Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124968, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153348

RESUMEN

Ultraviolet-visible (UV-Vis) absorption spectroscopy, due to its high sensitivity and capability for real-time online monitoring, is one of the most promising tools for the rapid identification of external water in rainwater pipe networks. However, difficulties in obtaining actual samples lead to insufficient real samples, and the complex composition of wastewater can affect the accurate traceability analysis of external water in rainwater pipe networks. In this study, a new method for identifying external water in rainwater pipe networks with a small number of samples is proposed. In this method, the Generative Adversarial Network (GAN) algorithm was initially used to generate spectral data from the absorption spectra of water samples; subsequently, the multiplicative scatter correction (MSC) algorithm was applied to process the UV-Vis absorption spectra of different types of water samples; following this, the Variational Mode Decomposition (VMD) algorithm was employed to decompose and recombine the spectra after MSC; and finally, the long short-term memory (LSTM) algorithm was used to establish the identification model between the recombined spectra and the water source types, and to determine the optimal number of decomposed spectra K. The research results show that when the number of decomposed spectra K is 5, the identification accuracy for different sources of domestic sewage, surface water, and industrial wastewater is the highest, with an overall accuracy of 98.81%. Additionally, the performance of this method was validated by mixed water samples (combinations of rainwater and domestic sewage, rainwater and surface water, and rainwater and industrial wastewater). The results indicate that the accuracy of the proposed method in identifying the source of external water in rainwater reaches 98.99%, with detection time within 10 s. Therefore, the proposed method can become a potential approach for rapid identification and traceability analysis of external water in rainwater pipe networks.

2.
Sensors (Basel) ; 24(19)2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39409494

RESUMEN

The accurate prediction of gas emissions has important guiding significance for the prevention and control of gas disasters in order to further improve the prediction accuracy of gas emissions in the mining face. According to the absolute gas emission monitoring data of the 1417 working face in a coal mine in Shaanxi Province, a GA-VMD-SSA-LSTM gas emission prediction model (GVSL) based on genetic algorithm (GA)-optimized variational mode decomposition (VMD) and sparrow search algorithm (SSA)-optimized long short-term memory (LSTM) is proposed. Firstly, a VMD evaluation standard for evaluating the amount of decomposition loss is proposed. Under this standard, the GA is used to find the optimal parameters of the VMD. Then, the SSA is used to optimize the key parameters of the LSTM to establish a GVSL prediction model. The model predicts each component and finally superimposes the prediction results for each component to obtain the final gas emission result. The results show that the accuracy of the evaluation indexes of the GVSL model and VMD-LSTM model, as well as the SSA-LSTM model and Gaussian process regression (GPR) model, are compared and analyzed horizontally and vertically under three scenarios with prediction sets of 121,94 and 57 groups. The GVSL model has the best prediction effect, and its fitting degree R2 values are 0.95, 0.96, and 0.99, which confirms the effectiveness of the proposed GVSL model for the time series prediction of gas emission in the mining face.

3.
Bioengineering (Basel) ; 11(10)2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39451388

RESUMEN

The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM), yet their treatments and prognoses are quite different. Early differentiation between these conditions yields positive outcomes, but the gold standard (coronary angiography) is invasive. The potential use of ECG signals based on variational mode decomposition (VMD) as an alternative remains underexplored. An ECG dataset containing 87 subjects (44 DCM, 43 ICM) is pre-processed for denoising and heartbeat division. Firstly, the ECG signal is processed by empirical mode decomposition (EMD) and VMD. And then, five modes are determined by correlation analysis. Secondly, bispectral analysis is conducted on these modes, extracting corresponding bispectral and nonlinear features. Finally, the features are processed using five machine learning classification models, and a comparative assessment of their classification efficacy is facilitated. The results show that the technique proposed provides a better categorization for DCM and ICM using ECG signals compared to previous approaches, with a highest classification accuracy of 98.30%. Moreover, VMD consistently outperforms EMD under diverse conditions such as different modes, leads, and classifiers. The superiority of VMD on ECG analysis is verified.

4.
Sensors (Basel) ; 24(20)2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39460022

RESUMEN

With the increasing level of industrial informatization, massive industrial data require real-time and high-fidelity wireless transmission. Although some industrial wireless network protocols have been designed over the last few decades, most of them have limited coverage and narrow bandwidth. They cannot always ensure the certainty of information transmission, making it especially difficult to meet the requirements of low latency in industrial manufacturing fields. The 5G technology is characterized by a high transmission rate and low latency; therefore, it has good prospects in industrial applications. To apply 5G technology to factory environments with low latency requirements for data transmission, in this study, we analyze the statistical performance of the round-trip time (RTT) in a 5G-R15 communication system. The results indicate that the average value of 5G RTT is about 11 ms, which is less than the 25 ms of WIA-FA. We then consider 5G RTT data as a group of time series, utilizing the augmented Dickey-Fuller (ADF) test method to analyze the stability of the RTT data. We conclude that the RTT data are non-stationary. Therefore, firstly, the original 5G RTT series are subjected to first-order differencing to obtain differential sequences with stronger stationarity. Then, a time series analysis-based variational mode decomposition-long short-term memory (VMD-LSTM) method is proposed to separately predict each differential sequence. Finally, the predicted results are subjected to inverse difference to obtain the predicted value of 5G RTT, and a predictive error of 4.481% indicates that the method performs better than LSTM and other methods. The prediction results could be used to evaluate network performance based on business requirements, reduce the impact of instruction packet loss, and improve the robustness of control algorithms. The proposed early warning accuracy metrics for control issues can also be used to indicate when to retrain the model and to indicate the setting of the control cycle. The field of industrial control, especially in the manufacturing industry, which requires low latency, will benefit from this analysis. It should be noted that the above analysis and prediction methods are also applicable to the R16 and R17 versions.

5.
Sensors (Basel) ; 24(20)2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39460164

RESUMEN

With the ubiquitous deployment of mobile and sensor technologies in modes of transportation, taxis have become a significant component of public transportation. However, vacant taxis represent an important waste of transportation resources. Forecasting taxi demand within a short time achieves a supply-demand balance and reduces oil emissions. Although earlier studies have forwarded highly developed machine learning- and deep learning-based models to forecast taxicab demands, these models often face significant computational expenses and cannot effectively utilize large-scale trajectory sensor data. To address these challenges, in this paper, we propose a hybrid deep learning-based model for taxi demand prediction. In particular, the Variational Mode Decomposition (VMD) algorithm is integrated along with a Bidirectional Long Short-Term Memory (BiLSTM) model to perform the prediction process. The VMD algorithm is applied to decompose time series-aware traffic features into multiple sub-modes of different frequencies. After that, the BiLSTM method is utilized to predict time series data fed with the relevant demand features. To overcome the limitation of high computational expenses, the designed model is performed on the Spark distributed platform. The performance of the proposed model is tested using a real-world dataset, and it surpasses existing state-of-the-art predictive models in terms of accuracy, efficiency, and distributed performance. These findings provide insights for enhancing the efficiency of passenger search and increasing the profit of taxicabs.

6.
Heliyon ; 10(18): e37892, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39323857

RESUMEN

Jingdong 120-meter radio telescope (JRT) is poised to become the world's largest single-aperture fully steerable medium-low frequency radio telescope. However, like other large-aperture radio telescopes, the JRT is vulnerable to wind loads, which can cause structural deformation and pointing errors. Addressing this challenge requires the ability to predict dynamic winds in real-time. This study developed a wind pressure preprocessing and prediction model using sensor data collected from the Kunming 40-meter radio telescope (KRT), enabling real-time prediction of wind pressure on the telescope. The model employs adaptive noise and Variational Mode Decomposition (VMD) techniques to eliminate random noise from the original wind pressure data. Subsequently, wind pressure predictions are made using a Bidirectional Long Short-term Memory (BiLSTM) model. By conducting predictions under various stabilization conditions and conducting a thorough analysis of measurement data from five sensors, the study has achieved impressive results in predicting wind pressure on the KRT reflector surface. The proposed model demonstrates the lowest MAE, RMSE, and MAPE, while achieving the highest R 2 across various data sets. Where the average R 2 of the proposed model is 0.9392 at 45° pitch angle attitude and the RMSE, MAE and MAPE values are 1.4923, 1.2377 and 1.82% respectively. This model helps wind load monitoring of real-time wind pressure monitoring of the telescope surface, to study the effects of wind load on pointing accuracy. By adjusting the control parameters to reduce wind load interference, to ensure the high-precision work of a large radio telescope, such as JRT.

7.
Heliyon ; 10(18): e37975, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328549

RESUMEN

The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN). The Elasticnet Regression (ER) process is suggested to modify the conventional VMD approach instead of the Tikhonov Regularization (TR) method to enhance performance and obtain better band-limited intrinsic mode functions. This idea results in robust and effective reconstruction features and helps to obtain accurate classification using the classifier. In the classification stage, a Salp Swarm Algorithm (SSA) based PNN is used for the PQ event, considering the relevant features obtained from ER-VMD. The system parameters often influence PNN performance, and SSA is used to determine the ideal values to improve the PNN's capacity for more accurate classification. The numerical values of the accuracy percentage, percentage of sensitivity, and percentage of specificity in the case of real-time data are found as 98.58, 100, and 98.46, respectively. The acquired comparison findings demonstrate the effectiveness and robustness of the proposed technique in terms of rapid learning speed, smaller computational complexity, robust performance for anti-noise conditions, and accurate identification and categorization.

8.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275658

RESUMEN

Frequency analysis via electroencephalography (EEG) during general anesthesia is used to develop techniques for measuring anesthesia depth. Variational mode decomposition (VMD) enables mathematical optimization methods to decompose EEG signals into natural number intrinsic mode functions with distinct narrow bands. However, the analysis requires the a priori determination of hyperparameters, including the decomposition number (K) and the penalty factor (PF). In the VMD analysis of EEGs derived from a noninterventional and noninvasive retrospective observational study, we adapted the grey wolf optimizer (GWO) to determine the K and PF hyperparameters of the VMD. As a metric for optimization, we calculated the envelope function of the IMF decomposed via the VMD method and used its envelope entropy as the fitness function. The K and PF values varied in each epoch, with one epoch being the analytical unit of EEG; however, the fitness values showed convergence at an early stage in the GWO algorithm. The K value was set to 2 to capture the α wave enhancement observed during the maintenance phase of general anesthesia in intrinsic mode function 2 (IMF-2). This study suggests that using the GWO to optimize VMD hyperparameters enables the construction of a robust analytical model for examining the EEG frequency characteristics involved in the effects of general anesthesia.


Asunto(s)
Algoritmos , Anestesia General , Electroencefalografía , Electroencefalografía/métodos , Humanos , Masculino , Femenino , Procesamiento de Señales Asistido por Computador , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Anciano
9.
Sci Rep ; 14(1): 17841, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090177

RESUMEN

The precise forecasting of air quality is of great significance as an integral component of early warning systems. This remains a formidable challenge owing to the limited information of emission source and the considerable uncertainties inherent in dynamic processes. To improve the accuracy of air quality forecasting, this work proposes a new spatiotemporal hybrid deep learning model based on variational mode decomposition (VMD), graph attention networks (GAT) and bi-directional long short-term memory (BiLSTM), referred to as VMD-GAT-BiLSTM, for air quality forecasting. The proposed model initially employ a VMD to decompose original PM2.5 data into a series of relatively stable sub-sequences, thus reducing the influence of unknown factors on model prediction capabilities. For each sub-sequence, a GAT is then designed to explore deep spatial relationships among different monitoring stations. Next, a BiLSTM is utilized to learn the temporal features of each decomposed sub-sequence. Finally, the forecasting results of each decomposed sub-sequence are aggregated and summed as the final air quality prediction results. Experiment results on the collected Beijing air quality dataset show that the proposed model presents superior performance to other used methods on both short-term and long-term air quality forecasting tasks.

10.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124050

RESUMEN

To improve the performance of roller bearing fault diagnosis, this paper proposes an algorithm based on subtraction average-based optimizer (SABO), variational mode decomposition (VMD), and weighted Manhattan-K nearest neighbor (WMH-KNN). Initially, the SABO algorithm uses a composite objective function, including permutation entropy and mutual information entropy, to optimize the input parameters of VMD. Subsequently, the optimized VMD is used to decompose the signal to obtain the optimal decomposition characteristics and the corresponding intrinsic mode function (IMF). Finally, the weighted Manhattan function (WMH) is used to enhance the classification distance of the KNN algorithm, and WMH-KNN is used for fault diagnosis based on the optimized IMF features. The performance of the SABO-VMD and WMH-KNN models is verified through two experimental cases and compared with traditional methods. The results show that the accuracy of motor-bearing fault diagnosis is significantly improved, reaching 97.22% in Dataset 1, 98.33% in Dataset 2, and 99.2% in Dataset 3. Compared with traditional methods, the proposed method significantly reduces the false positive rate.

11.
Heliyon ; 10(15): e34783, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144928

RESUMEN

In this paper, the degradation of PEMFC under different operating conditions in dynamic cycle condition is studied. Firstly, according to the failure mechanism of PEMFC, various operating conditions in dynamic cycle condition are classified, and the health indexes are established. Simultaneously, the rates and degrees of the output voltage decline of the PEMFC under different operating conditions during the dynamic cycling process were compared. Then, a model based on variational mode decomposition and long short-term memory with attention mechanism (VMD-LSTM-ATT) is proposed. Aiming at the performance of PEMFC is affected by the external operation, VMD is used to capture the global information and details, and filter out interference information. To improve the prediction accuracy, ATT is used to assign weight to the features. Finally, in order to verify the effectiveness and superiority of VMD-LSTM-ATT, we respectively apply it to three current conditions under dynamic cycle conditions. The experimental results show that under the same test conditions, RMSE of VMD-LSTM-ATT is increased by 56.11 % and MAE is increased by 28.26 % compared with GRU attention. Compared with SVM, RNN, LSTM and LSTM-ATT, RMSE of VMD-LSTM-ATT is at least 17.26 % higher and MAE is at least 5.65 % higher.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39126405

RESUMEN

In genomic research, identifying the exon regions in eukaryotes is the most cumbersome task. This article introduces a new promising model-independent method based on short-time discrete Fourier transform (ST-DFT) and fine-tuned variational mode decomposition (FTVMD) for identifying exon regions. The proposed method uses the N/3 periodicity property of the eukaryotic genes to detect the exon regions using the ST-DFT. However, background noise is present in the spectrum of ST-DFT since the sliding rectangular window produces spectral leakage. To overcome this, FTVMD is proposed in this work. VMD is more resilient to noise and sampling errors than other decomposition techniques because it utilizes the generalization of the Wiener filter into several adaptive bands. The performance of VMD is affected due to the improper selection of the penalty factor (α), and the number of modes (K). Therefore, in fine-tuned VMD, the parameters of VMD (K and α) are optimized by maximum kurtosis value. The main objective of this article is to enhance the accuracy in the identification of exon regions in a DNA sequence. At last, a comparative study demonstrates that the proposed technique is superior to its counterparts.

13.
Entropy (Basel) ; 26(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39056897

RESUMEN

Accurate prediction of air quality is crucial for assessing the state of the atmospheric environment, especially considering the nonlinearity, volatility, and abrupt changes in air quality data. This paper introduces an air quality index (AQI) prediction model based on the Dung Beetle Algorithm (DBO) aimed at overcoming limitations in traditional prediction models, such as inadequate access to data features, challenges in parameter setting, and accuracy constraints. The proposed model optimizes the parameters of Variational Mode Decomposition (VMD) and integrates the Informer adaptive sequential prediction model with the Convolutional Neural Network-Long Short Term Memory (CNN-LSTM). Initially, the correlation coefficient method is utilized to identify key impact features from multivariate weather and meteorological data. Subsequently, penalty factors and the number of variational modes in the VMD are optimized using DBO. The optimized parameters are utilized to develop a variationally constrained model to decompose the air quality sequence. The data are categorized based on approximate entropy, and high-frequency data are fed into the Informer model, while low-frequency data are fed into the CNN-LSTM model. The predicted values of the subsystems are then combined and reconstructed to obtain the AQI prediction results. Evaluation using actual monitoring data from Beijing demonstrates that the proposed coupling prediction model of the air quality index in this paper is superior to other parameter optimization models. The Mean Absolute Error (MAE) decreases by 13.59%, the Root-Mean-Square Error (RMSE) decreases by 7.04%, and the R-square (R2) increases by 1.39%. This model surpasses 11 other models in terms of lower error rates and enhances prediction accuracy. Compared with the mainstream swarm intelligence optimization algorithm, DBO, as an optimization algorithm, demonstrates higher computational efficiency and is closer to the actual value. The proposed coupling model provides a new method for air quality index prediction.

14.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066037

RESUMEN

In light of the issue that the vibration signal from an axle-box bearing collected during the operation of an electric multiple unit (EMU) is seriously polluted by background noise, which leads to difficulty in identifying fault characteristic frequency, this paper proposes a resonance-based sparse signal decomposition (RSSD) and variational mode decomposition (VMD) method based on sparrow search algorithm (SSA) optimization to extract the fault characteristic frequency of the bearing. Firstly, the RSSD method is utilized to decompose the signal based on the obtained optimal combination of quality factors, resulting in the optimal low-resonance component with periodic fault information. Then, the VMD method is performed on this low-resonance component. The parameter combinations for both methods are optimized utilizing the SSA method. Subsequently, envelope demodulation is applied to the intrinsic mode function (IMF) with maximum kurtosis, and fault diagnosis is achieved by comparing it with the theoretical fault characteristic frequency. Finally, experimental validation and comparison are conducted by utilizing simulated signals and example signals. The results demonstrate that the proposed method extracts more obvious periodic fault impact components. It effectively filters out the interference of complex noise and reduces the blindness of setting weights on parameters due to human experience, indicating excellent adaptability and robustness.

15.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000978

RESUMEN

The identification of slag inclusion defects in welds is of the utmost importance in guaranteeing the integrity, safety, and prolonged service life of welded structures. Most research focuses on different kinds of weld defects, but branch research on categories of slag inclusion material is limited and critical for safeguarding the quality of engineering and the well-being of personnel. To address this issue, we design a simulated method using ultrasonic testing to identify the inclusion of material categories in austenitic stainless steel. It is based on a simulated experiment in a water environment, and six categories of cubic specimens, including four metallic and two non-metallic materials, are selected to simulate the slag materials of the inclusion defects. Variational mode decomposition optimized by particle swarm optimization is employed for ultrasonic signals denoising. Moreover, the phase spectrum of the denoised signal is utilized to extract the phase characteristic of the echo signal from the water-slag specimen interface. The experimental results show that our method has the characteristics of appropriate decomposition and good denoising performance. Compared with famous signal denoising algorithms, the proposed method extracted the lowest number of intrinsic mode functions from the echo signal with the highest signal-to-noise ratio and lowest normalized cross-correlation among all of the comparative algorithms in signal denoising of weld slag inclusion defects. Finally, the phase spectrum can ascertain whether the slag inclusion is a thicker or thinner medium compared with the weld base material based on the half-wave loss existing or not in the echo signal phase.

16.
Physiol Behav ; 284: 114626, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964566

RESUMEN

The existence of Virtual Reality Motion Sickness (VRMS) is a key factor restricting the further development of the VR industry, and the premise to solve this problem is to be able to accurately and effectively detect its occurrence. In view of the current lack of high-accuracy and effective detection methods, this paper proposes a VRMS detection method based on entropy asymmetry and cross-frequency coupling value asymmetry of EEG. First of all, the EEG of the four selected pairs of electrodes on the bilateral brain are subjected to Multivariate Variational Mode Decomposition (MVMD) respectively, and three types of entropy values on the low-frequency and high-frequency components are calculated, namely approximate entropy, fuzzy entropy and permutation entropy, as well as three types of phase-amplitude coupling features between the low-frequency and high-frequency components, namely the mean value, standard deviation and correlation coefficient; Secondly, the difference of the entropies and the cross-frequency coupling features between the left electrodes and the right electrodes are calculated; Finally, the final feature set are selected via t-test and fed into the SVM for classification, thus realizing the automatic detection of VRMS. The results show that the three classification indexes under this method, i.e., accuracy, sensitivity and specificity, reach 99.5 %, 99.3 % and 99.7 %, respectively, and the value of the area under the ROC curve reached 1, which proves that this method can be an effective indicator for detecting the occurrence of VRMS.


Asunto(s)
Electroencefalografía , Entropía , Mareo por Movimiento , Realidad Virtual , Humanos , Electroencefalografía/métodos , Mareo por Movimiento/fisiopatología , Mareo por Movimiento/diagnóstico , Masculino , Femenino , Encéfalo/fisiopatología , Adulto Joven , Adulto , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
17.
J Environ Manage ; 362: 121253, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823294

RESUMEN

Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool.


Asunto(s)
Carbono , Predicción , Modelos Teóricos , Comercio
18.
Sci Total Environ ; 946: 174374, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38945246

RESUMEN

Groundwater pollution source recognition (GPSR) is a prerequisite for subsequent pollution remediation and risk assessment work. The actual observed data are the most important known condition in GPSR, but the observed data can be contaminated with noise in real cases. This may directly affect the recognition results. Therefore, denoising is important. However, in different practical situations, the noise attribute (e.g., noise level) and observed data attribute (e.g., observed frequency) may be different. Therefore, it is necessary to study the applicability of denoising. Current studies have two deficiencies. First, when dealing with complex nonlinear and non-stationary situations, the effect of previous denoising methods needs to be improved. Second, previous attempts to analyze the applicability of denoising in GPSR have not been comprehensive enough because they only consider the influence of the noise attribute, while overlooking the observed data attribute. To resolve these issues, this study adopted the variational mode decomposition (VMD) to perform denoising on the noisy observed data in GPSR for the first time. It further explored the influence of different factors on the denoising effect. The tests were conducted under 12 different scenarios. Then, we expanded the study to include not only the noise attribute (noise level) but also the observed data attribute (observed frequency), thus providing a more comprehensive analysis of the applicability of denoising in GPSR. Additionally, we used a new heuristic optimization algorithm, the collective decision optimization algorithm, to improve the recognition accuracy. Four representative scenarios were adopted to test the ideas. The results showed that the VMD performed well under various scenarios, and the denoising effect diminished as the noise level increased and the observed frequency decreased. The denoising was more effective for GPSR with high noise levels and multiple observed frequencies. The collective decision optimization algorithm had a good inversion accuracy and strong robustness.

19.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931617

RESUMEN

In a diesel engine, piston slap commonly occurs concurrently with fuel combustion and serves as the main source of excitation. Although combustion pressure can be measured using sensors, determining the slap force is difficult without conducting tests. In this study, we propose a method to identify the slap force of the piston to solve this difficult problem. The traditional VMD algorithm easily receives noise interference, which affects the value of parameter combination [k, α] and thus affects the extraction accuracy of the algorithm. First, we obtain the transfer function between the incentive and vibration response through percussion tests. Secondly, a variational modal decomposition method based on whale algorithm optimization is used to separate the slap response from the surface acceleration of the block. Finally, we calculated the slap force using the deconvolution method. Deconvolution is a typical inverse problem of mathematics, often prone to ill-conditioning, and the singular value decomposition and regularization method is used to overcome this flaw and improve accuracy. The proposed method provides an important means to evaluate the angular distribution of the slap force, identify the shock positions on the piston liner, and determine the peak value of the waveform which helps us analyze the vibration characteristics of the piston and optimize the structural design of the engine.

20.
PeerJ Comput Sci ; 10: e2032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855207

RESUMEN

Aiming at the random and intermittent characteristics of wind speed, a short-term wind speed prediction (SWSP) method based on TSO-VMD-BiLSTM is proposed in this article. Firstly, open-source historical data from a certain region in 2022, including wind speed, direction, pressure, and temperature is analyzed. The data is processed through variational mode decomposition (VMD) to fully extract feature data from historical wind speed records. Secondly, taking historical wind speed, direction, pressure, and temperature as inputs and wind speed as output, a SWSP model based on long short-term memory (LSTM) network is constructed. Thirdly, the tuna swarm optimization (TSO) algorithm is utilized for parameters optimization, and a bi-directional long short-term memory (BiLSTM) network is incorporated to enhance prediction accuracy for micrometeorological parameters. The proposed TSO-VMD-BiLSTM model is validated through comparison with other models, demonstrating its higher accuracy with the maximum absolute error of only 2.52 m/s, the maximum root mean square error of 0.81, the maximum mean absolute error of only 0.54, and the maximum mean absolute percentage error of 6.89%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA