Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.795
Filtrar
1.
Malays J Med Sci ; 31(4): 63-77, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39247112

RESUMEN

Cucumis melo L., better known by its popular cultivar cantaloupe, is an economically significant crop in the Cucurbitaceae family. Melon peel and seeds have shown medicinal potential due to their numerous biological qualities, including anti-inflammatory, anti-cancer, antibacterial, hepatoprotective and immunomodulatory effects to treat cardiovascular disease, diabetes and oedema. This scoping review aims to broaden the research scope on the cancer-fighting abilities of melon extract and its half maximal inhibitory concentration (IC50). Three databases which are Scopus, ScienceDirect and PubMed were used to locate relevant publications utilising the keywords 'melon', 'Cucumis melo', 'inhibitory activity', 'cancer' and 'anti-cancer'. The Preferred Reporting Items for Systematic and Meta-analyses extension for Scoping Review (PRISMA-ScR) framework was used in conducting this study. Out of 904 articles, 14 articles met the inclusion criteria and were used in this analysis. These articles were published in English between 2000 and 2023 with full text accessibility, specifically addressed the fruit cantaloupe (Cucumis melo L.) or melon and reported on any type of cancer. Cucumis melo extract showed promising anti-cancer action in both in vitro and in vivo investigations on eight different cancer types: cervical, colon, prostate, leukaemia, multiple myeloma, breast, hepatoma and ovarian cancer. A thorough analysis shows that some of the IC50 values were significantly low, especially in cases of colon and prostate cancer, indicating a significant anti-cancer effect. The substantial anti-cancer benefits of Cucumis melo fruit extracts point to the necessity for additional investigation into their potential for cancer therapy on each form of cancer.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39248063

RESUMEN

P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK). RSK2 has been found to play a pivotal role in regulating cell proliferation, apoptosis, metastasis, and invasion in various cancer cells, including breast cancer and melanoma. Consequently, RSK2 has emerged as a potential target for the development of anti-cancer drugs. Presently, several inhibitors are undergoing clinical trials, such as SL0101. Current inhibitors of RSK2 mainly bind to its NTK or CTK domains and inhibit their activity. Natural products serve as an important resource for drug development and screening and with the potential to identify RSK2 inhibitors. This article discusses how RSK2 influences tumor cell proliferation, prevents apoptosis, arrests the cell cycle process, and promotes cancer metastasis through its regulation of downstream pathways or interaction with other biological molecules. Additionally, the paper also covers recent research progress on RSK2 inhibitors and the mechanisms of action of natural RSK2 inhibitors on tumors. This review emphasizes the significance of RSK2 as a potential therapeutic target in cancer and offers a theoretical basis for the clinical application of RSK2 inhibitors.

3.
Chem Biodivers ; : e202401466, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230662

RESUMEN

Three species of the Rutaceae family, including Acronychia pedunculata, Euodia lepta, and Severinia monophylla have been used in traditional medicine. However, the comparison of the chemical composition, anti-cancer, and anti-inflammatory effects of the leaf essential oils of these species have not been investigated yet. A total of 38 compounds were identified via gas chromatography-mass spectrometry, comprising 96.5-99.8% of the total composition.  Both A. pedunculata and E. lepta essential oils exhibited strong inhibitory effects against cancer cells (IC50: 59.04-97.52 µg/mL) while that of S. monophylla showed a lower anti-cancer effect (IC50>100 µg/mL). Among three essential oils, only the E. lepta leaf oil demonstrated a high anti-inflammatory effect on LPS-stimulated macrophages (IC50=6.47 ± 0.65 µg/mL), while the other showed a moderate anti-inflammatory effect (IC50>50 µg/mL). Molecular docking studies also suggested the binding potential of the key compounds from three essential oils against inducible nitric oxide synthase and cyclooxygenase-2, two proteins associated with inflammatory response, with the negative energies ranging from -41.0 to -71.9 kcal/mol. The present findings suggest the leaf essential oils from these species as potential medicines for treatment of cancer or inflammation associated diseases, especially the ones from A. pedunculata and E. lepta oils.

4.
Int Immunopharmacol ; 142(Pt A): 113075, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260312

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in children. Within MB, tumors driven by the Sonic Hedgehog (SHH) pathway represent the most heterogeneous subtype, known as SHH subtype medulloblastoma (SHH-MB). Tenovin-6, a recognized p53 activator, has been demonstrated to inhibit autophagy and modulate sirtuin activity, underscoring its potential as a novel therapeutic agent across various malignancies. However, its efficacy in treating SHH-MB remains unexplored. This study aims to investigate the inhibitory effects of tenovin-6 on SHH-MB and elucidate its underlying signaling pathways. We assessed the impact of tenovin-6 on cell proliferation through the CCK-8 and colony formation assays. The scratch and transwell invasion assays were utilized to evaluate the drug's effects on metastasis. Apoptosis and reactive oxygen species (ROS) levels were measured using flow cytometry. Potential signaling pathways were identified via transcriptomics and quantitative PCR (qPCR). Our in vivo studies involved a mouse xenograft model to explore tenovin-6's anticancer efficacy against SHH-MB. The findings indicate that tenovin-6 not only inhibits cell proliferation and metastasis in SHH-MB cell lines but also promotes apoptosis, which is closely linked to its proliferation-inhibiting properties. Additionally, animal experiments confirmed that tenovin-6 suppresses MB growth in vivo. We discovered that tenovin-6 reduces intracellular ROS levels and inhibits autophagy in SHH-MB by disrupting the fusion of autophagosomes with lysosomes, likely through inducing autophagosome formation.

5.
Drug Metab Dispos ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261014

RESUMEN

Antifolates are important for chemotherapy in non-small cell lung cancer (NSCLC). They mainly rely on reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) to enter cells. PCFT is supposed to be the dominant transporter of the two in tumors as it operates optimally at acidic pH and has limited transport activity at physiological pH, whereas RFC operates optimally at neutral pH. In this study, we found RFC showed a slightly pH-dependent uptake of antifolates, with similar affinity values at pH 7.4 and 6.5. PCFT showed a highly pH-dependent uptake of antifolates with an optimum pH of 6.0 for pemetrexed and 5.5 for methotrexate. The Km value of PCFT for pemetrexed at pH 7.4 was more than 10 times higher than that at pH 6.5. Interestingly, we found antifolate accumulations mediated by PCFT at acidic pH were significantly affected by the efflux transporter, breast cancer resistance protein (BCRP). The highest pemetrexed concentration was observed at pH 7.0 - 7.4 after a 60-minute accumulation in PCFT-expressing cells, which was further evidenced by the cytotoxicity of pemetrexed, with the IC50 value of pemetrexed at pH 7.4 being one-third of that at pH 6.5. In addition, the in vivo study indicated increasing PCFT and RFC expression significantly enhanced the antitumor efficacy of pemetrexed despite the high expression of BCRP. These results suggest that both RFC and PCFT are important for antifolates accumulation in NSCLC, although there is an acidic microenvironment and high BCRP expression in tumors. Significance Statement Evaluating the role of RFC and PCFT on antifolates accumulation in NSCLC is necessary for new drug designs. By using RFC- or PCFT-expressing NSCLC cell models, we found that both RFC and PCFT were important for antifolates accumulation in NSCLC, rather than only PCFT playing a dominant role. BCRP significantly affected PCFT-mediated antifolates accumulation at acidic pH, but not RFC-mediated pemetrexed accumulation at physiological pH. High expression of PCFT or RFC enhanced the cytotoxicity and antitumor effect of pemetrexed.

6.
Front Pharmacol ; 15: 1446486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257400

RESUMEN

Programmed cell death (PCD) is essential for cellular homeostasis and defense against infections, with inflammatory forms like pyroptosis and necroptosis playing significant roles in cancer. Pyroptosis, mediated by caspases and gasdermin proteins, leads to cell lysis and inflammatory cytokine release. It has been implicated in various diseases, including cancer, where it can either suppress tumor growth or promote tumor progression through chronic inflammation. Necroptosis, involving RIPK1, RIPK3, and MLKL, serves as a backup mechanism when apoptosis is inhibited. In cancer, necroptosis can enhance immune responses or contribute to tumor progression. Both pathways have dual roles in cancer, acting as tumor suppressors or promoting a pro-tumorigenic environment depending on the context. This review explores the molecular mechanisms of pyroptosis and necroptosis, their roles in different cancers, and their potential as therapeutic targets. Understanding the context-dependent effects of these pathways is crucial for developing effective cancer therapies.

7.
Nutrients ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275245

RESUMEN

Cutaneous melanoma is an aggressive type of skin cancer that is recognized for its high metastatic potential and the challenges it presents in its treatment. There has been increasing interest in plant extracts and their potential applications in melanoma. The present study aimed to investigate the content of individual phenolic compounds in araçá-boi extract, evaluate their antioxidant activity, and explore their effects on cell viability, migration properties, oxidative stress levels, and protein expression in the human metastatic melanoma cell line SK-MEL-28. HPLC-DAD analysis identified 11 phenolic compounds in the araçá-boi extract. Trans-cinnamic acid was the main phenolic compound identified; therefore, it was used alone to verify its contribution to antitumor activities. SK-MEL-28 melanoma cells were treated for 24 h with different concentrations of araçá-boi extract and trans-cinnamic acid (200, 400, 600, 800, and 1600 µg/mL). Both the araçá-boi extract and trans-cinnamic acid reduced cell viability, cell migration, and oxidative stress in melanoma cells. Additionally, they modulate proteins involved in apoptosis and inflammation. These findings suggest the therapeutic potential of araçá-boi extract and its phenolic compounds in the context of melanoma, especially in strategies focused on preventing metastasis. Additional studies, such as the analysis of specific signaling pathways, would be valuable in confirming and expanding these observations.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Cinamatos , Melanoma , Fenoles , Extractos Vegetales , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Movimiento Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Supervivencia Celular/efectos de los fármacos , Cinamatos/farmacología , Línea Celular Tumoral , Fenoles/farmacología , Antioxidantes/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-39225208

RESUMEN

INTRODUCTION: Argemone mexicana, commonly known as the Mexican prickly poppy, has been historically employed in traditional medicine for various ailments, including liver disorders. Given the rising prevalence of liver diseases, including cancer, investigating the potential efficacy of Argemone mexicana in promoting liver health is of paramount importance. This review aims to provide a comprehensive analysis of the existing literature on the hepatoprotective and anticancer properties of Argemone mexicana. METHODOLOGY: A systematic literature search was conducted across PubMed, Google Scholar, and relevant botanical and pharmacological databases. Studies from various sources, including in vitro experiments, animal models, and clinical trials, were included in the review. The search focused on articles published up to 2010-2023, encompassing research that explored the botanical characteristics, chemical composition, traditional uses, and pharmacological properties of Argemone mexicana, specifically emphasizing its impact on liver health and cancer. RESULTS: The review revealed a wealth of studies highlighting the diverse pharmacological properties of Argemone mexicana. The botanical composition includes compounds with antioxidant and anti-inflammatory potential, suggesting hepatoprotective effects. Studies using in vitro and in vivo models demonstrated promising outcomes regarding liver function improvement and inhibition of liver cancer cell proliferation. While some clinical studies supported the traditional uses of Argemone mexicana, further well-designed trials are warranted to establish its clinical efficacy. CONCLUSION: In conclusion, Argemone mexicana shows promise as a natural agent for promoting liver health and combating liver cancer. Bioactive compounds with antioxidant and anti-inflammatory properties suggest potential hepatoprotective effects. However, translating these findings into clinical practice requires further rigorous investigation, including well-designed clinical trials. This review provides a foundation for future research efforts aimed at elucidating the full therapeutic potential of Argemone mexicana in liver health and cancer management.

9.
Biotechnol Rep (Amst) ; 43: e00851, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39219730

RESUMEN

Bacillus thuringiensis parasporin-2 (PS2Aa1 or Mpp46Aa1) selectively destroys human cancer cells, making it a promising anticancer agent. PS2Aa1 protoxin expression in Escherichia coli typically results in inclusion bodies that must be solubilized and digested by proteinase K to become active. Here, maltose-binding protein (MBP) was fused to the N-terminus of PS2Aa1, either full-length (MBP-fPS2) or truncated (MBP-tPS2), to increase soluble protein expression in E. coli and avoid solubilization and proteolytic activation. Soluble MBP-fPS2 and MBD-tPS2 proteins were produced in E. coli and purified with endotoxin levels below 1 EU/µg. MBP-fPS2 was cytotoxic against T cell leukemia MOLT-4 and Jurkat cell lines after proteinase-K digestion. However, MBP-tPS2 was cytotoxic immediately without MBP tag removal or activation. MBP-tPS2's thermal stability also makes it appropriate for bioproduction and therapeutic applications.

10.
Discov Oncol ; 15(1): 471, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331254

RESUMEN

BACKGROUND: Pancreatic and Gastric cancers are very aggressive and deadly types of cancer that require effective treatment strategies to stop their progression. Nano-drug delivery systems, like those using Auraptene-loaded GQD nanoparticles, play a crucial role in addressing this need by delivering targeted and controlled treatments to cancer cells, making treatment more effective, and reducing side effects. The study focused on investigating the effects of Auraptene, an efficient anticancer compound when loaded into Graphene Quantum Dots (GQDs) on types of human cancer cells. METHODS: To create auraptene-loaded graphene quantum dot nanoparticles (AGQD-NP) (Unmodified and modified types) a combination of hydrothermal and high-energy homogenization methods was used. The nanoparticles were characterized by conducting DLS (Dynamic light scattering), FTIR (Fourier-transform infrared spectroscopy), FESEM (Field Emission Scanning Electron microscopy), and zeta potential analysis. bioactivity of AGQD-NP was assessed through tests, including antioxidant capacity measured by ABTS and DPPH scavenging abilities well as cytotoxicity tested using MTT assay on both human cancer cell lines and normal human vascular endothelial cells. RESULTS: The modified AGQD-NP (M-AGQD-NP) demonstrated antioxidant properties by neutralizing free radicals. They also displayed selective toxicity, towards human gastric adenocarcinoma cell-line (AGS) and human pancreatic adenocarcinoma (PANC) cancer cells with IC50 values recorded at 78.8 µg/mL and 89.72 µg/mL respectively. The specific targeting of gastric cancer cells was evident from the differing IC50 values compared to the Human breast adenocarcinoma cell line (MCF-7), Human hepatocellular carcinoma cell line (Hella), and normal vascular endothelial cells (Huvec). Additionally, the induced apoptotic death, in the human pancreatic adenocarcinoma (PANC) cancer cells was confirmed through AO/PI staining and Annexin-based flow cytometry revealing increased expression levels of P53, Caspase3, BAX, and Caspase8. CONCLUSION: In summary, the M-AGQD-NP have shown encouraging effects displaying antioxidant capabilities and a specific focus, on pancreatic and gastric cancer cells. These findings indicate uses for AGQD-NP as an efficient apoptosis inducer in cancer treatment. Additional In-vivo researches are required to validate their effectiveness, in living organisms.

11.
Br J Clin Pharmacol ; 90(10): 2401-2408, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39219316

RESUMEN

Global prevalence rates for transgender individuals vary with estimates ranging from 0.3% to 1%, translating to a potential global population of 24.3 million to 81 million. It is estimated that one in two people will develop cancer in their lifetime. Gender-affirming hormone therapy (GAHT) is a common medical intervention for transgender and non-binary individuals. GAHT requires careful consideration for concurrent medical care due to potential drug interactions and physiological changes. A multi-disciplinary team with expertise in transgender health, oncology and pharmacy met to develop a document summarizing current knowledge on the topic for practical use. The team included trans and non-binary authors who shaped the document's language and focus. The document gives a status update on the current understanding of GAHT and how this may intersect with the safe prescribing of systemic anti-cancer therapies (SACT). The document underwent multiple review stages including internal review, review by the British Oncology Pharmacy Association (BOPA) EDI Subcommittee and, finally, BOPA Executive Committee review and final approval. Key recommendations of this document include the use of inclusive and effective communication, vigilant monitoring of kidney function and cardiovascular health, and considerations for hormone receptor-positive cancers. The document also recognizes the multidisciplinary nature of transgender healthcare and where this relates to social prescribing.


Asunto(s)
Neoplasias , Personas Transgénero , Humanos , Neoplasias/tratamiento farmacológico , Femenino , Masculino , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Interacciones Farmacológicas
12.
Future Oncol ; : 1-4, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324725

RESUMEN

What is this summary about? This is a plain language summary about a new mechanism on how our body selectively looks for any unusual cells that might turn into cancer. It was presented in a paper published in a scientific journal. The paper reviewed the relevant existing literature but importantly, defined a new anti-cancer surveillance system that is different from what was previously known. Our immune system has specialised cells that can detect certain proteins on the surface of cancer cells and induce an immune response to eliminate them before they can form tumours. In this way, it acts as our body's "anti-cancer immune surveillance" system. The new mechanism is a cell cycle-based surveillance against cancer. This mechanism supports our bodies' natural defence by selectively checking for any abnormal or tumour cells and directly altering their growth cycle, or cell cycle, and causing them to lose the ability to form tumors before they can turn into a cancer. At the same time, the normal cells are largely not impacted.What did the research find out? The author of the paper presented a theory with supporting evidence that a cell cycle-based anti-cancer surveillance system exists in our body. When a normally-functioning cell is about to become a tumor cell due to viral infection, genetic mutations or other changes, a tumor-suppressing protein called interferon-beta (IFN-ß) can directly work on the cell to slow its growth at a specific phase of its growth cycle, the S (synthesis) phase, a phase of the cell cycle when DNA is replicating. Accompanied by the slow S phase progression, the cell ages and declines (senescence) and is no longer capable of forming a tumor. This process takes place in most cases when normally-functioning cells are transforming into cancer cells. However, IFN-ß can also stop the growth of certain cancer cell types in the G1 phase (the phase before the S phase) so the cells are no longer cancerous at this stage. Whether the IFN-ß effect is growth arrest in G1 or slowing growth at the S phase is dependent on whether or not the cell has permanently lost the function of another tumor-suppressing protein called retinoblastoma protein-1 (RB1). If the cell has lost RB1 permanently or irreversibly, as in most cases during cancer formation, IFN-ß induces signals to activate proteins related to RB1 (such as a cell cycle regulating protein called p107) to slow its growth at S phase and to trigger cell aging, so it is no longer has the ability to form a cancer. In this process, a barrier or checkpoint within the S phase consisting of activated proteins, such as p107, is in place to slow the S phase progression. If RB1 function can be restored as observed in certain lymphoma or leukaemia cells, IFN-ß signals can activate RB1 directly to stop the cell growth in the G1 phase. The IFN-ß action has little effect on normal cells since they have functional RB1. In normal cells, RB1 function is properly present and it tightly regulates the cell cycle so they are not significantly impacted by the IFN-ß-induced cell cycle effect. Therefore, two proteins IFN-ß and RB1 together with the relevant proteins such as p107, form a network or system for a new anticancer surveillance mechanism to keep watch selectively for and remove cancer cells in our body, i.e., the cell cycle-based anticancer surveillance system. The publication further illustrates the molecular basis underlying the cell cycle change and senescence. The research has implications for future cancer treatment.

13.
J Bioeth Inq ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325336

RESUMEN

With the increasing prices of newly approved anti-cancer treatments contributing to rising healthcare costs, healthcare systems are facing complex economic and ethical dilemmas. Especially in countries with universal access and mandatory health insurance, including many European countries, the organizing of funding or reimbursement of expensive new treatments can be challenging. When expensive anti-cancer treatments are deemed safe and effective, but are not (yet) reimbursed, ethical dilemmas arise. In countries with universal healthcare systems, such as the Netherlands, this gives rise to a rather new ethical dilemma: should patients be allowed to pay out of pocket, using private funds, for medical treatments? On the one hand, to allow patients to pay for treatments out of pocket would be in line with the medical-ethical principles of beneficence and autonomy. On the other hand, allowing patients to pay out of pocket for anti-cancer treatments may lead to unequal access to medical treatments and could be considered unfair to patients who are less well-off. Thus, it could undermine the values of equality and solidarity, on which the Dutch healthcare system is built. Furthermore, out-of-pocket payments could potentially lead to financial hardship and distress for patients, which would conflict with the principle of non-maleficence. Does this mean that patients can rightfully be denied access to approved but not (yet) reimbursed anti-cancer treatments? In this article, we will use the Dutch healthcare system, which is based on equal access and solidarity, as a case study to draw attention to this-currently relatively unknown and unresolved-dilemma and to clarify the values at stake. This article contributes to current discussions about the societal problem of rising healthcare costs by informing policymakers, healthcare professionals, and ethicists about the ethical dilemma of out-of-pocket payments in universal healthcare systems, and aims to support health authorities, policymakers and health professionals in developing policy for whether to allow out-of-pocket payment-based access to newly approved but (too) expensive anti-cancer treatments.

14.
In Silico Pharmacol ; 12(2): 85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310674

RESUMEN

The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00258-5.

15.
Future Med Chem ; : 1-15, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301934

RESUMEN

Aim: Elevated levels of amylase in the blood, known as hyperamylasemia, have been correlated with diabetes and cancer. To investigate the impact of hyperamylasemia on cellular proliferation, it is imperative to design dual inhibitors targeting both α-amylase activity and cancer progression.Materials & methods: Naphthoquinone fused diazepines have been synthesized using multicomponent reaction with high Eco-score of 87 and evaluated for bio efficacy using antioxidant and α-amylase inhibition assay. A correlation between diabetes and cancer has been established via preliminary screening against A549 based lung cancer cell line at 5 µM.Results & conclusion: Compound 4b exhibited superior anti-oxidant and α-amylase inhibitory potential over butylated hydroxytoluene (BHT) and acarbose, respectively with uncompetitive mode of inhibition. Compounds possessing more than 50 % inhibition were then investigated for their IC50 against A549 (Lung cancer), and Breast cancer (MCF-7 and MDA-MB-231) cells. Among all, compound 4p has been selected for further studies, as it demonstrated significant cytotoxicity, while compound 4b showed no effect on AKT gene expression but upregulated IGF-1R gene expression, suggesting a role in managing diabetes. Compound 4p exhibited the ability to decrease AKT expression and increase IGF-1R expression, indicating its potential for treating both diabetes and cancer.


[Box: see text].

16.
Arch Microbiol ; 206(10): 403, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276253

RESUMEN

Seaweed endophytes are a rich source of microbial diversity and bioactive compounds. This review provides a comprehensive analysis of the microbial diversity associated with seaweeds and their interaction between them. These diverse bacteria and fungi have distinct metabolic pathways, which result in the synthesis of bioactive compounds with potential applications in a variety of health fields. We examine many types of seaweed-associated microorganisms, their bioactive metabolites, and their potential role in cancer treatment using a comprehensive literature review. By incorporating recent findings, we hope to highlight the importance of seaweed endophytes as a prospective source of novel anticancer drugs and promote additional studies in this area. We also investigate the pharmacokinetic and pharmacodynamic profiles of these bioactive compounds because understanding their absorption, distribution, metabolism, excretion (ADMET), and toxicity profiles is critical for developing bioactive compounds with anticancer potential into effective cancer drugs. This knowledge ensures the safety and efficacy of proposed medications prior to clinical trials. This study not only provides promise for novel and more effective treatments for cancer with fewer side effects, but it also emphasizes the necessity of sustainable harvesting procedures and ethical considerations for protecting the delicate marine ecology during bioprospecting activities.


Asunto(s)
Antineoplásicos , Bacterias , Endófitos , Hongos , Algas Marinas , Algas Marinas/química , Endófitos/metabolismo , Endófitos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Humanos , Hongos/efectos de los fármacos , Hongos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Biodiversidad
17.
Bioorg Med Chem Lett ; 113: 129953, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270806

RESUMEN

Methyl benzimidazole-2-carbamate anthelmintics are a class of oral drugs to treat parasitic worm infections via microtubule disruption for non-systemic indications and currently in use. In order to use for anticancer treatment, the new benzimidazoles needs to improve solubility and pharmacokinetic parameters while maintaining its cellular potency as for systemic drug. Structure-activity-relationship on the benzimidazole is thoroughly examined and a novel benzimidazole-2 propionamide BNZ-111 is identified having good oral exposure and bioavailability in rat. Molecular docking study suggests BNZ-111 have a specific binding mode to the ß subunit of curved tubulin. BNZ-111 is potent to cancer cells and possesses good drug-like properties as oral drug. Especially, BNZ-111 is not a P-gp substrate and it demonstrates its efficacy over Paclitaxel-resistance tumor in vivo.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39242248

RESUMEN

AIMS: To establish whether there are geographic differences in treatments and outcomes for patients with kidney cancer (KC) in England which could potentially be improved by the creation of national guidelines. MATERIALS AND METHODS: A multidisciplinary group convened by the charity Kidney Cancer UK developed Quality Performance Indicators (QPIs) for the treatment of KC. Adherence to these QPIs was reported for all patients with a histological diagnosis of KC diagnosed in England between 2017 and 2018. Utilising data extracted from national datasets, logistic and linear probability models were used to estimate geographic variation in the delivery of surgery and systemic anti-cancer therapy at Cancer Alliance and NHS trust levels. Results were adjusted for a priori confounders, including age at diagnosis, area deprivation of residence, and Charlson Comorbidity Index. Differences in overall survival are reported. RESULTS: The cohort comprised 18,640 tumours in 18,421 patients. Of tumours diagnosed, median patient age was 68 (interquartile range 58-77) years and 63.4% were in males. When stratified by Cancer Alliance, the proportions of T1a/T1b/N0/M0 KC that had radical nephrectomy (RN), nephron sparing surgery or ablation ranged from 53.3% (95% CI [48.7, 57.8]) to 80.3% (95% CI [73.0, 86.0]). For stage T1b-3 cancers, the proportion that received RN ranged from 65.6% (95% CI [60.3, 70.5]) to 77.3% (95% CI [72.1, 81.7]). Patients with M0 (n = 12,365) and M1 KC (n = 3312) at diagnosis had 24-month survival of 87.5% and 25.1%, respectively. Of patients diagnosed with M1 KC, 50.3% received systemic anti-cancer therapy, ranging from 39.7% (95% CI [33.7, 46.1]) to 70.7% (95% CI [59.6, 79.8]) between Cancer Alliances. The six-month survival of these patients was 77.4% compared to 27.6% for those that did not receive SACT. CONCLUSION: These major geographical differences in surgical and systemic therapy practice have led to national guideline development.

19.
Cell Biosci ; 14(1): 115, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238058

RESUMEN

BACKGROUND: Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS: Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION: Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.

20.
Heliyon ; 10(16): e35897, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224319

RESUMEN

Forty-one derivatives of spirooxindoles, active against HCT-116 colon cancer cells, underwent pharmacophore-based 3D-QSAR analysis to understand their correlation with anti-cancer activity. The study identified a seven-point pharmacophore model (ADHHRRR1) and QSAR models, offering insights for lead optimization and novel analogue design, thus advancing anti-cancer drug discovery. This research underscores the value of molecular modeling in elucidating structure-activity relationships and enhancing drug development efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA