Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.946
Filtrar
1.
J Bacteriol ; : e0014324, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230524

RESUMEN

A major challenge faced by Vibrio cholerae is constant predation by bacteriophage (phage) in aquatic reservoirs and during infection of human hosts. To overcome phage predation, V. cholerae has acquired and/or evolved a myriad of phage defense systems. Although several novel defense systems have been discovered, we hypothesized that more were encoded in V. cholerae given the low diversity of phages that have been isolated, which infect this species. Using a V. cholerae genomic library, we identified a Type IV restriction system consisting of two genes within a 16-kB region of the Vibrio pathogenicity island-2, which we name TgvA and TgvB (Type I-embedded gmrSD-like system of VPI-2). We show that both TgvA and TgvB are required for defense against T2, T4, and T6 by targeting glucosylated 5-hydroxymethylcytosine (5hmC). T2 or T4 phages that lose the glucose modifications are resistant to TgvAB defense but exhibit a significant evolutionary tradeoff, becoming susceptible to other Type IV restriction systems that target unglucosylated 5hmC. We also show that the Type I restriction-modification system that embeds the tgvAB genes protects against phage T3, secΦ18, secΦ27, and λ, suggesting that this region is a phage defense island. Our study uncovers a novel Type IV restriction system in V. cholerae, increasing our understanding of the evolution and ecology of V. cholerae, while highlighting the evolutionary interplay between restriction systems and phage genome modification.IMPORTANCEBacteria are constantly being predated by bacteriophage (phage). To counteract this predation, bacteria have evolved a myriad of defense systems. Some of these systems specifically digest infecting phage by recognizing unique base modifications present on the phage DNA. In this study, we discover a Type IV restriction system encoded in V. cholerae, which we name TgvAB, and demonstrate it recognizes and restricts phage that have 5-hydroxymethylcytosine glucosylated DNA. Moreover, the evolution of resistance to TgvAB render phage susceptible to other Type IV restriction systems, demonstrating a significant evolutionary tradeoff. These results enhance our understanding of the evolution of V. cholerae and more broadly how bacteria evade phage predation.

2.
J Hazard Mater ; 479: 135646, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39217938

RESUMEN

Vibrio parahaemolyticus and microplastics are prevalent in the ocean. Bacteria attach onto plastic particles, forming harmful biofilms that collectively threaten bivalve health. This study investigates the interaction between polyamide microplastics (PA: particle size 38 ± 12 µm) and V. parahaemolyticus, as well as their combined impact on thick-shelled mussels (Mytilus coruscus). We introduced 1011 CFU/L of V. parahaemolyticus into varying PA concentrations (0, 5, 50, and 500 particles/L) to observe growth over 14 h and biofilm formation after 48 h. Our findings indicate that microplastics suppress biofilm formation and virulence gene expression. Four treatments were established to monitor mussel responses: a control group without PA or V. parahaemolyticus; a group with 50 particles/L PA; a group with 1011 CFU/L V. parahaemolyticus; and a co-exposure group with both 50 particles/L PA and 1011 CFU/L V. parahaemolyticus, over a 14-day experiment. However, combined stress from microplastics and Vibrio led to immune dysregulation in mussels, resulting in intestinal damage and microbiome disruption. Notably, V. parahaemolyticus had a more severe impact on mussels than microplastics alone, yet their coexistence reduced some harmful effects. This study is the first to explore the interaction between microplastics and V. parahaemolyticus, providing important insights for ecological risk assessments.

3.
Microb Genom ; 10(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235832

RESUMEN

Several authors have attributed the explosive outbreak of gastroenteritis that occurred in Czechoslovakia in 1965 to a toxigenic strain of Vibrio cholerae serogroup O37 based on unverified metadata associated with three particular strains from the American Type Culture Collection. Here, by sequencing the original strain preserved at the Czech National Collection of Type Cultures since 1966, we show that the strain responsible for this outbreak was actually a V. cholerae O5 that lacks the genes encoding the cholera toxin, the toxin-coregulated pilus protein and Vibrio pathogenicity islands present in V. cholerae O37 strains.


Asunto(s)
Cólera , Brotes de Enfermedades , Gastroenteritis , Vibrio cholerae , Gastroenteritis/microbiología , Gastroenteritis/epidemiología , Gastroenteritis/historia , Humanos , Vibrio cholerae/genética , Vibrio cholerae/clasificación , Checoslovaquia , Cólera/epidemiología , Cólera/microbiología , Cólera/historia , Toxina del Cólera/genética , Islas Genómicas , Serogrupo
4.
Future Microbiol ; : 1-21, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229784

RESUMEN

Recent cholera outbreaks in many countries in the Middle East and North Africa (MENA) region have raised public health concerns and focused attention on the genus Vibrio. However, the epidemiology of Vibrio species in humans, water, and seafood is often anecdotal in this region. In this review, we screened the literature and provided a comprehensive assessment of the distribution and antibiotic resistance properties of Vibrio species in different clinical and environmental samples in the region. This review will contribute to understanding closely the real burden of Vibrio species and the spread of antibiotic-resistant strains in the MENA region. The overall objective is to engage epidemiologists, sanitarians and public health stakeholders to address this problem under the One-health ethos.


The Vibrio genus contains many bacterial species normally found in freshwater, estuaries and marine environments. Some of these species can be transmitted by water and food and can make people severely ill. For instance, some groups of the bacterium Vibrio cholerae (serogroups O1 and O139) can cause serious watery diarrhea called cholera. Other pathogenic Vibrio bacteria can cause other types of infections such as gastroenteritis and wound infections. Some of these bacteria are becoming increasingly resistant to antibiotics, which will threaten and complicate therapy. This review discusses the occurrence and antibiotic resistance of different important Vibrio species in the Middle East and North Africa (MENA) region.

5.
BMC Infect Dis ; 24(1): 905, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223499

RESUMEN

BACKGROUND: Cholera is a diarrheal disease recognized for being caused by toxin-producing Vibrio (V.) cholerae. This study aims to assess the vibriocidal and immunomodulatory properties of derived cell-free supernatants (CFSs) of Bifidobacterium (B.) bifidum and Lactobacillus (L.) acidophilus encapsulated in chitosan nanoparticles (CFSb-CsNPs and CFSa-CsNPs) against clinical multi-drug resistance (MDR) isolates of V. cholerae O1 El Tor. METHODS: We synthesized CFSb-CsNPs and CFSa-CsNPs using the ionic gelation technique. The newly nanostructures were characterized for size, surface zeta potential, morphology, encapsulation efficacy (EE), stability in different pH values and temperatures, release profile, and in vitro cytotoxicity. The antimicrobial and antibiofilm effects of the obtained nanocomposites on clinical MDR isolates (N = 5) of V. cholerae E1 Tor O1 were investigated by microbroth dilution assay and crystal violet staining, respectively. We conducted quantitative real-time PCR (qRT-PCR) to analyze the relative gene expressions of Bap, Rbmc, CTXAB, and TCP in response to CFSb-CsNPs and CFSa-CsNPs. Additionally, the immunomodulatory effects of formulated structures on the expression of TLR2 and TLR4 genes in human colorectal adenocarcinoma cells (Caco-2) were studied. RESULTS: Nano-characterization analyses indicated that CFSb-CsNPs and CFSa-CsNPs exhibit spherical shapes under scanning electron microscopy (SEM) imaging, with mean diameters of 98.16 ± 0.763 nm and 83.90 ± 0.854 nm, respectively. Both types of nanoparticles possess positive surface charges. The EE% of CFSb-CsNPs was 77 ± 4.28%, whereas that of CFSa-CsNPs was 62.5 ± 7.33%. Chitosan (Cs) encapsulation leads to increased stability of CFSs in simulated pH conditions of the gastrointestinal tract in which the release rates for CFSb-CsNPs and CFSa-CsNPs were reached at 58.00 ± 1.24% and 55.01 ± 1.73%, respectively at pH = 7.4. The synergistic vibriocidal effects observed from the co-administration of both CFSb-CsNPs and CFSa-CsNPs, as evidenced by a fractional inhibitory concentration (FIC) index of 0.57, resulting in a significantly lower MIC of 2.5 ± 0.05 mg/mL (p < 0.0001) compare to individual administration. The combined antibacterial effect of CFSb-CsNPs and CFSa-CsNPs on Bap (0.14 ± 0.05), Rbmc (0.24 ± 0.01), CTXAB (0.30 ± 0.09), and TCP (0.38 ± 0.01) gene expression was significant (p < 0.001). Furthermore, co-administration of CFSb-CsNPs and CFSa-CsNPs also demonstrated the potency of suppressing TLR 2/4 (0.20 ± 0.01 and 0.12 ± 0.02, respectively) gene expression (p = 0.0019) and reduced Caco-2 cells attached bacteria to 526,000 ± 51,46 colony-forming units/mL (11.19%) (p < 0.0001). CONCLUSION: Our study revealed that encapsulating CFSs within CsNPs enhances their vibriocidal activity by improving stability and enabling a controlled release mechanism at the site of interaction between the host and bacteria. Additionally, the simultaneous use of CFSb-CsNPs and CFSa-CsNPs exhibited superior vibriocidal potency against MDR V. cholerae O1 El Tor strains, indicating these combinations as a potential new approach against MDR bacteria.


Asunto(s)
Antibacterianos , Bifidobacterium bifidum , Quitosano , Lactobacillus acidophilus , Nanopartículas , Vibrio cholerae O1 , Quitosano/química , Quitosano/farmacología , Lactobacillus acidophilus/efectos de los fármacos , Vibrio cholerae O1/efectos de los fármacos , Humanos , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Bifidobacterium bifidum/fisiología , Farmacorresistencia Bacteriana Múltiple , Probióticos/farmacología , Probióticos/administración & dosificación , Biopelículas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Células CACO-2
6.
Arch Microbiol ; 206(9): 376, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141167

RESUMEN

Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.


Asunto(s)
Medios de Cultivo , Viabilidad Microbiana , Vibrio parahaemolyticus , Vibrio parahaemolyticus/crecimiento & desarrollo , Animales , Medios de Cultivo/química , Serogrupo , Frío , Microbiología de Alimentos , Artemia/microbiología , Alimentos Marinos/microbiología
7.
BMC Public Health ; 24(1): 2237, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152391

RESUMEN

BACKGROUND: An outbreak of cholera was reported in the Middle East by the second half of 2022. Raising public awareness and vaccination against cholera represent critical factors in the preventive efforts. The current study aimed to assess the knowledge of cholera and attitude towards its vaccination among a sample of the general public residing in Jordan. METHODS: An online self-administered questionnaire was distributed to the residents in Jordan using a snowball convenience-based sampling approach. The questionnaire based on previously published studies included items to evaluate sociodemographic variables, knowledge about cholera symptoms, transmission, and prevention and the willingness to accept cholera vaccination. Additionally, four items based on the validated 5 C scale in Arabic were included to assess the psychological factors influencing attitude to cholera vaccination. RESULTS: The final study sample comprised 1339 respondents, of whom 1216 (90.8%) heard of cholera before the study. Among those who heard of cholera, and on a scale from 0 to 20, the overall mean cholera Knowledge score (K-score) was 12.9 ± 3.8. In multivariate analysis, being over 30 years old and occupation as healthcare workers or students in healthcare-related colleges were significantly associated with a higher K-score compared to younger individuals and students in non-healthcare-related colleges. Overall, the acceptance of cholera vaccination if cases are recorded in Jordan, and if the vaccine is safe, effective, and provided freely was reported among 842 participants (69.2%), while 253 participants were hesitant (20.8%) and 121 participants were resistant (10.0%). In linear regression, the significant predictors of cholera vaccine acceptance were solely the three psychological factors namely high confidence, low constraints, and high collective responsibility. CONCLUSIONS: In this study, the identified gaps in cholera knowledge emphasize the need to enhance educational initiatives. Although cholera vaccine acceptance was relatively high, a significant minority of the respondents exhibited vaccination hesitancy or resistance. The evident correlation between the psychological determinants and attitudes toward cholera vaccination emphasizes the need to consider these factors upon designing public health campaigns aimed at cholera prevention. The insights of the current study highlight the importance of addressing both knowledge gaps and psychological barriers to optimize cholera control strategies.


Asunto(s)
Vacunas contra el Cólera , Cólera , Brotes de Enfermedades , Conocimientos, Actitudes y Práctica en Salud , Humanos , Jordania , Cólera/prevención & control , Cólera/psicología , Cólera/epidemiología , Masculino , Adulto , Femenino , Adulto Joven , Brotes de Enfermedades/prevención & control , Vacunas contra el Cólera/administración & dosificación , Encuestas y Cuestionarios , Persona de Mediana Edad , Adolescente , Vacunación/estadística & datos numéricos , Vacunación/psicología , Aceptación de la Atención de Salud/estadística & datos numéricos , Aceptación de la Atención de Salud/psicología , Estudios Transversales
8.
Microb Pathog ; 195: 106856, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153576

RESUMEN

Biofilm formation is a major health concern and studies have been pursued to find compounds able to prevent biofilm establishment and remove pre-existing biofilms. While biosurfactants (BS) have been well-known for possessing antibiofilm activities, bioemulsifiers (BE) are still scarcely explored for this purpose. The present study aimed to evaluate the bioemulsifying properties of cell-free supernatants produced by Bacillaceae and Vibrio strains isolated from marine sponges and investigate their antiadhesive and antibiofilm activities against different pathogenic Gram-positive and Gram-negative bacteria. The BE production by the marine strains was confirmed by the emulsion test, drop-collapsing, oil-displacement, cell hydrophobicity and hemolysis assays. Notably, Bacillus cereus 64BHI1101 displayed remarkable emulsifying activity and the ultrastructure analysis of its BE extract (BE64-1) revealed the presence of structures typically observed in macromolecules composed of polysaccharides and proteins. BE64-1 showed notable antiadhesive and antibiofilm activities against Staphylococcus aureus, with a reduction of adherence of up to 100 % and a dispersion of biofilm of 80 %, without affecting its growth. BE64-1 also showed inhibition of Staphylococcus epidermidis and Escherichia coli biofilm formation and adhesion. Thus, this study provides a starting point for exploring the antiadhesive and antibiofilm activities of BE from sponge-associated bacteria, which could serve as a valuable tool for future research to combat S. aureus biofilms.

9.
mBio ; : e0127024, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136457

RESUMEN

Rhomboid proteases are universally conserved and facilitate the proteolysis of peptide bonds within or adjacent to cell membranes. While eukaryotic rhomboid proteases have been demonstrated to harbor unique cellular roles, prokaryotic members have been far less characterized. For the first time, we demonstrate that Vibrio cholerae expresses two active rhomboid proteases that cleave a shared substrate at distinct sites, resulting in differential localization of the processed protein. The rhomboid protease rhombosortase (RssP) was previously found to process a novel C-terminal domain called GlyGly-CTERM, as demonstrated by its effect on the extracellular serine protease VesB during its transport through the V. cholerae cell envelope. Here, we characterize the substrate specificity of RssP and GlpG, the universally conserved bacterial rhomboid proteases. We show that RssP has distinct cleavage specificity from GlpG, and specific residues within the GlyGly-CTERM of VesB target it to RssP over GlpG, allowing for efficient proteolysis. RssP cleaves VesB within its transmembrane domain, whereas GlpG cleaves outside the membrane in a disordered loop that precedes the GlyGly-CTERM. Cleavage of VesB by RssP initially targets VesB to the bacterial cell surface and, subsequently, to outer membrane vesicles, while GlpG cleavage results in secreted, fully soluble VesB. Collectively, this work builds on the molecular understanding of rhomboid proteolysis and provides the basis for additional rhomboid substrate recognition while also demonstrating a unique role of RssP in the maturation of proteins containing a GlyGly-CTERM. IMPORTANCE: Despite a great deal of insight into the eukaryotic homologs, bacterial rhomboid proteases have been relatively understudied. Our research aims to understand the function of two rhomboid proteases in Vibrio cholerae. This work is significant because it will help us better understand the catalytic mechanism of rhomboid proteases as a whole and assign a specific role to a unique subfamily whose function is to process a subset of effector molecules secreted by V. cholerae and other pathogenic bacteria.

10.
Indian J Nephrol ; 34(4): 338-343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156841

RESUMEN

Background: Acute kidney injury (AKI) is a severe complication of acute diarrheal diseases; however, there is limited data on post-diarrheal AKI (PD-AKI) epidemiology and outcomes. This study aimed to investigate the clinicodemographic profile and outcomes of PD-AKI in our hospital. Materials and Methods: We retrospectively analyzed data from 93 patients admitted with PD-AKI during a diarrheal illness epidemic. Patients were stratified based on the Kidney Disease: Improving Global Outcomes (KDIGO) AKI stage and quick Sequential Organ Failure Assessment (qSOFA) score. Clinicodemographic data and outcomes were recorded and analyzed. Results: The mean age of the patients was 45.7 ± 11.9 years, with a majority being men (n = 55, 59%). All patients presented with watery diarrhea, 85% (n = 79) had vomiting, and 66% (n = 61) presented in shock. At presentation, 59% were oliguric, while 32% were anuric. KDIGO stage 3 AKI was observed in 71% (n = 66) of patients. Dialytic support was required in 29% (n = 27) of cases. The mortality rate was 6.5% (n = 6), mostly due to refractory shock, while the remaining patients recovered. Risk factor analysis demonstrated a higher qSOFA score, and peak serum creatinine levels were associated with an increased likelihood of requiring renal replacement therapy and delayed renal recovery. Conclusion: This study provides valuable insights into the clinicodemographic characteristics and outcomes of PD-AKI. The high prevalence of severe AKI emphasizes the importance of early recognition and appropriate management strategies for these patients.

11.
Foods ; 13(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39123565

RESUMEN

Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in association with eating raw or undercooked seafood. The majority of these foodborne illnesses are caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams (Tegillarca granosa), baby clams (Paphia undulata), and Asian green mussels (Perna viridis) from South Thailand was determined. A total of 649 Vibrio spp. isolates were subjected to pathogenicity analysis on blood agar plates, among which 21 isolates from blood clams (15 isolates), baby clams (2 isolates), and green mussels (4 isolates) showed positive ß-hemolysis. Based on the biofilm formation index (BFI) of ß-hemolysis-positive Vibrio strains, nine isolates exhibited a strong biofilm formation capacity, with a BFI in the range of 1.37 to 10.13. Among the 21 isolates, 6 isolates (BL18, BL82, BL84, BL85, BL90, and BL92) were tlh-positive, while trh and tdh genes were not detected in all strains. Out of 21 strains, 5 strains showed multidrug resistance (MDR) against amoxicillin/clavulanic acid, ampicillin/sulbactam, cefotaxime, cefuroxime, meropenem, and trimethoprim/sulfamethoxazole. A phylogenetic analysis of MDR Vibrio was performed based on 16s rDNA sequences using the neighbor-joining method. The five MDR isolates were identified to be Vibrio neocaledonicus (one isolate), Vibrio fluvialis (one isolate) and, Vibrio cidicii (three isolates). In addition, the antimicrobial activity of chitooligosaccharide-epigallocatechin gallate (COS-EGCG) conjugate against MDR Vibrio strains was determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-EGCG conjugate were in the range of 64-128 µg/mL. The antimicrobial activity of the conjugate was advocated by the cell lysis of MDR Vibrio strains, as elucidated by scanning electron microscopic images. Vibrio spp. isolated from blood clams, baby clams, and Asian green mussels were highly pathogenic, exhibiting the ability to produce biofilm and being resistant to antibiotics. However, the COS-EGCG conjugate could be used as a potential antimicrobial agent for controlling Vibrio in mollusks.

12.
Food Res Int ; 192: 114819, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147512

RESUMEN

Vibrio parahaemolyticus, a prevalent foodborne pathogen found in both water and seafood, poses substantial risks to public health. The conventional countermeasure, antibiotics, has exacerbated the issue of antibiotic resistance, increasing the difficulty of controlling this bacterium. Phage lysins, as naturally occurring active proteins, offer a safe and reliable strategy to mitigate the impact of V. parahaemolyticus on public health. However, there is currently a research gap concerning bacteriophage lysins specific to Vibrio species. To address this, our study innovatively and systematically evaluates 37 phage lysins sourced from the NCBI database, revealing a diverse array of conserved domains and notable variations in similarity among Vibrio phage lysins. Three lysins, including Lyz_V_pgrp, Lyz_V_prgp60, and Lyz_V_zlis, were successfully expressed and purified. Optimal enzymatic activity was observed at 45℃, 800 mM NaCl, and pH 8-10, with significant enhancements noted in the presence of 1 mM membrane permeabilizers such as EDTA or organic acids. These lysins demonstrated effective inhibition against 63 V. parahaemolyticus isolates from clinical, food, and environmental sources, including the reversal of partial resistance, synergistic interactions with antibiotics, and disruption of biofilms. Flow cytometry analyses revealed that the combination of Lyz_V_pgp60 and gentamicin markedly increased bacterial killing rates. Notably, Lyz_V_pgrp, Lyz_V_pgp60, and Lyz_V_zlis exhibited highly efficient biofilm hydrolysis, clearing over 90 % of preformed V. parahaemolyticus biofilms within 48 h. Moreover, these lysins significantly reduced bacterial loads in various food samples and environmental sources, with reductions averaging between 1.06 and 1.29 Log CFU/cm2 on surfaces such as stainless-steel and bamboo cutting boards and approximately 0.87 CFU/mL in lake water and sediment samples. These findings underscore the exceptional efficacy and versatile application potential of phage lysins, offering a promising avenue for controlling V. parahaemolyticus contamination in both food and environmental contexts.


Asunto(s)
Bacteriófagos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virología , Vibrio parahaemolyticus/efectos de los fármacos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Microbiología de Alimentos , Alimentos Marinos/microbiología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo
13.
Microbiol Spectr ; : e0118124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162543

RESUMEN

The marine bacterium Vibrio parahaemolyticus is a major cause of seafood-borne gastroenteritis in humans and of acute hepatopancreatic necrosis disease in shrimp. Bile acids, produced by the host and modified into secondary bile acids by commensal bacteria in the gastrointestinal tract, induce the virulence factors leading to disease in humans and shrimp. Here, we show that secondary bile acids also activate this pathogen's type VI secretion system 1, a toxin delivery apparatus mediating interbacterial competition. This finding implies that Vibrio parahaemolyticus exploits secondary bile acids to activate its virulence factors and identify the presence of commensal bacteria that it needs to outcompete in order to colonize the host.IMPORTANCEBacterial pathogens often manipulate their host and cause disease by secreting toxic proteins. However, to successfully colonize a host, they must also remove commensal bacteria that reside in it and may compete with them over resources. Here, we find that the same host-derived molecules that activate the secreted virulence toxins in a gut bacterial pathogen, Vibrio parahaemolyticus, also activate an antibacterial toxin delivery system that targets such commensal bacteria. These findings suggest that a pathogen can use one cue to launch a coordinated, trans-kingdom attack that enables it to colonize a host.

14.
Euro Surveill ; 29(32)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119721

RESUMEN

BackgroundThe Vibrio genus comprises several bacterial species present in the Baltic Sea region (BSR), which are known to cause human infections.AimTo provide a comprehensive retrospective analysis of Vibrio-induced infections in the BSR from 1994 to 2021, focusing on the 'big four' Vibrio species - V. alginolyticus, V. cholerae non-O1/O139, V. parahaemolyticus and V. vulnificus - in eight European countries (Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden) bordering the Baltic Sea.MethodsOur analysis includes data on infections, Vibrio species distribution in coastal waters and environmental data received from national health agencies or extracted from scientific literature and online databases. A redundancy analysis was performed to determine the potential impact of several independent variables, such as sea surface temperature, salinity, the number of designated coastal beaches and year, on the Vibrio infection rate.ResultsFor BSR countries conducting surveillance, we observed an exponential increase in total Vibrio infections (n = 1,553) across the region over time. In Sweden and Germany, total numbers of Vibrio spp. and infections caused by V. alginolyticus and V. parahaemolyticus positively correlate with increasing sea surface temperature. Salinity emerged as a critical driver of Vibrio spp. distribution and abundance. Furthermore, our proposed statistical model reveals 12 to 20 unreported cases in Lithuania and Poland, respectively, countries with no surveillance.ConclusionsThere are discrepancies in Vibrio surveillance and monitoring among countries, emphasising the need for comprehensive monitoring programmes of these pathogens to protect human health, particularly in the context of climate change.


Asunto(s)
Vibriosis , Vibrio , Humanos , Estudios Retrospectivos , Vibriosis/epidemiología , Vibriosis/microbiología , Vibrio/aislamiento & purificación , Vibrio/clasificación , Países Bálticos/epidemiología , Agua de Mar/microbiología , Europa (Continente)/epidemiología , Océanos y Mares
15.
J Invertebr Pathol ; 206: 108173, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121985

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is a highly contagious and lethal disease of shrimp caused by Vibrio strains carrying the virulence plasmid (pAHPND) containing the pirAB virulence genes. Through analysis of plasmid sequence similarity, clustering, and phylogeny, a horizontal transfer element similar to IS91 was discovered within the pAHPND plasmid. Additionally, two distinct clades of plasmids related to pAHPND (designated as pAHPND-r1 and pAHPND-r2) were identified, which may serve as potential parental plasmids for pAHPND. The available evidence, including the difference in G+C content between the plasmid and its host, codon usage preference, and plasmid recombination event prediction, suggests that the formation of the pAHPND plasmid in the Vibrio owensii strain was likely due to the synergistic effect of the recombinase RecA and the associated proteins RecBCD on the pAHPND-r1 and pAHPND-r2, resulting in the recombination and formation of the precursor plasmid for pAHPND (pre-pAHPND). The emergence of pAHPND was found to be a result of successive insertions of the horizontal transfer elements of pirAB-Tn903 and IS91-like segment, which led to the deletion of one third of the pre-pAHPND. This plasmid was then able to spread horizontally to other Vibrio strains, contributing to the epidemics of AHPND. These findings shed light on previously unknown mechanisms involved in the emergence of pAHPND and improve our understanding of the disease's spread.

16.
BMC Microbiol ; 24(1): 288, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095694

RESUMEN

BACKGROUND: Coral diseases are significant drivers of global coral reef degradation, with pathogens dominated by Vibrio coralliilyticus playing a prominent role in the development of coral diseases. Coral phenotype, symbiotic microbial communities, and host transcriptional regulation have been well-established as factors involved in determining coral disease resistance, but the underlying mechanisms remain incompletely understood. METHODS: This study employs high-throughput sequencing to analyse the symbiotic microbial and transcriptional response of the hosts in order to evaluate the disease resistance of Acropora valida and Turbinaria peltata exposed to Vibrio coralliilyticus. RESULTS: A. valida exhibited pronounced bleaching and tissue loss within 7 h of pathogen infection, whereas T. peltata showed no signs of disease throughout the experiment. Microbial diversity analyses revealed that T. peltata had a more flexible microbial community and a higher relative abundance of potential beneficial bacteria compared to A. valida. Although Vibrio inoculation resulted in a more significant decrease in the Symbiodiniaceae density of A. valida compared to that of T. peltata, it did not lead to recombination of the coral host and Symbiodiniaceae in either coral species. RNA-seq analysis revealed that the interspecific differences in the transcriptional regulation of hosts after Vibrio inoculation. Differentially expressed genes in A. valida were mainly enriched in the pathways associated with energy supply and immune response, such as G protein-coupled receptor signaling, toll-like receptor signaling, regulation of TOR signaling, while these genes in T. peltata were mainly involved in the pathway related to immune homeostasis and ion transport, such as JAK-STAT signaling pathway and regulation of ion transport. CONCLUSIONS: Pathogenic challenges elicit different microbial and transcriptional shifts across coral species. This study offers novel insights into molecular mechanisms of coral resistance to disease.


Asunto(s)
Antozoos , Resistencia a la Enfermedad , Vibrio , Antozoos/microbiología , Antozoos/genética , Antozoos/inmunología , Animales , Vibrio/genética , Resistencia a la Enfermedad/genética , Simbiosis/genética , Microbiota/genética , Arrecifes de Coral , Secuenciación de Nucleótidos de Alto Rendimiento
17.
Front Cell Infect Microbiol ; 14: 1425104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108984

RESUMEN

Introduction: Vibrio alginolyticus is a Gram-negative, rod-shaped bacterium belonging to the family of Vibrionaceae, a common pathogen in aquaculture animals, However, studies on its impact on Scylla serrata (mud crabs) are limited. In this study, we isolated V. alginolyticus SWS from dead mud crab during a disease outbreak in a Hong Kong aquaculture farm, which caused up to 70% mortality during summer. Methods: Experimental infection and histopathology were used to investigate the pathogenicity of V. alginolyticus SWS in S. serrata and validate Koch's postulates. Comprehensive whole-genome analysis and phylogenetic analysis antimicrobial susceptibility testing, and biochemical characterization were also performed. Results: Our findings showed that V. alginolyticus SWS caused high mortality (75%) in S. serrata with infected individuals exhibiting inactivity, loss of appetite, decolored and darkened hepatopancreas, gills, and opaque muscle in the claw. Histopathological analysis revealed tissue damage and degeneration in the hepatopancreas, gills, and claw muscle suggesting direct and indirect impacts of V. alginolyticus SWS infection. Conclusions: This study provides a comprehensive characterization of V. alginolyticus SWS as an emerging pathogen in S. serrata aquaculture. Our findings underscore the importance of ongoing surveillance, early detection, and the development of targeted disease management strategies to mitigate the economic impact of vibriosis outbreaks in mud crab aquaculture.


Asunto(s)
Acuicultura , Braquiuros , Filogenia , Vibrio alginolyticus , Animales , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidad , Vibrio alginolyticus/aislamiento & purificación , Vibrio alginolyticus/clasificación , Braquiuros/microbiología , Hong Kong/epidemiología , Vibriosis/microbiología , Vibriosis/veterinaria , Branquias/microbiología , Branquias/patología , Virulencia , Secuenciación Completa del Genoma , Genoma Bacteriano/genética , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Brotes de Enfermedades , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
18.
Front Microbiol ; 15: 1459466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161608

RESUMEN

Background: Vibrio vulnificus (V. vulnificus) is a deadly opportunistic human pathogen with high mortality worldwide. Notably, climate warming is likely to expand its geographical range and increase the infection risk for individuals in coastal regions. However, due to the absence of comprehensive surveillance systems, the emergence and characteristics of clinical V. vulnificus isolates remain poorly understood in China. Methods: In this study, we investigate antibiotic resistance, virulence including serum resistance, and hemolytic ability, as well as molecular characteristics of 21 V. vulnificus isolates collected from patients in Ningbo, China. Results and discussion: The results indicate that all isolates have been identified as potential virulent vcg C type, with the majority (16 of 21) classified as 16S rRNA B type. Furthermore, these isolates exhibit a high level of antibiotic resistance, with 66.7% resistance to more than three antibiotics and 61.9% possessing a multiple antibiotic resistance (MAR) index exceeding 0.2. In terms of virulence, most isolates were categorized as grade 1 in serum resistance, with one strain, S12, demonstrating intermediate sensitivity in serum resistance, belonging to grade 3. Whole genome analysis disclosed the profiles of antibiotic resistance genes (ARGs) and virulence factors (VFs) in these strains. The strains share substantial VF genes associated with adherence, iron uptake, antiphagocytosis, toxin, and motility. In particular, key VFs such as capsule (CPS), lipopolysaccharide (LPS), and multifunctional autoprocessing repeats-in-toxin (MARTX) are prevalent in all isolates. Specifically, S12 possesses a notably high number of VF genes (672), which potentially explains its higher virulence. Additionally, these strains shared six ARGs, namely, PBP3, adeF, varG, parE, and CRP, which likely determine their antibiotic resistance phenotype. Conclusion: Overall, our study provides valuable baseline information for clinical tracking, prevention, control, and treatment of V. vulnificus infections.

19.
J Fish Biol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180247

RESUMEN

Frequent outbreaks of infectious diseases in aquaculture have led to significant economic losses. The leopard coral grouper (Plectropomus leopardus) often suffers from vibriosis. Improving host immunity presents a superior strategy for disease control, with minimal side effects compared to the use of antibiotics, highlighting the necessity of exploring the mechanisms underlying the fish's response to pathogen infections. Here, we conducted a comparative metabolomic analysis on the livers of the P. leopardus infected with Vibrio harveyi. A total of 1124 differential metabolites (DMs) were identified, with 190, 218, 359, and 353 DMs being identified at 6, 12, 24, and 48 h post-infection (hpi), respectively. Then, based on the time series analysis, we found that the lipid metabolism pathways were modulated in response to the Vibrio infection, with an increase in the quantity of eicosanoids and gycerophospholipids (GPLs), as well as a decrease in the quantity of bile acids (BAs), vitamin D, and sex hormones. Furthermore, 13 enriched pathways involving 31 DMs were identified through KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses. We identified histamine, 15(S)-HpETE, and anandamide in the transient receptor potential (TRP) channels pathway, as well as (7S,8S)-DiHODE, 5S,8R-DiHODE, and 13(S)-HpODE in the linoleic acid (LA) metabolism pathway. The DM levels increased, which may be attributed to inflammation. The DMs in the thyroid hormone synthesis pathway were identified, and the contents of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) decreased, which may be crucial in antioxidants. Our findings highlighted the dynamic adjustments in lipid metabolism and the response to inflammation and oxidative stress during the infection of V. harveyi in P. leopardus. This study not only deepens our understanding of the metabolic underpinnings of fish immune responses but also lays the groundwork for research into functional metabolomics and mechanisms of disease resistance.

20.
Fish Shellfish Immunol ; 153: 109828, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134231

RESUMEN

Vibrio parahaemolyticus (VP-AHPND) is regarded as one of the main pathogens that caused acute hepatopancreatic necrosis disease (AHPND) in the Pacific white shrimp Litopenaeus vannamei. PirAvp and PirBvp toxin proteins are the main pathogenic proteins of AHPND in shrimp. Knowledge about the mechanism of shrimp response to PirAvp or PirBvp toxin is very helpful for developing new prevention and control strategy of AHPND in shrimp. In this study, the pathological sections showed that after 4 h treatment, significant pathological changes were observed in the PirBvp treated group, and no obvious pathological changes was found in PirAvp treated group. In order to learn the mechanism of shrimp response to PirAvp and PirBvp, comparative transcriptome was applied to analyze the different expressions of genes in the hepatopancreas of shrimp after treatment with PirAvp or PirBvp. A total of 9978 differentially expressed genes (DEGs) were identified between PirAvp or PirBvp-treated and PBS control shrimp, including 6616 DEGs in the PirAvp treated group and 3362 DEGs in the PirBvp treated group. There were 2263 DEGs that were commonly expressed, 4353 DEGs were only expressed in PirAvp VS PBS group and 1099 DEGs were uniquely expressed in PirBvp VS PBS group. Among these DEGs, the anti-apoptosis related pathways and immune response related genes significantly expressed in the commonly expressed DEGs of PirAvp VS PBS group and PirBvp VS PBS group, and small GTPase-mediated signaling and DNA metabolic process might relate to the host special reaction towards PirAvp and PirBvp exposure. The data suggested that the differential expression of these immune and metabolic-related genes in hepatopancreas might contribute to the pathogenicity variations of shrimp to VP-AHPND. The identified genes in this study will be useful for clarifying the response mechanism of shrimp toward different toxins of VP-AHPND and will further provide molecular basis for understanding the pathogenic mechanism of VP-AHPND.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA