Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
AAPS J ; 26(1): 18, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267774

RESUMEN

Non-neutralizing anti-idiotype antibodies against a therapeutic monoclonal antibody (mAb) play a crucial role in the creation of total pharmacokinetic (PK) assays and total target engagement (TE) assays during both pre-clinical and clinical development. The development of these anti-idiotype antibodies is challenging. In this study, we utilized a hybridoma platform to produce a variety of anti-idiotype antibodies against GSK2857914, a humanized IgG1 anti-BCMA monoclonal antibody. The candidate clones were evaluated using surface plasmon resonance (SPR) and bio-layer interferometry (BLI) for binding affinity, binding profiling, matrix interference, and antibody pairing determination. We discovered that three anti-idiotype antibodies did not prevent BCMA from binding to GSK2857914. All three candidates demonstrated high binding affinities. One of the three exhibited minimal matrix inference and could pair with the other two candidates. Additionally, one of the three clones was biotinylated as a capture reagent for the total PK assay, and another was labeled with ruthenium as a detection reagent for both the total PK assay and total TE assay. The assay results clearly show that these reagents are genuine non-neutralizing anti-idiotypic antibodies and are suitable for total PK and TE assay development. Based on this and similar studies, we conclude that the hybridoma platform has a high success rate for generating non-neutralizing anti-idiotype antibodies. Our methodology for developing and characterizing non-neutralizing anti-idiotype antibodies to therapeutic antibodies can be generally applied to any antibody-based drug candidate's total PK and total TE assay development.


Asunto(s)
Anticuerpos Monoclonales , Bioensayo , Inmunoglobulina G , Resonancia por Plasmón de Superficie , Anticuerpos Antiidiotipos
2.
J Virol ; 98(2): e0165023, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38271227

RESUMEN

Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Anticuerpos de Dominio Único , Vacunas Virales , Animales , Humanos , Ratones , Proteínas de la Cápside , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Epítopos , Porcinos , Vacunas Virales/química , Vacunas Virales/inmunología
3.
Bioanalysis ; 15(16): 1049-1067, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37515532

RESUMEN

Background: MK-1654 is a fully human monoclonal antibody with YTE mutations currently in phase III clinical trials for prophylactic use in protecting infants from human respiratory syncytial virus infection. Materials & methods: We generated anti-idiotype (anti-ID) and anti-YTE antibodies against MK-1654 by panning with MorphoSys HuCal phage libraries, and used the antibodies in the development of MK-1654 pharmacokinetic (PK) and immune response (IR) assays. Results: Detection of MK-1654 in nonhuman primate and human nasal wash samples showed combined use of anti-ID and anti-YTE antibodies can deliver desired sensitivity and accuracy in PK studies. IR studies showed anti-ID can serve as suitable positive control in neutralizing antibody assays. Conclusion: Phage-derived anti-IDs and anti-YTEs are suitable for PK and IR assays.


Asunto(s)
Bacteriófagos , Animales , Humanos , Anticuerpos Neutralizantes , Anticuerpos Monoclonales , Inmunidad
4.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 446-458, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36847082

RESUMEN

Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2ß anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2ß anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Insecticidas/farmacología , Insecticidas/química , Insecticidas/metabolismo , Endotoxinas/genética , Endotoxinas/farmacología , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/química , Plantas Modificadas Genéticamente/genética , Control Biológico de Vectores
5.
J Basic Clin Physiol Pharmacol ; 33(6): 727-733, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279146

RESUMEN

Idiotype-based therapeutics have failed to deliver their promise, necessitating rethinking of the concept and its potential to develop a viable immunotherapy method. The idiotype based hypothesis is discussed in this paper in order to produce effective anti-idiotype vaccinations. Polyclonal anti-idiotype reagents have been shown to be more successful in animal models, and a better understanding of the immune response in humans supports the idea that polyclonal anti-idiotype vaccines will be more effective than monoclonal-based anti-idiotype vaccines. This innovative approach can be used to produce therapeutic antibodies in a Biotech-standard manner. The idiotype network has been tweaked in the lab to provide protection against a variety of microbiological diseases. Antibodies to image-idiotype antigens, both internal and non-internal, can elicit unique immune responses to antigens. The current outbreak of severe acute respiratory syndrome 2 (SARS-2) has presented a fantastic chance to use idiotype/anti-idiotype antibodies as a protective regimen, which might be used to treat COVID-19 patients. The development of various effective vaccinations has been crucial in the pandemic's management, but their effectiveness has been limited. In certain healthy people, the development of viral variations and vaccinations can be linked to rare off-target or hazardous effects, such as allergic responses, myocarditis and immune-mediated thrombosis and thrombocytopenia. Many of these occurrences are most likely immune-mediated. The current analysis reveals successful idiotype/anti-idiotype antibody uses in a variety of viral illnesses, emphazising their importance in the COVID-19 pandemic.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Anticuerpos Monoclonales/uso terapéutico , Pandemias/prevención & control , Idiotipos de Inmunoglobulinas , Anticuerpos Antiidiotipos/uso terapéutico
6.
J Agric Food Chem ; 69(40): 11743-11752, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34583509

RESUMEN

Mycotoxins are toxic contaminants in foods and feeds that are naturally occurring and largely unavoidable. Determining their contents in these products is essential to protect humans from harm. Immunoassays of mycotoxins have been well-established because they are fast, sensitive, simple, and cost-effective. However, a major limitation of immunoassays is the requirement of toxic mycotoxins as competing antigens, standards, or competing tracers. Mimotopes are peptides or proteins that can specifically bind to antibodies and compete with analytes for binding sites by mimicking antigenic epitopes. They can be employed as substitutes for competing antigens, standards, or competing tracers to avoid use of mycotoxins. This review summarizes the production and functionalization of the two main kinds of mimotopes, mimic peptides and anti-idiotypic antibodies (Ab2), and their applications in rapid analysis of mycotoxins.


Asunto(s)
Micotoxinas , Antígenos , Epítopos , Humanos , Inmunoensayo , Péptidos
7.
Prep Biochem Biotechnol ; 50(4): 419-424, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31876440

RESUMEN

Immunoassay has been widely used in the screening of mycotoxins, which may be hazardous to the operator or the environment. This study was to develop a green way to measure zearalenone (ZEN) with a monoclonal ß-type anti-idiotype antibody (Ab2ß) against ZEN in place of ZEN standard. Six monoclonal ß-type anti-idiotype antibodies were prepared. The 50% inhibitory concentration (IC50) value to ZEN of the six antibodies was between 34.45 ± 1.12-182.12 ± 15.40 nM. A green ELISA was then developed and validated. The quantitative conversion formula between ZEN and the monoclonal Ab2ß against ZEN was y = 0.092x0.722, R2 = 0.990. The working range was 2.63-100.64 ng ml-1. The recovery rate in spiked feed samples was from 82.15% to 102.79%, and the within-assay and between-assay coefficient variation (CV) level were less than 10.00%. A good correlation was obtained by high-performance liquid chromatography method (HPLC) to validate the developed method.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Micotoxinas/análisis , Zearalenona/análisis , Alimentación Animal/análisis , Anticuerpos Antiidiotipos/inmunología , Anticuerpos Antiidiotipos/aislamiento & purificación , Anticuerpos Monoclonales/aislamiento & purificación , Contaminación de Alimentos/análisis , Tecnología Química Verde/métodos , Límite de Detección , Micotoxinas/inmunología , Zearalenona/inmunología
8.
Expert Opin Biol Ther ; 16(4): 573-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26903265

RESUMEN

INTRODUCTION: Racotumomab (originally known as 1E10 mAb) is an anti-idiotype murine IgG1 directed to membrane glycoconjugates expressed in aggressive solid tumors. It was developed as a mirror image of the idiotype of another antibody against N-glycolyl-containing molecules, such as the NeuGcGM3 ganglioside. After a successful phase II/III study, racotumomab formulated in alum was conditionally approved in Latin American countries as maintenance therapy for advanced non-small cell lung cancer. AREAS COVERED: This review analyzes the biology of the target antigen, summarizes preclinical studies and discusses clinical trials in adults and the pediatric experience with racotumomab. EXPERT OPINION: Proper patient selection and combination with chemotherapy, radiotherapy or checkpoint inhibitors appear to be critical issues to maximize the effects of racotumomab vaccination in lung cancer. In a recent phase I clinical trial in children with relapsed or resistant neuroectodermal malignancies, racotumomab was well tolerated and immunogenic, and its evaluation as immunotherapy for high-risk neuroblastoma is warranted.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Anticuerpos Antiidiotipos/uso terapéutico , Anticuerpos Monoclonales de Origen Murino , Niño , Gangliósido G(M3)/análogos & derivados , Gangliósido G(M3)/inmunología , Humanos
9.
Int Immunopharmacol ; 28(2): 1026-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26303768

RESUMEN

Increasing evidence has suggested that bispecific and multivalent antibodies which have more antigen binding sites will improve their immunogenicity. The bispecific anti-idiotype antibody vaccine G22-I50 was obtained through genetic engineering to enhance the immunogenicity of anti-idiotype antibody vaccines G22 and I50. G22-I50 vaccination could induce anti-tumor immunity in the Balb/c mouse model. The protective and therapeutic efficacy of G22-I50 was also evaluated using the hu-PBL-SCID mouse model injected three times with G22-I50, G22, or I50 mixed with Freund's adjuvant. Results demonstrated that the protective anti-tumor effect of G22-I50 could be relevant with the production of Ab3 antibody and activation of CD8(+) cytotoxic T-lymphocytes. In preventive and therapeutic experiments, G22-I50 could reduce tumor size and prolong the survival time of HNE2-bearing mice (p<0.05). Human CD8(+) T lymphocytes infiltrated the tumor sites, and high levels of human IFN-γ, TNF-α, and caspase-3 were also detected in the tumors from G22-I50-vaccinated and -treated mice. Therefore, the bispecific anti-idiotype antibody vaccine G22-I50 can induce strong humoral and cell-mediated immune responses. This vaccine can be potentially applied to prevent and treat nasopharyngeal carcinoma.


Asunto(s)
Anticuerpos Antiidiotipos/administración & dosificación , Anticuerpos Biespecíficos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Inmunoterapia/métodos , Neoplasias Nasofaríngeas/terapia , Animales , Carcinoma , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ingeniería Genética , Humanos , Ratones , Ratones SCID , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/patología , Trasplante de Neoplasias , Carga Tumoral
10.
Front Oncol ; 2: 160, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23162791

RESUMEN

N-glycolylneuraminic acid (NeuGc) is a sialic acid molecule usually found in mammalian cells as terminal constituents of different membrane glycoconjugates such as gangliosides. The NeuGcGM3 ganglioside has been described as a tumor antigen for non-small cell lung cancer (NSCLC) in humans. Racotumomab is an anti-NeuGc-containing gangliosides anti-idiotype monoclonal antibody (mAb) (formerly known as 1E10) that has received attention as a potential active immunotherapy for advanced lung cancer in clinical trials. In this work, we have examined the antitumor activity of racotumomab in combination or not with chemotherapy, using the 3LL Lewis lung carcinoma as a preclinical model of NSCLC in C57BL/6 mice. Vaccination with biweekly doses of racotumomab at 50-200 µg/dose formulated in aluminum hydroxide (racotumomab-alum vaccine) demonstrated a significant antitumor effect against the progression of lung tumor nodules. Racotumomab-alum vaccination exerted a comparable effect on lung disease to that of pemetrexed-based chemotherapy (100 mg/kg weekly). Interestingly, chemo-immunotherapy was highly effective against lung nodules and well-tolerated, although no significant synergistic effect was observed as compared to each treatment alone in the present model. We also obtained evidence on the role of the exogenous incorporation of NeuGc in the metastatic potential of 3LL cells. Our preclinical data provide support for the combination of chemotherapy with the anti-idiotype mAb racotumomab, and also reinforce the biological significance of NeuGc in lung cancer.

11.
Front Immunol ; 3: 422, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23335925

RESUMEN

Racotumomab is a murine anti-idiotype cancer vaccine targeting NeuGcGM3 on melanoma, breast, and lung cancer. In order to characterize the immunogenicity of alum-adsorbed racotumomab in a non-clinical setting, Leghorn chickens were immunized in dose levels ranging from 25 µg to 1600 µg. Racotumomab was administered subcutaneously in the birds' neck with three identical boosters and serum samples were collected before, during and after the immunization schedule. A strong antibody response was obtained across the evaluated dose range, confirming the immunogenicity of racotumomab even at dose levels as low as 25 µg. As previously observed when using Freund's adjuvant, alum-adsorbed racotumomab induced an idiotype-specific response in all the immunized birds and ganglioside-specific antibodies in 60-100% of the animals. In contrast to the rapid induction anti-idiotype response, detection of ganglioside-specific antibodies in responsive animals may require repeated boosting. Kinetics of anti-NeuGcGM3 antibody titers showed a slight decline 2 weeks after each booster, arguing in favor of repeated immunizations in order to maintain antibody titer. Interestingly, the intensity of the anti-NeuGcGM3 response paralleled that of anti-mucin antibodies and anti-tumor antibodies, suggesting that the in vitro detection of anti-ganglioside antibodies might be a surrogate for an in vivo activity of racotumomab. Taken together, these results suggest that Leghorn chicken immunization might become the means to test the biological activity of racotumomab intended for clinical use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA