RESUMEN
While anti-PD-1 and anti-PD-L1 [anti-PD-(L)1] monotherapies are effective treatments for many types of cancer, high variability in patient responses is observed in clinical trials. Understanding the sources of response variability can help prospectively identify potential responsive patient populations. Preclinical data may offer insights to this point and, in combination with modeling, may be predictive of sources of variability and their impact on efficacy. Herein, a quantitative systems pharmacology (QSP) model of anti-PD-(L)1 was developed to account for the known pharmacokinetic properties of anti-PD-(L)1 antibodies, their impact on CD8+ T cell activation and influx into the tumor microenvironment, and subsequent anti-tumor effects in CT26 tumor syngeneic mouse model. The QSP model was sufficient to describe the variability inherent in the anti-tumor responses post anti-PD-(L)1 treatments. Local sensitivity analysis identified tumor cell proliferation rate, PD-1 expression on CD8+ T cells, PD-L1 expression on tumor cells, and the binding affinity of PD-1:PD-L1 as strong influencers of tumor growth. It also suggested that treatment-mediated tumor growth inhibition is sensitive to T cell properties including the CD8+ T cell proliferation half-life, CD8+ T cell half-life, cytotoxic T-lymphocyte (CTL)-mediated tumor cell killing rate, and maximum rate of CD8+ T cell influx into the tumor microenvironment. Each of these parameters alone could not predict anti-PD-(L)1 treatment response but they could shift an individual mouse's treatment response when perturbed. The presented preclinical QSP modeling framework provides a path to incorporate potential sources of response variability in human translation modeling of anti-PD-(L)1.
RESUMEN
Cutaneous squamous cell carcinoma (CSCC) accounts for approximately 20% of all keratinocytic tumors. In most cases, the diagnosis and treatments are made on small, low-risk lesions. However, in about 5% of cases, CSCC may present as either locally advanced or metastatic (i.e. with locoregional lymph nodes metastases or distant localizations). Prior to the introduction of immunotherapy in clinical practice, the standard treatment of advanced CSCC was not clearly defined, and up to 60% of patients received no systemic therapy. Thanks to a strong pre-clinical rationale, clinical trials led to the FDA (Food and Drug Administration) and EMA (European Medicines Agency) registration of cemiplimab, a PD-1 inhibitor that achieved encouraging results in terms of objective response, overall survival, and quality of life. Subsequently, the anti-PD-1 pembrolizumab received the approval for the treatment of advanced CSCC by the FDA only. In this review, we will focus on the definition of advanced CSCC and on the current and future therapeutic options, with a particular regard for immunotherapy.