ; 364: 143018, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111674

RESUMEN

In this paper, we report hydroxyapatite derived from egg-shell biowaste embedded on diglycolamic acid functionalized graphitic carbon nitride nanocomposite (abbreviated as HAp@D-gCN). The compositional and morphological characteristics of HAp@D-gCN were evaluated using scanning electron microscope, X-ray diffraction, BET, FTIR techniques and surface charge using zeta potential measurement. The sorption of U(VI) species on HAp@D-gCN was investigated through batch studies as a function of pH, contact time, initial U(VI) concentration, adsorbent dosage and ionic strength. The adsorption of U(VI) onto HAp@D-gCN was confirmed by FTIR, XRD and EDS elemental mapping. Adsorption kinetics follow pseudo second order model and it attains equilibrium within 20 min. Adsorption isotherm data correlates well with Langmuir isotherm model with a maximum sorption capacity of 993.6 mg of U(VI) per gram of HAp@D-gCN at 298K. U(VI) can be leached from the loaded adsorbent using 0.01 M Na2CO3 as desorbing agent and its sorption capacity remains unaffected even after 4 adsorption-desorption cycles. Hence, the present study reveals that HAp@D-gCN nanocomposite could serve as an environmental friendly material with potential application in environmental remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA