Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
ACS Appl Mater Interfaces ; 16(26): 34020-34029, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961571

RESUMEN

Rechargeable aqueous Zn-ion batteries with a Zn anode hold great promise as promising candidates for advanced energy storage systems. The construction of protective layer coatings on Zn anode is an effective way to suppress the growth of Zn dendrites and water-induced side reactions. Herein, we reported a series of UIO-66 materials with different concentrations of reduced graphene oxide (rG) coated onto the surface of Zn foil (Zn@UIO-66/rGx; x = 0.05, 0.1, and 0.2). Benefiting from the synergistic effect of UIO-66 and rG, symmetric cells with Zn@UIO-66/rGx (x = 0.1) electrodes exhibit excellent reversibility (e.g., long cycling life over 1100 h at 1 mA cm-2/1 mAh cm-2) and superior rate capability (e.g., over 1100 and 400 h at 5 mA cm-2/2.5 mAh cm-2 and 10 mA cm-2/5 mAh cm-2, respectively). When the Zn@UIO-66/rG0.1 anode was paired with the NaV3O8·1.5H2O (NVO) cathode, the Zn@UIO-66/rG0.1||NVO cell also delivered a high reversible capacity of 189.9 mAh g-1 with an initial capacity retention of 61.3% after 500 cycles at 1 A g-1, compared to the bare Zn||NVO cell with only 92 cycles.

2.
Adv Mater ; : e2405949, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38944888

RESUMEN

Aqueous Zn-ion batteries (AZIBs) are considered as promising candidates for the next-generation large-scale energy storage, which, however, is facing the challenge of instable Zn anodes. The anion is pivotal in the stability of anodes, which are not being paid enough attention to. Herein, the modulation of anions is reported using the Hofmeister series in supramolecular chemistry to boost the stability of Zn anodes. It is found that the right-side anions in the Hofmeister series (e.g., OTf-) can enhance the Zn2+ transference number, increase the Coulombic efficiency, facilitate uniform Zn deposition, reduce the freezing point of electrolytes, and thereby stabilize the Zn anodes. More importantly, the right-side anions can form strong interaction with ß-cyclodextrin (ß-CD) compared to the left-side anions, and hence the addition of ß-CD can further enhance the stability of Zn anodes in OTf--based electrolytes, showing enhancement of cycling lifespan in the Zn//Zn symmetric cells more than 45.5 times with ß-CD compared with those without ß-CD. On the contrary, the left-side anions show worse rate performance after the addition of ß-CD. These results provide an effective and novel approach for choosing anions and matching additives to stabilize the anodes and achieve high-performance AZIBs through the Hofmeister effect.

3.
Angew Chem Int Ed Engl ; : e202407012, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943544

RESUMEN

Batteries always encounter uncontrollable failure or performance decay under extreme temperature environments, which is largely limited by the properties of electrolytes. Herein, an entropy-driven hydrated eutectic electrolyte (HEE) with diverse solvation configurations is proposed to expand the operating temperature range of Zn-ion batteries. The HEE possesses over 40 types of Zn2+ solvation structure with uniform distribution, contributing to its much higher solvation configurational entropy compared to the conventional aqueous counterpart (only 6 types). These effectively promotes its anti-freezing ability under ultralow temperatures, with a high ionic conductivity of 0.42 mS cm-1 even at a low temperature of -40 °C. Moreover, the entropy-driven property can simultaneously enhance the thermal stability under a high temperature over +140 °C. Therefore, the HEE can enable full cells stably working over a wide temperature range of -40~+80 °C, performing over 1500 cycles with 100% capacity retention at -40 °C and 1000 cycles with ~72% capacity retention at +80 °C. This inspiring concept of entropy-driven electrolyte with quantized solvation configurational entropy value has charming potential for designing future special batteries with excellent adaptability towards extreme temperature environments.

4.
Small ; : e2402266, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847571

RESUMEN

This work reports a novel 3D printed grid reservoir-integrated mesoporous carbon coordinated silicon oxycarbide hybrid composite (3DP-MPC-SiOC) to establish the zincophile interphase for controlling the dendrite formation. The customized 3D printed grid patterned structure inhibits Zn dendrite growth and achieves long-term stability with reduced voltage polarization due to homogeneous electric field distribution. The hybrid composite consisting of SiOC interpenetrated within carbon constructs a high zinc nucleation interphase, hence promoting uniform Zn2+ deposition and enhancing ionic diffusion with dendrite-free growth and a reduced nucleation energy barrier. As a result, the 3DP-MPC-SiOC@Zn symmetrical cell affords a highly reversible Zn plating/stripping and dendrite-free structure over 198 h with an ultra-low voltage polarization. These inspiring performances endow the 3DP anode with a 3DP-VO cathode as a full battery, which shows a retention capacity of 78.8 mAh g-1 (Coulombic efficiency: 94.04%) at 0.1 A g-1 and a large energy density of 41 Wh kg-1 at a power density of 1.2 W kg-1 (based on the total mass of electrode) after 120 cycles. This newly developed 3D printing of hybrid composite as an electrode is straightforward and scalable and provides a novel concept for realizing dendrite-free and stable rechargeable Zn-ion batteries.

5.
Small ; : e2403380, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837583

RESUMEN

Zinc metal is a promising anode candidate for aqueous zinc ion batteries due to its high theoretical capacity, low cost, and high safety. However, its application is currently restricted by hydrogen evolution reactions (HER), by-product formation, and Zn dendrite growth. Herein, a "Zn2+ in salt" (ZIS) interphase is in situ constructed on the surface of the anode (ZIS@Zn). Unlike the conventional "Zn2+ in water" working environment of Zn anodes, the intrinsic hydrophobicity of the ZIS interphase isolates the anode from direct contact with the aqueous electrolyte, thereby protecting it from HER, and the accompanying side reactions. More importantly, it works as an ordered water-free ion-conducting medium, which guides uniform Zn deposition and facilitates rapid Zn2+ migration at the interface. As a result, the symmetric cells assembled with ZIS@Zn exhibit dendrite-free plating/striping at 4500 h and a high critical current of 14 mA cm-2. When matched with a vanadium-based (NVO) cathode, the full battery exhibits excellent long-term cycling stability, with 88% capacity retention after 1600 cycles. This work provides an effective strategy to promote the stability and reversibility of Zn anodes in aqueous electrolytes.

6.
Small ; : e2401789, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855992

RESUMEN

Rechargeable aqueous Zn-ion batteries (ZIBs) are considered as a new energy storage device for wearable electronic equipment. Nowadays, dendrite growth and uneven deposition of zinc have been the principal problems to suppress the development of high-performance wearable zinc-ion batteries. Herein, a perovskite material of LaAlO3 nanoparticle has been applied for interface engineering and zinc anode protection. By adjusting transport channels and accelerating the Zn2+ diffusion, the hydrogen evolution reaction potential is improved, and electric field distribution on the Zn electrode surface is regulated to navigate the fast and uniform deposition of Zn2+. As a proof of demonstration, the assembled LAO@Zn||MnO2 batteries can display the highest capacity of up to 140 mAh g-1 without noticeable decay even after 1000 cycles. Moreover, a motor-driven fan and electronic wristwatch powered by wearable ZIBs can demonstrate the practical feasibility of LAO@Zn||MnO2 in wearable electronic equipment.

7.
J Colloid Interface Sci ; 671: 702-711, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38823111

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have received considerable potential for their affordability and high reliability. Among potential cathodes, α-MoO3 stands out due to its layered structure aligned with the (010) plane, offering extensive ionic insertion channels for enhanced charge storage. However, its limited electrochemical activity and poor Zn2+ transport kinetics present significant challenges for its deployment in energy storage devices. To overcome these limitations, we introduce a new strategy by doping α-MoO3 with Ni (Ni-MoO3), tuning the electron spin states of Mo. Thus modification can activate the reactivity of Ni-MoO3 towards Zn2+ storage and weaken the interaction between Ni-MoO3 and intercalated Zn2+, thereby accelerating the Zn2+ transport and storage. Consequently, the electrochemical properties of Ni-MoO3 significantly surpass those of pure MoO3, demonstrating a specific capacity of 258 mAh g-1 at 1 A g-1 and outstanding rate performance (120 mAh g-1 at 10 A g-1). After 1000 cycles at 8 A g-1, it retains 76 % of the initial capacity, with an energy density of 154.4 Wh kg-1 and a power density of 11.2 kW kg-1. This work proves that the modulation of electron spin states in cathode materials via metal ion doping can effectively boost their capacity and cycling durability.

8.
J Colloid Interface Sci ; 673: 70-79, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38875799

RESUMEN

Among battery technologies, aqueous zinc ion batteries (AZIBs) have hit between the eyes in the next generation of extensive energy storage devices due to their outstanding superiority. The main problem that currently restricts the development of AZIBs is how to obtain stable Zn anodes. In this study, taking the improvement of a series of problems caused by the physically attached artificial interfacial layer on Zn anode as a starting point, a nanosheet morphology of ZnSiO3 (denoted as ZnSi) is constructed by self-growth on Zn foil (Zn@ZnSi) by a simple hydrothermal reaction. The ZnSi nano-interfacial layer effectively slices the surface of the Zn foil into individual microscopic interfacial layers, constructing abundant pores. The nanosheets of Zn@ZnSi construct rich nanoscale Zn2+ transport channels, which provide higher electron and ion transport paths, thus achieving the effect of effectively homogenizing the electric field distribution and decreasing the local current density. Thanks to its inherent and structural properties, the Zn@ZnSi anode has a high specific capacity and good cycling stability compared with the Zn electrode. The lifetime of the Zn@ZnSi//Zn@ZnSi symmetric cell is much higher than that of the Zn//Zn symmetric cell at 1 mA cm-2. The capacity of the Zn@ZnSi//NH4V4O10 full cell can still reach 98 mAh g-1 after 1000 cycles at 1 A/g. The low-cost and scalable synthesis of ZnSi nano-interfacial layer on Zn is expected to provide new perspectives on interfacial engineering for Zn anodic protection.

9.
Adv Sci (Weinh) ; : e2404513, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937993

RESUMEN

Zinc anodes of zinc metal batteries suffer from unsatisfactory plating/striping reversibility due to interfacial parasitic reactions and poor Zn2+ mass transfer kinetics. Herein, methoxy polyethylene glycol-phosphate (mPEG-P) is introduced as an electrolyte additive to achieve long anti-calendar aging and high-rate capabilities. The polyanionic of mPEG-P self-assembles via noncovalent-interactions on electrode surface to form polyether-based cation channels and in situ organic-inorganic hybrid solid electrolyte interface layer, which ensure rapid Zn2+ mass transfer and suppresses interfacial parasitic reactions, realizing outstanding cycling/calendar aging stability. As a result, the Zn//Zn symmetric cells with mPEG-P present long lifespans over 9000 and 2500 cycles at ultrahigh current densities of 120 and 200 mA cm-2, respectively. Besides, the coulombic efficiency (CE) of the Zn//Cu cell with mPEG-P additive (88.21%) is much higher than that of the cell (36.4%) at the initial cycle after the 15-day calendar aging treatment, presenting excellent anti-static corrosion performance. Furthermore, after 20-day aging, the Zn//MnO2 cell exhibits a superior capacity retention of 89% compared with that of the cell without mPEG-P (28%) after 150 cycles. This study provides a promising avenue for boosting the development of high efficiency and durable metallic zinc based stationary energy storage system.

10.
ChemSusChem ; : e202400713, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785104

RESUMEN

Exploring cathode materials with excellent electrochemical performance is crucial for developing rechargeable aqueous zinc ion batteries (RAZIBs). Zinc hexacyanoferrate (ZnHCF), a promising candidate of cathode materials for RAZIBs, suffers from severe electrochemical instability issues. This work reports using low contents of alkaline metal cations as electrolyte additives to improve the cycle performance of ZnHCF. The cations with large sizes, particularly Cs+, changes the intercalation chemistry of ZnHCF in RAZIBs. During cycling, Cs+ cations co-inserted into ZnHCF stabilize the host structure. Meanwhile, a stable phase of CsZn[Fe(CN)6] forms on the ZnHCF cathode, suppressing the loss of active materials through dissolution. ZnHCF gradually converts to an electrochemically inert Zn-rich phase during long-term cycling in aqueous electrolyte, leading to irreversible capacity loss. Introducing Cs+ in the electrolyte inhibits this conversion reaction, resulting in the extended lifespan. Owing to these advantages, the capacity retention rate of ZnHCF/Zn full batteries increases from the original 7.0 % to a high value of 54.6 % in the electrolyte containing 0.03 M of Cs2SO4 after 300 cycles at 0.25 A ⋅ g-1. This research provides an in-depth understanding of the electrochemical behavior of ZnHCF in aqueous zinc electrolyte, beneficial for further optimizing ZnHCF and other metal hexacyanoferrates.

11.
Small ; : e2401386, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659174

RESUMEN

The limited lifespan of aqueous Zn-ion batteries (ZIBs) is primarily attributed to the irreversible issues associated with the Zn anode, including dendrite growth, hydrogen evolution, and side reactions. Herein, a 3D Zn anode exposing Zn(002) crystal planes (3D-Zn(002) anode) is first constructed by an electrostripping method in KNO3 solution. Experiments and theoretical calculations indicate that the priority adsorption of KNO3 on Zn(100) and Zn(101) planes decreases the dissolution energy of Zn atoms, thereby exposing more Zn(002) planes. The 3D-Zn(002) anode effectively regulates ion flux to realize the uniform nucleation of Zn2+. Moreover, it can inhibit water-induced formation of side-products and hydrogen evolution reaction. Consequently, the 3D-Zn(002) symmetrical cell exhibits an exceptionally long lifespan surpassing 6000 h at 5.0 mA cm-2 with a capacity of 1.0 mAh cm-2, and enduring 8500 cycles at 30 mA cm-2 with a capacity of 1.0 mAh cm-2. Besides, when NH4V4O10 is used as the cathode, the 3D-Zn(002)//NH4V4O10 full cell shows stable cycling performance with a capacity retention rate of 75.7% after 4000 cycles at 5.0 A g-1. This study proposes a feasible method employing a 3D-Zn(002) anode for enhancing the cycling durability of ZIBs.

12.
Adv Sci (Weinh) ; 11(22): e2400336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605606

RESUMEN

The practical application of aqueous Zn-ion batteries (AZIBs) is hindered by the crazy Zn dendrites growth and the H2O-induced side reactions, which rapidly consume the Zn anode and H2O molecules, especially under the lean electrolyte and Zn anode. Herein, a natural disaccharide, d-trehalose (DT), is exploited as a novel multifunctional co-solvent to address the above issues. Molecular dynamics simulations and spectral characterizations demonstrate that DT with abundant polar -OH groups can form strong interactions with Zn2+ ions and H2O molecules, and thus massively reconstruct the coordination structure of Zn2+ ions and the hydrogen bonding network of the electrolyte. Especially, the strong H-bonds between DT and H2O molecules can not only effectively suppress the H2O activity but also prevent the rearrangement of H2O molecules at low temperature. Consequently, the AZIBs using DT30 electrolyte can show high cycling stability even under lean electrolyte (E/C ratio = 2.95 µL mAh-1), low N/P ratio (3.4), and low temperature (-12 °C). As a proof-of-concept, a Zn||LiFePO4 pack with LiFePO4 loading as high as 506.49 mg can be achieved. Therefore, DT as an eco-friendly multifunctional co-solvent provides a sustainable and effective strategy for the practical application of AZIBs.

13.
Angew Chem Int Ed Engl ; 63(26): e202404825, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647332

RESUMEN

Aqueous Zn-ion batteries (ZIBs) are promising next-generation energy storage devices, yet suffer from the issues of hydrogen evolution reaction (HER) and intricate side reactions on the Zn anode surface. The hydrogen (H)-bond networks play a critical role in interfacial proton transport that may closely relate to HER but are rarely investigated. Herein, we report a self-assembled monolayer (SAM) strategy which is constructed by anchoring ionic liquid cations on Ti3C2Tx substrate for HER-free Zn anode. Molecule dynamics simulations reveal that the rationally designed SAM with a high coordination number of water molecules (25-27, 4-6 for Zn2+) largely reduces the interfacial densities of H2O molecules, therefore breaking the connectivity of H-bond networks and blocking proton transport on the interface, by which the HER is suppressed. Then, a series of in situ characterizations demonstrate that negligible amounts of H2 gas are collected from the Zn@SAM-MXene anode. Consequently, the symmetric cell enables a long-cycling life of 3000 h at 1 mA cm-2 and 1000 h at 5 mA cm-2. More significantly, the stable Zn@SAM-MXene films are successfully used for coin full cells showing high-capacity retention of over 94 % after 1000 cycles and large-area (10×5 cm2) pouch cells with desired performance.

14.
ACS Appl Mater Interfaces ; 16(15): 18812-18823, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573821

RESUMEN

When considered as a cathode candidate for aqueous Zn-ion batteries, V2O3 faces several problems, such as inherently unsuitable structure, fast structural degradation, and sluggish charge transport kinetics. In this paper, we report the synthesis of a V2O3 intimately coupled carbon aerogel by a controllable ion impregnation and solid-state reaction strategy using bacterial cellulose and ammonium metavanadate as raw materials. In this newly designed structure, the carbonized carbon fiber network provides fast ion and electron transport channels. More importantly, the cellulose aerogel functions as a dispersing and supporting skeleton to realize the particle size reduction, uniform distribution, and amorphous features of V2O3. These advantages work together to realize adequate electrochemical activation during the initial charging process and shorter transport distance and faster transport kinetics of Zn2+. The batteries based on the V2O3/CNF aerogel exhibit a high-rate performance and an excellent cycling stability. At a current density of 20 A g-1, the V2O3/CNF aerogel delivers a specific capacity of 159.8 mAh g-1, and it demonstrates an exceptionally long life span over 2000 cycles at 12 A g-1. Furthermore, the electrodes with active material loadings as high as 10 mg cm-2 still deliver appreciable specific capacities of 257 mAh g-1 at 0.1 A g-1.

15.
J Colloid Interface Sci ; 664: 168-177, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460381

RESUMEN

Ammonium vanadate with stable bi-layered structure and superior mass-specific capacity have emerged as competitive cathode materials for aqueous rechargeable zinc-ion batteries (AZIBs). Nevertheless, fragile NH…O bonds and too strong electrostatic interaction by virtue of excessive NH4+ will lead to sluggish Zn2+ ion mobility, further largely affects the electro-chemical performance of ammonium vanadate in AZIBs. The present work incorporates polypyrrole (PPy) to partially replace NH4+ in NH4V4O10 (NVO), resulting in the significantly enlarged interlayers (from 10.1 to 11.9 Å), remarkable electronic conductivity, increased oxygen vacancies and reinforced layered structure. The partial removal of NH4+ will alleviate the irreversible deammoniation to protect the laminate structures from collapse during ion insertion/extraction. The expanded interlayer spacing and the increased oxygen vacancies by the virtue of the introduction of polypyrrole improve the ionic diffusion, enabling exceptional rate performance of NH4V4O10. As expected, the resulting polypyrrole intercalated ammonium vanadate (NVOY) presents a superior discharge capacity of 431.9 mAh g-1 at 0.5 A g-1 and remarkable cycling stability of 219.1 mAh g-1 at 20 A g-1 with 78 % capacity retention after 1500 cycles. The in-situ electrochemical impedance spectroscopy (EIS), in-situ X-ray diffraction (XRD), ex-situ X-ray photoelectron spectroscopy (XPS) and ex-situ high resolution transmission electron microscopy (HR-TEM) analysis investigate a highly reversible intercalation Zn-storage mechanism, and the enhanced the redox kinetics are related to the combined effect of interlayer regulation, high electronic conductivity and oxygen defect engineering by partial substitution NH4+ of PPy incorporation.

16.
J Colloid Interface Sci ; 665: 564-572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552573

RESUMEN

Rechargeable aqueous zinc ion batteries (ZIBs) have emerged as a promising alternative to lithium-ion batteries due to their inherent safety, abundant availability, environmental friendliness and cost-effectiveness. However, the cathodes in ZIBs encounter challenges such as structural instability, low capacity, and sluggish kinetics. In this study, we constructed BiVO4@VO2 (BVO@VO) heterojunction cathode material with bismuth vanadate and vanadium dioxide phases for ZIBs, which demonstrate significant advancements in both aqueous and quasi-solid-state ZIBs. Benefitting from the heterojunction structure, the materials present a high capacity of 262 mAh g-1 at 0.1 A g-1, superb cyclic stability with 96% capacity retention after 1000 cycles at 2 A g-1, and outstanding rate property with a specific capacity of 218 mAh g-1 even at a high rate of 5.0 A g-1. Furthermore, the flexible quasi-solid-state ZIBs incorporating the BVO@VO cathode demonstrate prolonged cyclic life performance with a remarkable specific capacity of 234 mAh g-1 over 100 cycles at a current density of 0.1 A g-1. This study potentially paves the way for the utilization of heterointerface-enhanced zinc ion diffusion for vanadium-based materials in ZIBs, thereby providing a new approach for the design and investigation of high-performance zinc-ion systems.

17.
Angew Chem Int Ed Engl ; 63(19): e202402069, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38466145

RESUMEN

The advanced aqueous zinc-ion batteries (AZIBs) are still challenging due to the harmful reactions including hydrogen evolution and corrosion. Here, a natural small molecule acid vitamin C (Vc) as an aqueous electrolyte additive has been selectively identified. The small molecule Vc can adjust the d band center of Zn substrate which fixes the active H+ so that the hydrogen evolution reaction (HER) is restrained. Simultaneously, it could also fine-tune the solvation structure of Zn ions due to the enhanced electrostatics and reduced Pauli repulsion verified by energy decomposition analysis (EDA). Hence, the cell retains an ultra-long cycle performance of over 1300 cycles and a superior Coulombic efficiency (CE) of 99.5 %. The prepared full cells display increased rate capability, cycle lifetime, and self-discharge suppression. Our results shed light on the mechanistic principle of electrolyte additives on the performance improvement of ZIBs, which is anticipated to render a new round of studies.

18.
Angew Chem Int Ed Engl ; 63(18): e202402327, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38467561

RESUMEN

Metallic zinc is a promising anode material for rechargeable aqueous multivalent metal-ion batteries due to its high capacity and low cost. However, the practical use is always beset by severe dendrite growth and parasitic side reactions occurring at anode/electrolyte interface. Here we demonstrate dynamic molecular interphases caused by trace dual electrolyte additives of D-mannose and sodium lignosulfonate for ultralong-lifespan and dendrite-free zinc anode. Triggered by plating and stripping electric fields, the D-mannose and lignosulfonate species are alternately and reversibly (de-)adsorbed on Zn metal, respectively, to accelerate Zn2+ transportation for uniform Zn nucleation and deposition and inhibit side reactions for high Coulombic efficiency. As a result, Zn anode in such dual-additive electrolyte exhibits highly reversible and dendrite-free Zn stripping/plating behaviors for >6400 hours at 1 mA cm-2, which enables long-term cycling stability of Zn||ZnxMnO2 full cell for more than 2000 cycles.

19.
ACS Nano ; 18(8): 6487-6499, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38349904

RESUMEN

Rechargeable aqueous zinc ion batteries (AZIBs) have gained considerable attention owing to their low cost and high safety, but dendrite growth, low plating/stripping efficiency, surface passivation, and self-erosion of the Zn metal anode are hindering their application. Herein, a one-step in situ molecular engineering strategy for the simultaneous construction of hierarchical MoS2 double-layer nanotubes (MoS2-DLTs) with expanded layer-spacing, oxygen doping, structural defects, and an abundant 1T-phase is proposed, which are designed as an intercalation-type anode for "rocking-chair" AZIBs, avoiding the Zn anode issues and therefore displaying a long cycling life. Benefiting from the structural optimization and molecular engineering, the Zn2+ diffusion efficiency and interface reaction kinetics of MoS2-DLTs are enhanced. When coupled with a homemade ZnMn2O4 cathode, the assembled MoS2-DLTs//ZnMn2O4 full battery exhibited impressive cycling stability with a capacity retention of 86.6% over 10 000 cycles under 1 A g-1anode, outperforming most of the reported "rocking-chair" AZIBs. The Zn2+/H+ cointercalation mechanism of MoS2-DLTs is investigated by synchrotron in situ powder X-ray diffraction and multiple ex situ characterizations. This research demonstrates the feasibility of MoS2 for Zn-storage anodes that can be used to construct reliable aqueous full batteries.

20.
Nanomicro Lett ; 16(1): 109, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315253

RESUMEN

Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future. Therefore, γ-MnO2 uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work, and particularly the composite cathode with carbon carrier quality percentage of 20 wt% delivers the specific capacity of 391.2 mAh g-1 at 0.1 A g-1, outstanding cyclic stability of 92.17% after 3000 cycles at 5 A g-1, and remarkable energy density of 553.12 Wh kg-1 together with superior coulombic efficiency of ~ 100%. Additionally, the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments, which verifies its tremendous potential in the application of clinical medicine. Besides, Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn-Teller effect and Mn domains distribution combined with theoretical analysis and experimental data. Thus, a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA