Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Intern Emerg Med ; 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39487926

RESUMEN

Cigarette smoking contributes to reduced cardiorespiratory performance, which may improve upon cessation. Consequently, former smokers' cardiorespiratory fitness should not be significantly different from that of never-smokers. This study aims to compare V̇O2max values among current, former, and never smokers and assess the repeatability of measurements using the Chester Step Test (CST). V̇O2max measurements were available from a total of 70 subjects (23 current, 23 former, and 24 never-smokers) and showed significant repeatability. Current smokers had the worst aerobic capacity, with a mean VO2max ± SD of 38.8 ± 4.5, which was significantly lower than the VO2max of 41.62 ± 3.8 in never-smokers (p < 0.0001) and 41.43 ± 4.6 in former smokers (p < 0.0001). No significant differences were observed between never-smokers and former smokers. V̇O2max estimates by CST were reproducible and showed that the aerobic capacity of individuals who smoke is substantially inferior compared to never and former smokers. Improvement in cardiorespiratory performance following smoking cessation may have important implications for smoking cessation, especially for those smokers who perceive enhanced physical performance as a tangible benefit.

2.
J Appl Physiol (1985) ; 137(5): 1092-1105, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39236115

RESUMEN

Altitude training is a cornerstone for endurance athletes for improving blood variables and performance, with optimal effects observed at ∼2,300-2,500 meters above sea level (m.a.s.l.). However, elite cyclists face challenges such as limited access to such altitudes, inadequate training facilities, and high expenses. To address these issues, a novel method involving daily exposure to carbon monoxide (CO) has been proposed to amplify altitude training adaptations at suboptimal altitudes. Thirty-one male cyclists were assigned to three groups: Live-High Train-High with CO inhalation (LHTHCO), Live-High Train-High (LHTH), and Live-Low Train-Low (LLTL). The LHTHCO group underwent CO inhalation twice daily in the afternoon/evening to elevate carboxyhemoglobin concentration to ∼10%. Hematological variables, in vivo muscle oxidative capacity, and physiological indicators of cycling performance were assessed before and after a 3-week altitude training camp at 2,100 m.a.s.l. LHTHCO demonstrated a larger increase in hemoglobin mass (Hbmass) compared to both LHTH and LLTL. Although there were no statistical differences between LHTHCO and LHTH in submaximal and maximal performance measures, LHTHCO displayed greater improvements in 1-min maximal power output during incremental testing (Wmax), power output at lactate threshold, and maximal oxygen consumption (V̇o2max) compared to LLTL. LHTH demonstrated a larger improvement than LLTL in Wmax and V̇o2max, with no group differences in Hbmass or submaximal measures. Muscle oxidative capacity did not differ between groups. These findings suggest that combining moderate-altitude training with daily CO inhalation promotes hematological adaptations more effectively than moderate altitude alone and enhances cycling performance metrics in cyclists more than sea-level training.NEW & NOTEWORTHY Three weeks of training at moderate altitude with exposure to low doses of CO can significantly enhance hematological adaptations in elite cyclists compared to moderate-altitude training alone. Cycling performance determinants improved more with CO inhalation at moderate altitude compared to sea-level training, whereas there were no differences in submaximal and maximal performance measures compared to moderate-altitude training alone. This study highlights the potential of CO supplementation as an effective adjunct to altitude training regimens.


Asunto(s)
Altitud , Atletas , Rendimiento Atlético , Ciclismo , Monóxido de Carbono , Humanos , Masculino , Ciclismo/fisiología , Monóxido de Carbono/metabolismo , Rendimiento Atlético/fisiología , Adulto , Adulto Joven , Consumo de Oxígeno/fisiología , Suplementos Dietéticos , Adaptación Fisiológica/fisiología , Resistencia Física/fisiología
3.
J Appl Physiol (1985) ; 137(4): 975-983, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39205637

RESUMEN

Sickle cell disease (SCD) is characterized by central (cardiac) and peripheral vascular dysfunctions, significantly diminishing exercise capacity and quality of life. Although central cardiopulmonary abnormalities in SCD are known to reduce exercise capacity and quality of life; the impact of hemolysis and subsequent cell-free hemoglobin (Hb)-mediated peripheral vascular abnormalities on those outcomes are not fully understood. Despite the recognized benefits of exercise training for cardiovascular health and clinical management in chronic diseases like heart failure, there remains substantial debate on the advisability of regular physical activity for patients with SCD. This is primarily due to concerns that prolonged and/or high-intensity exercise might trigger metabolic shifts leading to vaso-occlusive crises. As a result, exercise recommendations for patients with SCD are often vague or nonexistent, reflecting a gap in knowledge about the mechanisms of exercise intolerance and the impact of exercise training on SCD-related health issues. This mini-review sheds light on recent developments in understanding how SCD affects exercise tolerance, with a special focus on the roles of hemolysis and the release of cell-free hemoglobin in altering cardiovascular and skeletal muscle function. Also highlighted here is the emerging research on the therapeutic effects and safety of exercise training in patients with SCD. In addition, the review identifies future research opportunities to fill existing gaps in our understanding of exercise (in)tolerance in SCD.


Asunto(s)
Anemia de Células Falciformes , Tolerancia al Ejercicio , Ejercicio Físico , Hemólisis , Músculo Esquelético , Humanos , Anemia de Células Falciformes/fisiopatología , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/metabolismo , Hemólisis/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Ejercicio Físico/fisiología , Tolerancia al Ejercicio/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo
4.
Eur J Sport Sci ; 24(7): 889-898, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956783

RESUMEN

A non-exercise method equation using seismocardiography for estimating V̇O2peak (SCG V̇O2peak) has previously been validated in healthy subjects. However, the performance of the SCG V̇O2peak within a trained population is unknown, and the ability of the model to detect changes over time is not well elucidated. Forty-seven sub-elite football players were tested at the start of pre-season (SPS) and 36 players completed a test after eight weeks at the end of the pre-season (EPS). Testing included an SCG V̇O2peak estimation at rest and a graded cardiopulmonary exercise test (CPET) on a treadmill for determination of V̇O2peak. Agreement between SCG V̇O2peak and CPET V̇O2peak showed a large underestimation at SPS (bias ± 95% CI: -9.9 ± 1.8, 95% Limits of Agreement: 2.2 to -22.0 mL·min-1 kg-1). At EPS no interaction (p = 0.3590) but a main effect of time (p < 0.0001) and methods (p < 0.0001) was observed between SCG and CPET V̇O2peak. No correlation in V̇O2peak changes was observed between SCG and CPET (r = -20.0, p = 0.2484) but a fair agreement in classifying the correct directional change in V̇O2peak with the SCG method was found (Cohen's κ coefficient = 0.28 ± 0.25). Overall, the SCG V̇O2peak method lacks accuracy and despite being able to estimate group changes, it was incapable of detecting individual changes in V̇O2peak following a pre-season period in sub-elite football players. The SCG algorithm needs to be further adjusted and the accuracy and precision improved for the method to be applicable for use within a trained population.


Asunto(s)
Prueba de Esfuerzo , Consumo de Oxígeno , Fútbol , Humanos , Prueba de Esfuerzo/métodos , Fútbol/fisiología , Adulto Joven , Masculino , Consumo de Oxígeno/fisiología , Adulto , Atletas , Adolescente
5.
Int J Exerc Sci ; 17(4): 633-647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863601

RESUMEN

Maximal oxygen consumption (V̇O2max) is an important measure of aerobic fitness, with applications in evaluating fitness, designing training programs, and assessing overall health. While treadmill assessments are considered the gold standard, airbikes (ABs) are increasingly popular exercise machines. However, limited research exists on AB-based V̇O2max assessments, particularly regarding agreement with treadmill graded exercise tests. To address this gap, a randomized crossover study was conducted, involving 15 healthy adults (9M, 6F, 7 familiar with AB) aged 30.1 ± 8.6 years. Paired t-tests, intraclass correlation coefficients (ICC), Bland-Altman and Principal component (PC) analyses were used to assess agreement between protocols. The results demonstrated good to excellent agreement in V̇O2max, maximum heart rate (HR), and rating of perceived exertion (ICC range: 0.89-0.92). However, significant differences were observed in several measures, including V̇O2max and maximum HR (p < 0.01). Overall a systematic bias 3.31 mL/kg/min (treadmill > AB, 95%CI[1.67,4.94]) was observed, no proportional bias was present; however, regular AB users (systematic bias: 1.27 (95%CI[0.20,2.34]) mL/kg/min) exhibited higher agreement in V̇O2max measures compared to non-regular users (systematic bias: 5.09 (95%CI[3.69,6.49]) mL/kg/min). There were no significant differences in cardiorespiratory coordination, between the AB and the treadmill. These findings suggest that for individuals familiar with the AB, it can be a suitable alternative for assessing V̇O2max compared to the treadmill. Future research with larger samples should focus on developing prediction equations for field AB tests to predict V̇O2max. Practitioners should consider using the AB to assess V̇O2max in individuals who prefer it over running.

6.
Front Nutr ; 11: 1329074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445204

RESUMEN

We examined if carbohydrate (CHO) mouth rinse may reduce central fatigue and perceived exertion, thus improving maximal incremental test (MIT) performance. Nine recreational cyclists warmed up for 6 min before rinsing a carbohydrate (CHO) or placebo (PLA) solution in their mouth for 10 s in a double-blind, counterbalanced manner. Thereafter, they performed the MIT (25 W·min-1 increases until exhaustion) while cardiopulmonary and ratings of perceived exertion (RPE) responses were obtained. Pre- to post-MIT alterations in voluntary activation (VA) and peak twitch torque (Tw) were determined. Time-to-exhaustion (p = 0.24), peak power output (PPO; p = 0.45), and V̇O2MAX (p = 0.60) were comparable between conditions. Neither treatment main effect nor time-treatment interaction effect were observed in the first and second ventilatory threshold when expressed as absolute or relative V̇O2 (p = 0.78 and p = 0.96, respectively) and power output (p = 0.28 and p = 0.45, respectively) values, although with moderate-to-large effect sizes. RPE increased similarly throughout the tests and was comparable at the ventilatory thresholds (p = 0.56). Despite the time main effect revealing an MIT-induced central and peripheral fatigue as indicated by the reduced VA and Tw, CHO mouth rinse was ineffective in attenuating both fatigues. Hence, rinsing the mouth with CHO was ineffective in reducing central fatigue, lowering RPE, and improving MIT performance expressed as PPO and time-to-exhaustion. However, moderate-to-large effect sizes in power output values at VT1 and VT2 may suggest some beneficial CHO mouth rinse effects on these MIT outcomes.

7.
BMC Sports Sci Med Rehabil ; 16(1): 45, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347629

RESUMEN

BACKGROUND: The primary aim of this study was to examine the relationship between maximal oxygen update (V̇O2max) and within-set fatigue and between-set recovery during resistance exercise in men and women. METHODS: We examined the relationship between V̇O2max and various indices of fatigue and recovery during parallel squats (3 sets, 90 s rest, 70% of 1RM to failure) and isokinetic knee extensions (3 × 10 maximal repetitions at 60 deg/s, 45 s rest) in 28 (age 27.0 ± 3.6 years) resistance-trained subjects (14 men and 14 women). We also examined whether there were sex differences in within-set fatigue and between-set recovery. RESULTS: V̇O2max was weakly related to recovery and fatigue in both men and women (range of P-values for V̇O2max as a covariate; 0.312-0.998, range of R-values, 0.005-0.604). There were no differences between the sexes in fatigue within a set for the squat, but men showed less within-set fatigue than women in the first set of the isokinetic knee extension exercise (~ 8% torque loss difference, main effect of sex P = 0.034). Regarding recovery between sets, men showed greater relative peak power (P = 0.016) and peak torque (P = 0.034) loss between sets in both exercises, respectively, compared to women. Women also tended to complete more repetitions than men (main effect of sex, P = 0.057). Loss of peak torque between sets in knee extension was evident in both absolute and relative (%) values in men but not in women. CONCLUSIONS: Our study suggests that aerobic capacity is weakly associated with within-set fatigue and between-set recovery in resistance training in both men and women. Women and men show comparable levels of within-set fatigue in the multi-joint squat, but women show more within-set fatigue during the single-joint isokinetic knee extension compared with men. In contrast, women recover better than men between sets in both exercises.

8.
J Appl Physiol (1985) ; 136(1): 141-150, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031720

RESUMEN

Posttraumatic stress disorder (PTSD) is associated with an increased risk of developing cardiovascular disease, especially in women. Evidence indicates that men with PTSD exhibit lower maximal oxygen uptake (V̇o2max) relative to controls; however, whether V̇o2max is blunted in women with PTSD remains unknown. Furthermore, it is unclear what determinants (i.e., central and/or peripheral) of V̇o2max are impacted by PTSD. Therefore, we evaluated the central (i.e., cardiac output; Q̇c) and peripheral (i.e., arteriovenous oxygen difference) determinants of V̇o2max in women with PTSD; hypothesizing that V̇o2max would be lower in women with PTSD compared with women without PTSD (controls), primarily due to smaller increases in stroke volume (SV), and therefore Q̇c. Oxygen uptake (V̇o2), heart rate (HR), Q̇c, SV, and arteriovenous oxygen difference were measured in women with PTSD (n = 14; mean [SD]: 43 [11] yr,) and controls (n = 17; 45 [11] yr) at rest, and during an incremental maximal treadmill exercise test, and the Q̇c/V̇o2 slope was calculated. V̇o2max was not different between women with and without PTSD (24.3 [5.6] vs. 26.4 [5.0] mL/kg/min; P = 0.265). However, women with PTSD had higher Q̇c [P = 0.002; primarily due to greater SV (P = 0.069), not HR (P = 0.285)], and lower arteriovenous oxygen difference (P = 0.002) throughout exercise compared with controls. Furthermore, the Q̇c/V̇o2 slope was steeper in women with PTSD relative to controls (6.6 [1.4] vs. 5.7 [1.0] AU; P = 0.033). Following maximal exercise, women with PTSD exhibited slower HR recovery than controls (P = 0.046). Thus, despite attenuated peripheral oxygen extraction, V̇o2max is not reduced in women with PTSD, likely due to larger increases in Q̇c.NEW & NOTEWORTHY The current study indicates that V̇o2max is not different between women with and without PTSD; however, women with PTSD exhibit blunted peripheral extraction of oxygen, thus requiring an increase in Q̇c to meet metabolic demand during exercise. Furthermore, following exercise, women with PTSD demonstrate impaired autonomic cardiovascular control relative to sedentary controls. We interpret these data to indicate that women with PTSD demonstrate aberrant cardiovascular responses during and immediately following fatiguing exercise.


Asunto(s)
Trastornos por Estrés Postraumático , Masculino , Humanos , Femenino , Consumo de Oxígeno/fisiología , Gasto Cardíaco/fisiología , Volumen Sistólico/fisiología , Frecuencia Cardíaca/fisiología , Prueba de Esfuerzo , Oxígeno/metabolismo
9.
Geroscience ; 46(1): 913-921, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37233883

RESUMEN

Performance in endurance sports decreases with aging, which has been primarily attributed to cardiovascular and musculoskeletal aging; however, there is still no clear information on the factors that are most affected by aging. The aim of this study was to compare two groups of runners (< 50 and > 50 years of age) according to their absolute, weight-adjusted maximal oxygen uptake (V̇O2max), lower limb lean mass-adjusted V̇O2max, ventilatory threshold, and respiratory compensation point (RCP). A total of 78 male recreational long-distance runners were divided into Group 1 (38.12 ± 6.87 years) and Group 2 (57.55 ± 6.14 years). Participants were evaluated for body composition, V̇O2max, VT, and RCP. Group 1 showed higher absolute and body mass-adjusted V̇O2max (4.60 ± 0.57 l·min-1 and 61.95 ± 8.25 ml·kg-1·min-1, respectively) than Group 2 (3.77 ± 0.56 l·min-1 and 51.50 ± 10.22 ml·kg-1·min-1, respectively), indicating a significant difference (p < 0.001, d = - 1.46 and p < 0.001, d = - 1.16). Correspondingly, Group 1 showed a significantly higher lower limb lean mass-adjusted V̇O2max (251.72 ± 29.60 ml·kgLM-1·min-1) than Group 2 (226.36 ± 43.94 ml·kgLM-1·min-1) (p = 0.008, d = - 0.71). VT (%V̇O2max) (p = 0.19, d = 0.19) and RCP (%V̇O2max) (p = 0.24, d = 0.22) did not differ between the groups. These findings suggest that both variables that are limited by central or peripheral conditions are negatively affected by aging, but the magnitude of the effect is higher in variables limited by central conditions. These results contribute to our understanding of how aging affects master runners.


Asunto(s)
Consumo de Oxígeno , Carrera , Humanos , Masculino , Envejecimiento , Prueba de Esfuerzo , Oxígeno , Adulto , Persona de Mediana Edad
10.
Physiol Genomics ; 55(8): 338-344, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335021

RESUMEN

Maximal aerobic exercise capacity [maximal oxygen consumption (V̇o2max)] is one of the strongest predictors of morbidity and mortality. Aerobic exercise training can increase V̇o2max, but inter-individual variability is marked and unexplained physiologically. The mechanisms underlying this variability have major clinical implications for extending human healthspan. Here, we report a novel transcriptome signature related to ΔV̇o2max with exercise training detected in whole blood RNA. We used RNA-Seq to characterize transcriptomic signatures of ΔV̇o2max in healthy women who completed a 16-wk randomized controlled trial comparing supervised, higher versus lower aerobic exercise training volume and intensity (4 training groups, fully crossed). We found significant baseline gene expression differences in subjects who responded to aerobic exercise training with robust versus little/no ΔV̇o2max, and differentially expressed genes/transcripts were mostly related to inflammatory signaling and mitochondrial function/protein translation. Baseline gene expression signatures associated with robust versus little/no ΔV̇o2max were also modulated by exercise training in a dose-dependent manner, and they predicted ΔV̇o2max in this and a separate dataset. Collectively, our data demonstrate the potential utility of using whole blood transcriptomics to study the biology of inter-individual variability in responsiveness to the same exercise training stimulus.


Asunto(s)
Entrenamiento Aeróbico , Transcriptoma , Humanos , Femenino , Transcriptoma/genética , Ejercicio Físico/fisiología , Tolerancia al Ejercicio , Consumo de Oxígeno/genética
11.
J Appl Physiol (1985) ; 134(5): 1154-1164, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36958347

RESUMEN

Maximal oxygen uptake and exercise performance typically decline with age. However, there are indications of preserved vascular function and blood flow regulation during arm exercise. Yet, it is unknown if this potential physiological preservation with age is mirrored in peripheral metabolic capacity and V̇o2/W ratio. Thus, to investigate the effects of aging in the arms, we measured metabolic and vascular responses to 6-min bouts of dynamic handgrip exercise at 40% and 80% of maximal work rate (WRmax) in 11 young (26 ± 2 yr) and 12 old (80 ± 6 yr) males, applying Doppler-ultrasound combined with blood samples from a deep forearm vein. At baseline, the old had a larger arterial diameter compared with young (P < 0.001). During exercise, the two groups reached the same WRmax. V̇o2, blood flow, and oxygen supply were higher (40%WRmax; 80%WRmax, all P < 0.01), and arteriovenous oxygen difference was lower (80%WRmax, P < 0.02), in old compared with young. Old also had a higher oxygen excess at 80%WRmax (P < 0.01) than young, whereas no difference in muscle diffusion or oxygen extraction was detected. Only young exhibited an increase in intensity-induced arterial dilation (P < 0.05), and they had a lower mean arterial pressure than old at 80%WRmax (P < 0.001). V̇o2/W (40%WRmax; 80%WRmax) was reduced in old compared with young (both P < 0.05). In conclusion, in old and young males with a similar handgrip WRmax, old had a higher V̇o2 during 80%WRmax intensity, achieved by an increased blood flow. This may be a result of the available cardiac output reserve, compensating for reduced work efficiency and attenuated vascular response observed in old.NEW & NOTEWORTHY Contrasting the typically observed decline in V̇o2max with age, the current study reveals an age-related increase in forearm metabolic capacity during handgrip exercise in old, mediated by an increased forearm blood flow. Exercise with a small muscle mass in arms, where central components of the oxygen transport are not limiting, allows old to attain a similar maximal work rate as young despite their increased V̇o2/W ratio.


Asunto(s)
Fuerza de la Mano , Consumo de Oxígeno , Masculino , Humanos , Fuerza de la Mano/fisiología , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Oxígeno/metabolismo , Flujo Sanguíneo Regional/fisiología , Músculo Esquelético/metabolismo
13.
J Appl Physiol (1985) ; 134(2): 230-241, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548510

RESUMEN

This study aims to investigate the effect of the menstrual cycle (MC) on exercise performance across the power-duration relationship (PDR). We hypothesized females would exhibit greater variability in the PDR across the MC than males across a similar timespan, with critical power (CP) and work-prime (W') being lower during the early follicular phase than the late follicular and midluteal phases. Seven eumenorrheic, endurance-trained female adults performed multiple constant-load-to-task-failure and maximum-power tests at three timepoints across the MC (early follicular, late follicular, and midluteal phases). Ten endurance-trained male adults performed the same tests approximately 10 days apart. No differences across the PDR were observed between MC phases (CP: 186.74 ± 31.00 W, P = 0.955, CV = 0.81 ± 0.65%) (W': 7,961.81 ± 2,537.68 J, P = 0.476, CV = 10.48 ± 3.06%). CP was similar for male and female subjects (11.82 ± 1.42 W·kg-1 vs. 11.56 ± 1.51 W·kg-1, respectively) when controlling for leg lean mass. However, W' was larger (P = 0.047) for male subjects (617.28 ± 130.10 J·kg-1) than female subjects (490.03 ± 136.70 J·kg-1) when controlling for leg lean mass. MC phase does not need to be controlled when conducting aerobic endurance performance research on eumenorrheic female subjects without menstrual dysfunction. Nevertheless, several sex differences in the power-duration relationship exist, even after normalizing for body composition. Therefore, previous studies describing the physiology of exercise performance in male subjects may not perfectly describe that of female subjects.NEW & NOTEWORTHY Females are often excluded from exercise performance research due to experimental challenges in controlling for the menstrual cycle (MC), causing uncertainty regarding how the MC impacts female performance. The present study examined the influences that biological sex and the MC have on the power-duration relationship (PDR) by comparing critical power (CP), Work-prime (W'), and maximum power output (PMAX) in males and females. Our data provide evidence that the MC does not influence the PDR and that females exhibit similar reproducibility as males. Thus, when conducting aerobic endurance exercise research on eumenorrheic females without menstrual dysfunction, the phase of the MC does not need to be controlled. Although differences in body composition account for some differences between the sexes, sex differences in W' and PMAX persisted even after normalizing for different metrics of body composition. These data highlight the necessity and feasibility of examining sex differences in performance, as previously generated male-only data within the literature may not apply to female subjects.


Asunto(s)
Músculo Esquelético , Resistencia Física , Adulto , Humanos , Masculino , Femenino , Reproducibilidad de los Resultados , Resistencia Física/fisiología , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Prueba de Esfuerzo
14.
Cureus ; 14(10): e30322, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36407200

RESUMEN

Today, more than 20% of the world's population suffers from hypertension, a major risk factor for heart disease. Therefore, lifestyle modifications such as dietary change, smoking cessation, and exercise are often prescribed to hypertensive patients as a first-line treatment. This study aims to examine and compare the effects of different exercise regimens on the cardiovascular system, particularly that of high-intensity interval training (HIIT) and lower-to-moderate-intensity aerobic exercise (aka aerobic exercise).  After researching various databases and extracting 4,724 studies, 196 were viable within the exclusion criteria related to exercise's effects on blood pressure and maximal oxygen uptake (V̇O2max). Of these, 36 studies were selected as viable, and their data is herein outlined. In addition, the results provided by these studies were summarized, respectively, and the raw data were analyzed using a two-tailed unpaired t-test. Through this study, we aim to clarify whether HIIT or lower-to-moderate-intensity aerobic exercise differ in their effects on improving cardiovascular health. It was observed that HIIT was non-inferior to lower-to-moderate-intensity aerobic exercise in the reduction of ambulatory blood pressure of hypertensive or normotensive individuals. However, HIIT was more effective at increasing cardiorespiratory fitness by means of V̇O2max than aerobic exercise was. Considering the significant time-to-completion difference between both exercise modalities, it is remarkable that HIIT has the same benefits as lower-to-moderate-intensity aerobic exercise on blood pressure and higher efficiency in increasing V̇O2max.

15.
Front Physiol ; 13: 902983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117704

RESUMEN

Spaceflight is associated with enhanced inactivity, resulting in muscular and cardiovascular deconditioning. Although physical exercise is commonly used as a countermeasure, separate applications of running and resistive exercise modalities have never been directly compared during long-term bedrest. This study aimed to compare the effectiveness of two exercise countermeasure programs, running and resistance training, applied separately, for counteracting cardiovascular deconditioning induced by 90-day head-down bedrest (HDBR). Maximal oxygen uptake ( V ˙ O2max), orthostatic tolerance, continuous ECG and blood pressure (BP), body composition, and leg circumferences were measured in the control group (CON: n = 8), running exercise group (RUN: n = 7), and resistive exercise group (RES: n = 7). After HDBR, the decrease in V ˙ O2max was prevented by RUN countermeasure and limited by RES countermeasure (-26% in CON p < 0.05, -15% in RES p < 0.05, and -4% in RUN ns). Subjects demonstrated surprisingly modest orthostatic tolerance decrease for different groups, including controls. Lean mass loss was limited by RES and RUN protocols (-10% in CON vs. -5% to 6% in RES and RUN). Both countermeasures prevented the loss in thigh circumference (-7% in CON p < 0.05, -2% in RES ns, and -0.6% in RUN ns) and limited loss in calf circumference (-10% in CON vs. -7% in RES vs. -5% in RUN). Day-night variations in systolic BP were preserved during HDBR. Decrease in V ˙ O2max positively correlated with decrease in thigh (r = 0.54 and p = 0.009) and calf (r = 0.52 and p = 0.012) circumferences. During this 90-day strict HDBR, running exercise successfully preserved V ˙ O2max, and resistance exercise limited its decline. Both countermeasures limited loss in global lean mass and leg circumferences. The V ˙ O2max reduction seems to be conditioned more by muscular than by cardiovascular parameters.

16.
J Appl Physiol (1985) ; 133(4): 986-1000, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107986

RESUMEN

Responses to exercise at a given percentage of one's maximum rate of oxygen consumption (V̇o2max), or percentage of the power associated with V̇o2max during a graded exercise test (i.e., PGXT), vary. The purpose of this study was to determine if differences in critical power (PCRIT, maximum metabolic steady state) and work-prime (W', the amount of work tolerated above steady state) are related to training-induced changes in endurance. PCRIT, W', V̇o2max, and other variables were determined before and after 22 adults completed 8 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) performed at fixed percentages of PGXT. On average, PCRIT increased to a greater extent following HIIT (MICT: 15.7 ± 3.1% vs. HIIT: 27.5 ± 4.3%; P = 0.03), but the magnitude of change varied widely within each group (MICT: 4%-36%, HIIT: 4%-61%). The intensity of the prescribed exercise relative to pretraining PCRIT, not PGXT, accounted for most of the variance in changes to PCRIT in response to a given protocol (R2 = 0.61-0.64; P < 0.01). Although PCRIT and V̇o2max were related before training (R2 = 0.92, P < 0.01), the training-induced change in PCRIT was not significantly related to the change in V̇o2max (R2 = 0.06, P = 0.26). Before training, time-to-failure at PGXT was related to W' (R2 = 0.52; P < 0.01), but not V̇o2max (R2 = 0.13; P = 0.10). Training-induced changes in time-to-failure at the initial PGXT were better captured by the combined changes in W' and PCRIT (R2 = 0.77, P < 0.01), than by the change in V̇o2max (R2 = 0.24; P = 0.02). Differences in PCRIT and W' account for some of the variability in responses to endurance exercise.NEW & NOTEWORTHY As the highest percentage of V̇O2max at which steady state conditions can be achieved, a person's critical power (PCRIT) strongly influences the metabolic strain of a given exercise. In this study we demonstrate that training-induced changes in endurance are more strongly related to the intensity of an exercise training program, relative to PCRIT than relative to V̇o2max. Thus, exercise may be more homogenously and effectively prescribed in relation to PCRIT than traditional factors like V̇o2max.


Asunto(s)
Entrenamiento Aeróbico , Entrenamiento de Intervalos de Alta Intensidad , Adulto , Ejercicio Físico/fisiología , Prueba de Esfuerzo/métodos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Consumo de Oxígeno/fisiología
17.
Front Physiol ; 13: 899670, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936918

RESUMEN

Today, researchers, practitioners, and physicians measure the concentration of lactate during a graded exercise test to determine thresholds related to the maximal lactate steady state (maxLass) as a sensitive measure of endurance capacity. In the 1970s and 1980s, a group of Cologne-based researchers around Wildor Hollmann, Alois Mader, and Hermann Heck developed the methodology for systematic lactate testing and introduced a 4 mmol.L-1 lactate threshold. Later, they also developed the concept of the maxLass, and Mader designed a sophisticated mathematical model of human energy metabolism during exercise. Mader`s model simulates metabolic responses to exercise based on individual variables such as maximum oxygen uptake ( V ˙ O2max) and the maximal rate of lactate formation (νLa.max). Mader's model predicts that the νLa.max reduces the power at the anaerobic threshold and endurance performance but that a high νLa.max is required for events with high power outputs in elite athletes. Mader's model also assumed before the millennium that the rate of fat oxidation is explained by the difference between glycolytic pyruvate synthesis and the actual rate of pyruvate oxidation which is consistent with current opinion. Mader's model also simulated the V ˙ O2max slow component in the mid-1980s. Unfortunately, several landmark studies by the Cologne group were only published in German, and as a result, contributions by the Cologne group are under-appreciated in the English-speaking world. This narrative review aims to introduce key contributions of the Cologne group to human metabolism research especially for readers who do not speak German.

18.
BMJ Open Sport Exerc Med ; 8(2): e001253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692438

RESUMEN

Objective: Maximal exercise testing is considered the gold standard to assess V̇O2max. However, maximal exercise testing was previously deemed unfeasible and unsafe in chronic low back pain (CLBP) patients. Consequently, most previous studies on aerobic capacity and functioning in patients with CLBP were performed with submaximal testing protocols. A recent study demonstrated the safety, feasibility and tolerance of maximal exercise testing in patients with CLBP. Therefore, the relation between aerobic capacity and functioning should be reevaluated. This cross-sectional study aims to determine the relationship between maximal aerobic capacity and four measures of functioning: lifting capacity, work ability, pain-related disability and physical functioning in patients with CLBP. Methods: The maximal aerobic capacity of patients with CLBP was assessed with a maximal cardiopulmonary exercise test. Functioning was measured with a floor-to-waist lifting capacity test and three questionnaires: Work Ability Score, Pain Disability Index and Physical Functioning subscale of RAND-36. The associations between maximal aerobic capacity and each of the functioning measures were analysed with multiple linear regression analyses while controlling for potential confounders. Results: Data of n=74 patients with CLBP were analysed. After controlling for potential confounders, maximal aerobic capacity was moderately associated with lifting capacity (ß=0.32, p=0.006), but not with any of the other functioning measures (ß=-0.08 to 0.12, p>0.288). Conclusion: A higher level of maximal aerobic capacity is moderately associated with a higher lifting capacity, but not with self-reported work ability, pain-related disability and physical functioning.

19.
BMC Sports Sci Med Rehabil ; 14(1): 89, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581598

RESUMEN

BACKGROUND: The main purpose of this study was to investigate the relationships between minutes played (MP) with maturity status, fitness, and hormonal levels, and to quantify their influence on minutes played. METHODS: Twenty-four elite youth soccer players under-16 years participated in this study, over a full-season period. Anthropometric measures, maturity status, hormonal and physical fitness levels were collected. Participants were monitored during the season. After the end-season, players were assessed in 6 different tests over a four-day period. RESULTS: The maximum oxygen consumption (V̇O2max) was strongly correlated with MP (r = 0.75), maturity offset (r = 0.52), and countermovement jump (r = 0.53). Multiple linear regression explained 76% of MP (F (8, 15) = 6.05, p = 0.001), with an R2 of 0.76. Moreover, Growth hormone (GH) and V̇O2max. were the most influential factors in MP (F (2, 21) = 17.92, p ≤ 0.001), with an R2 of 0.63. CONCLUSION: High levels of GH and V̇O2max have a preponderant role in MP by elite youth soccer players, it appears to be more pragmatic to consider other contextual dimensions, as they can impact selection for competition and minutes of participation in a match.

20.
J Appl Physiol (1985) ; 132(5): 1310-1317, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35446599

RESUMEN

There is a positive association between cardiorespiratory fitness and cognitive health, but the interaction between cardiorespiratory fitness and aging on cerebral hemodynamics is unclear. These potential interactions are further influenced by sex differences. The purpose of this study was to determine the sex-specific relationships between cardiorespiratory fitness, age, and cerebral hemodynamics in humans. Measurements of unilateral middle cerebral artery blood velocity (MCAv) and cerebral pulsatility index obtained using transcranial Doppler ultrasound and cardiorespiratory fitness [maximal oxygen consumption (V̇o2max)] obtained from maximal incremental exercise tests were retrieved from study records at three institutions. A total of 153 healthy participants were included in the analysis (age = 42 ± 20 yr, range = 18-83 yr). There was no association between V̇o2max and MCAv in all participants (P = 0.20). The association between V̇o2max and MCAv was positive in women, but no longer significant after age adjustment (univariate: P = 0.01; age-adjusted: P = 0.45). In addition, there was no association between V̇o2max and MCAv in men (univariate: P = 0.25, age-adjusted: P = 0.57). For V̇o2max and cerebral pulsatility index, there were significant negative associations in all participants (P < 0.001), in men (P < 0.001) and women (P < 0.001). This association remained significant when adjusting for age in women only (P = 0.03). In summary, higher cardiorespiratory fitness was associated with a lower cerebral pulsatility index in all participants, and the significance remained only in women when adjusting for age. Future studies are needed to determine the sex-specific impact of cardiorespiratory fitness improvements on cerebrovascular health.NEW & NOTEWORTHY We present data pooled from three institutions to study the impact of age, sex, and cardiorespiratory fitness on cerebral hemodynamics. Cardiorespiratory fitness was positively associated with middle cerebral artery blood velocity in women, but not in men. Furthermore, cardiorespiratory fitness was inversely associated with cerebral pulsatility index in both men and women, which remained significant in women when adjusting for age. These data suggest a sex-specific impact of cardiorespiratory fitness on resting cerebral hemodynamics.


Asunto(s)
Capacidad Cardiovascular , Adulto , Velocidad del Flujo Sanguíneo , Circulación Cerebrovascular , Ejercicio Físico , Femenino , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Aptitud Física , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA