Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
1.
J Food Sci ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366775

RESUMEN

This study examined the effects of adding different types of arabinoxylans (AXs) to wheat flour with varying gluten strengths on flour quality and noodle-making performance, with the aim of utilizing AXs as health-enhanced ingredients. Three flours (Goso, Hojoong, and Joongmo) with low, medium, and high gluten strengths were used, along with two water-extractable AXs (E1 and E2) and one water-unextractable AX (U) with diverse molecular weights and viscosities. The addition of 2% AXs increased the water and sucrose solvent retention capacity values and decreased the gluten performance index values for all flours, with a notable effect on Goso flour by U. The dough development time was prolonged in all flours, necessitating more water for development. The sodium dodecyl sulfate sedimentation volume increased with the addition of AXs, especially with E2 and U. Pasting properties remained unaffected, suggesting a minimal impact on starch-related properties. However, noodles made with E2 and U showed deteriorated quality in terms of fresh noodle texture, weight gain, cooking water turbidity, and cooked noodle texture, in contrast to noodles made with E1 alone. Additionally, adjusting the water amount when adding U altered the textural properties, approaching that of noodles without added AXs. Overall, the impact of AXs on flour and noodle quality varied depending on their molecular weights, viscosities, and the gluten strength of the flour. Additionally, AXs could be successfully utilized by adjusting the water amount for the production of health-enhancing noodles. PRACTICAL APPLICATION: Arabinoxylans, as health-promoting ingredients, can be utilized in noodle production by optimizing the water amount and mixing time.

2.
J Agric Food Chem ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400044

RESUMEN

Overweight and obesity are major and increasingly global public health concern. High intake of dietary fiber is negatively correlated with obesity and obesity-related metabolic diseases. Here, we investigated the impact of arabinoxylan on obesity based on the modification of gut microecology. Arabionxylan reduced body weight and improved glucose metabolism, as well as intestinal barrier function and metabolic endotoxemia in obese mice. Supplementation with arabinoxylan increased the relative abundance of Prevotellaceae_UCG_001, Lachnospiraceae_NK4A136_group, Clostridia_UCG_014, Alistipes, Bacteroides, and Ruminococcus, which was associated with the upregulated 7α-dehydroxylation function and production of secondary bile acids (deoxycholic acid and lithocholic acid). The modification of gut microbiota by arabinoxylan also influenced the production of SCFAs, genistein, daidzein, indolelactic acid, and indoleacetic acid, contributing to the amelioration of obesity. Our study highlights the antiobesity effects of arabinoxylan through the modification of gut microbiota and the production of bioactive metabolites.

3.
Foods ; 13(19)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39410193

RESUMEN

This study examined the impact of xylanases, focusing on the hydrolysis of water-extractable (WE-AX) and water-unextractable arabinoxylans (WU-AX) and on the quality and noodle-making performance of flours with varying gluten strengths. Flours categorized as strong (S), medium (M), and weak (W) were treated with two xylanases (WE and WU) at concentrations ranging from 0.01% to 0.2%. Parameters such as solvent retention capacity (SRC), SDS sedimentation volume, dough mixing properties, and noodle characteristics were measured. The SRC revealed that flour S had the highest water-holding capacity, gluten strength, and arabinoxylan content. Xylanase treatment reduced water SRC values in flour S and increased the SDS sedimentation volume, with a greater effect from xylanase WU, indicating the potential enhancement of gluten strength. The impact of xylanases was pronounced at higher enzyme concentrations, with differences in dough mixing properties, resistance, and extensibility of fresh noodles, producing softer and stretchable noodles. Cooked noodles made from flours treated with xylanase were softer and had decreased firmness and chewiness, especially those made from flours S and M. This study concludes that WE-AX and WU-AX influence noodle texture; therefore, controlling their degradation with xylanases can produce noodles with varied textures, depending on the gluten strength of the flour.

4.
Int J Biol Macromol ; 280(Pt 3): 136031, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332554

RESUMEN

Non-alcoholic and low-alcoholic beers often suffer from inferior foaming quality and lack palate fullness, both of which are positively influenced by arabinoxylan. This study aimed to identify factors during brewing that most affect arabinoxylan content and structure. Analysis showed that malting and mashing had the most significant impact on arabinoxylan, increasing its extractability and reducing its molecular weight. Given that arabinoxylan was most affected at the initial stages of brewing, barley malt selection and mashing profile adjustments were further investigated. Barleys (n = 21) were micro-malted, exhibiting a wide range of endoxylanase activity (6-63 U/kg dm malt) and water-extractable arabinoxylan content (0.54 %-1.04 % dm malt). Malts with extreme values for these parameters were subjected to two mashing profiles, with only one allowing endoxylanase activity, to evaluate the impact of both barley selection and endoxylanase activity on the arabinoxylan profile in beer. The resulting beers had total arabinoxylan content ranging from 1.0 to 2.0 g/L and high-molecular-weight arabinoxylan from 0.4 to 1.2 g/L, levels that significantly contribute to palate fullness and foam stability. The negligible impact of endoxylanase activity highlighted the importance of barley selection. Therefore, brewers should make informed barley (malt) choices to optimize arabinoxylan content and structure in beer.

5.
Food Chem ; 463(Pt 2): 141254, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39298848

RESUMEN

Spent brewery grain (SBG) is a by-product of the brewery industry. The study aimed to investigate the prebiotic potential of SBG. The chemical composition and fermentation capacity of SBG were checked. The gut microbiota response to SBG was assessed in two in vitro models (batch fermentation and dynamic system). Substances with prebiotic properties, including arabinoxylans (16.7 g/100 g) and polyphenols (49.1 mg/100 g), were identified in SBG. Suitable growth and fermentation by probiotic bacteria were observed. The modulatory effect of gut microbiota depends on the in vitro system used. In batch fermentation, there was no stimulation of Bifidobacterium or lactic acid bacteria (LAB), but short-chain fatty acid (SCFA) and branched short-chain fatty acids (BCFA) synthesis increased. In dynamic, SBG exhibited a moderate bifidogenic effect, promoting Akkermansia and LAB growth while reducing Bacteroides and Escherichia-Shigella. SCFA stabilisation and reduction of BCFA content were noted. Moderate prebiotic effects were observed.

6.
Carbohydr Polym ; 345: 122584, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227112

RESUMEN

The dissolving pulp preparation from bleached kraft pulp while realizing the high-value application of hemicellulose fraction is of great significance for improving the overall economics of the process. This work proposed a two-step cascaded process of deep eutectic solvent (DES) pretreatment combined with mechanical refining for the co-production of dissolving pulp and arabinoxylan (AX) from bleached bamboo pulp. Results showed that using alkaline DES composed of quaternary ammonium hydroxide and urea prepared high-quality dissolving pulp (α-cellulose content of 97.7 %) while selectively extracting high-quality AX. The mechanical refining rapidly opened up the cellulose structure to increase its Fock reactivity to over 70.0 %. When 100 g bleached bamboo pulp was subjected to this technology route, the high yields of dissolving pulp (63.8 g) and AX (13.0 g) were respectively obtained. It was proposed that the tailored DES with different alkalinity could specifically produce dissolving pulp or AX which were more favorable for downstream application through distinct action pathways. The swelling effects of DES on the cellulose surface facilitated the subsequent mechanical fibrillation, allowing a synergistic enhancement of the reactivity. Thus, the integrated process provided a sustainable alternative for dissolving pulp upgrading while adding attractiveness by co-producing AX product stream.

7.
J Agric Food Chem ; 72(40): 22186-22198, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39344507

RESUMEN

To enhance the use of wheat bran in chicken feed, a solid-state fermentation approach was used with Lactobacillus paracasei LAC28 and Pediococcus acidilactici BCC-1, along with arabinoxylan-specific degrading enzymes (xylanase, arabinofuranosidase, feruloyl esterase, XAF). The effects of the fermentation process were evaluated both in vitro and in vivo. In the in vitro study, XAF supplementation demonstrated superior performance, significantly reducing the pH of the fermented wheat bran (FWB) and increasing lactic, acetic, and butyric acid levels, total phenol content, and free radical scavenging capacity (P < 0.05) compared to the XAF-free group. In the in vivo study, broilers were fed diets containing either unfermented wheat bran (UFWB) or FWB (fermented individually with LAC28 or BCC-1). Broilers fed FWB with BCC-1 exhibited significant improvements in body weight gain, intestinal morphology, and nutrient digestibility (P < 0.05) compared to the control group. Moreover, the FWB established a healthier microbial community in the avian gastrointestinal tract. Overall, this study demonstrated the potential of combining XAF and bacteria to enhance wheat bran fermentation, benefiting broiler intestinal health and growth. This innovative approach holds promise as a cost-efficient and sustainable strategy to improve the nutritional quality of wheat bran for animal feed applications.


Asunto(s)
Alimentación Animal , Pollos , Fibras de la Dieta , Fermentación , Lactobacillus , Xilanos , Animales , Fibras de la Dieta/metabolismo , Fibras de la Dieta/análisis , Pollos/metabolismo , Xilanos/metabolismo , Xilanos/química , Alimentación Animal/análisis , Lactobacillus/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Disponibilidad Biológica , Lactobacillales/metabolismo , Pediococcus acidilactici/metabolismo , Pediococcus acidilactici/química , Masculino , Triticum/química , Triticum/metabolismo , Xilosidasas/metabolismo , Microbioma Gastrointestinal , Proteínas Bacterianas/metabolismo , Glicósido Hidrolasas
8.
Int J Biol Macromol ; 280(Pt 4): 136146, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39349079

RESUMEN

A endo-xylanase, of the glycoside hydrolase family 10 from Schizophyllum commune DB01, was expressed in P. pastoris. Recombinant xylanase (Scxyn5) retained above 80 % maximum activity in 10 % dimethyl sulfoxide and retained 90 % maximum activity in 5 M NaCl on the substrate of birchwood xylan. The effect of NaCl on the catalytic activity of Scxyn5 was significantly different toward various substrates, which was caused by the difference of monosaccharide composition and sturcture of the substrates. Furthermore, when corn fiber gum (CFG) was used as a substrate, the catalytic activity of Scxyn5 increased by 1.3-2.03 times in 1-5 M NaCl. Based on response surface methodology, the highest catalytic activity of Scxyn5 in hydrolyzing CFG were achieved with enzymatic temperature of 50 °C, pH value of 6.0, and 4 M NaCl. These properties of Scxyn5 suit the arabinoxylan-oligosaccharides (AXOs) preparation from CFG and some other potential applications in food industry.

9.
Food Chem ; 463(Pt 1): 141146, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255698

RESUMEN

Wheat bran is a significant byproduct of wheat flour milling and is enriched with dietary fiber. Arabinoxylan (AX), the major constituent of dietary fiber, plays a crucial role in the nutrition and processing of cereal food. This review comprehensively focuses on AX as a functional additive, specifically addressing its fractionation methods, structural characteristics, techno-functionality, and interactions with dough components. Structural features such as molecular weight (Mw), branching degree, and ferulic acid (FA) content significantly influence the functionality of AX, affecting gluten protein and starch characteristics during cereal food processing. Specifically, studies have shown that AX with optimum Mw and FA levels improved dough rheology and gas retention during bread-making. Furthermore, the solubility of AX varies across wheat bran fractions, with soluble AX fractions demonstrating notable dough-improving properties. By integrating structural complexity with functional properties, this review highlights the promising applications of wheat bran AX as a sustainable, functional dough additive.

10.
Microorganisms ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203557

RESUMEN

The transition towards a sustainable society involves the utilization of lignocellulosic biomass as a renewable feedstock for materials, fuel, and base chemicals. Lignocellulose consists of cellulose, hemicellulose, and lignin, forming a complex, recalcitrant matrix where efficient enzymatic saccharification is pivotal for accessing its valuable components. This study investigated microbial communities from brackish Lauwersmeer Lake, in The Netherlands, as a potential source of xylan-degrading enzymes. Environmental sediment samples were enriched with wheat arabinoxylan (WAX) and beechwood glucuronoxylan (BEX), with enrichment on WAX showing higher bacterial growth and complete xylan degradation compared to BEX. Metagenomic sequencing revealed communities consisting almost entirely of bacteria (>99%) and substantial shifts in composition during the enrichment. The first generation of seven-day enrichments on both xylans led to a high accumulation of Gammaproteobacteria (49% WAX, 84% BEX), which were largely replaced by Alphaproteobacteria (42% WAX, 69% BEX) in the fourth generation. Analysis of the protein function within the sequenced genomes showed elevated levels of genes associated with the carbohydrate catabolic process, specifically targeting arabinose, xylose, and xylan, indicating an adaptation to the primary monosaccharides present in the carbon source. The data open up the possibility of discovering novel xylan-degrading proteins from other sources aside from the thoroughly studied Bacteroidota.

11.
Foods ; 13(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39200409

RESUMEN

Rye grain is a good source of dietary fiber, phenolic compounds, vitamins, and mineral compounds. To prevent the staling process of bread, semi-finished bakery products are subjected to cooling or freezing, and this process is called the postponed baking method. The aim of this study was to examine the influence of rye arabinoxylans differing in molar mass on the properties of rye bread baked using the postponed baking method. The breads were baked from rye flour types 720 and 1150, without and with a 1% share of unmodified or cross-linked rye arabinoxylans (AXs). The molar mass of the unmodified AXs was 432,160 g/mol, while that of the AXs after cross-linking was 1,158,980 g/mol. The results of this study show that the 1% share of AXs significantly increased the water addition to both types of rye flour and dough yield, and this increase was proportional to the molar mass of the AXs used. It is shown that a 1% share of both AX preparations positively increased the volume and crumb moisture of bread baked by the postponed baking method. Cross-linked AXs proved to be particularly effective in increasing the volume and bread crumb moisture. Both AX preparations had a positive effect on reducing the bread crumb hardness of rye breads baked by the postponed baking method.

12.
Int J Biol Macromol ; 278(Pt 4): 134817, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154696

RESUMEN

The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance. The FSM is recognized as a foaming, encapsulating, emulsifying, suspending, film-forming, and gelling agent for several pharmaceutical preparations and healthcare materials. Owing to stimuli (pH) -responsive swelling-deswelling characteristics, high swelling indices at different physiological pHs of the human body, and biocompatibility, FSM is considered a smart material for intelligent, targeted, and controlled drug delivery applications through conventional and advanced drug delivery systems. FSM has been modified through carboxymethylation, acetylation, copolymerization, and electrostatic complexation to get the desired properties for pharma, food, and healthcare products. The present review is therefore devoted to the isolation techniques, structural characterization, highly valuable properties for food and pharmaceutical industries, preclinical and clinical trials, pharmacological aspects, biomedical attributes, and patents of FSM.


Asunto(s)
Materiales Biocompatibles , Lino , Mucílago de Planta , Lino/química , Mucílago de Planta/química , Humanos , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Animales
13.
Int J Biol Macromol ; 278(Pt 3): 134860, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163956

RESUMEN

Exploring nutritional therapies that manipulate tryptophan metabolism to activate AhR signaling represents a promising approach for mitigating chronic colitis. Arabinoxylan is a bioactive constituent abundant in wheat bran. Here, we comprehensively investigated anti-colitis potentials of wheat bran arabinoxylan (WBAX), its synbiotic and postbiotic derived from WBAX and Limosilactobacillus reuteri WX-94 (i.e., a probiotic strain exhibiting tryptophan metabolic activity). WBAX fueled L. reuteri and promoted microbial conversion of tryptophan to AhR ligands during in vitro fermentation in the culture medium and in the fecal microbiota from type 2 diabetes. The WBAX postbiotic outperformed WBAX and its synbiotic in augmenting efficacy of tryptophan in restoring DSS-disturbed serum immune markers, colonic tight junction proteins and gene profiles involved in amino acid metabolism and FoxO signaling. The WBAX postbiotic remodeled gut microbiota and superiorly enhanced AhR ligands (i.e., indole metabolites and bile acids), alongside with elevation in colonic AhR and IL-22. Associations between genera and metabolites modified by the postbiotic and colitis in human were verified and strong binding capacities between metabolites and colitis-related targets were demonstrated by molecular docking. Our study advances the novel perspective of WBAX in manipulating tryptophan metabolism and anti-colitis potentials of WBAX postbiotic via promoting gut microbiota-dependent AhR signaling.


Asunto(s)
Colitis , Fibras de la Dieta , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Simbióticos , Xilanos , Xilanos/farmacología , Xilanos/química , Xilanos/metabolismo , Limosilactobacillus reuteri/metabolismo , Colitis/metabolismo , Colitis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Fibras de la Dieta/metabolismo , Humanos , Animales , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Simulación del Acoplamiento Molecular , Fermentación , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Multiómica
14.
Foods ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123502

RESUMEN

Feruloylated arabinoxylan (AX) is a potential health-promoting fiber ingredient that can enhance nutritional properties of bread but is also known to affect dough rheology. To determine the role of feruloylation and hydrolysis of wheat bran AX on dough quality and microstructure, hydrolyzed and unhydrolyzed AX fractions with low and high ferulic acid content were produced, and their chemical composition and properties were evaluated. These fractions were then incorporated into wheat dough, and farinograph measurements, large and small deformation measurements and dough microstructure were assessed. AX was found to greatly affect both fraction properties and dough quality, and this effect was modulated by hydrolysis of AX. These results demonstrated how especially unhydrolyzed fiber fractions produced stiff doughs with poor extensibility due to weak gluten network, while hydrolyzed fractions maintained a dough quality closer to control. This suggests that hydrolysis can further improve the baking properties of feruloylated wheat bran AX. However, no clear effects from AX feruloylation on dough properties or microstructure could be detected. Based on this study, feruloylation does not appear to affect dough rheology or microstructure, and feruloylated wheat bran arabinoxylan can be used as a bakery ingredient to potentially enhance the nutritional quality of bread.

15.
Food Chem ; 460(Pt 2): 140544, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089023

RESUMEN

A novel antibacterial film based on arabinoxylan (AX) was prepared by introducing ferulic acid (FA) to AX through a laccase-catalyzed procedure. The ferulic acid-arabinoxylan conjugates (FA-AX conjugates) have been characterized. Results showed that FA was successfully grafted onto the AX chains by covalent linkages, likely through nucleophilic addition between O-Ph in the phenolic hydroxyl group of FA, or through Michael addition via O-quinone intermediates. FA-AX conjugates showed improved crystallinity, thermal stability, and rheological properties, as well as a distinct surface morphology, compared with those of native AX. Moreover, FA-AX conjugates exhibited enhanced antibacterial ability against Staphylococcus aureus, Escherichia coli, Shewanella sp., and Pseudomonas sp. Mechanistic studies revealed that the enhanced antibacterial ability was due to the penetration of bacterial membrane by the phenolic molecule and the steric effect of FA-AX conjugates. The study demonstrates that the laccase-induced grafting method was effective in producing FA-AX conjugates; we have demonstrated its antibacterial ability and great potential in prolonging the shelf life of fresh seafood products.


Asunto(s)
Antibacterianos , Ácidos Cumáricos , Xilanos , Xilanos/química , Xilanos/farmacología , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Lacasa/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Bacterias/efectos de los fármacos
16.
Carbohydr Polym ; 342: 122399, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048235

RESUMEN

This work demonstrates that sesame (Sesamum indicum L.) hull, an unexploited food industrial waste, can be used as an efficient source for the extraction of hemicellulose and/or pectin polysaccharides to further obtain functional oligosaccharides. Different polysaccharides extraction methods were surveyed including alkaline and several enzymatic treatments. Based on the enzymatic release of xylose, arabinose, glucose, and galacturonic acid from sesame hull by using different enzymes, Celluclast®1.5 L, Pectinex®Ultra SP-L, and a combination of them were selected for the enzymatic extraction of polysaccharides at 50 °C, pH 5 up to 24 h. Once the polysaccharides were extracted, Ultraflo®L was selected to produce arabinoxylo-oligosaccharides (AXOS) at 40 °C up to 24 h. Apart from oligosaccharides production from extracted polysaccharides, alternative approaches for obtaining oligosaccharides were also explored. These were based on the analysis of the supernatants resulting from the polysaccharide extraction, alongside a sequential hydrolysis performed with Celluclast®1.5 L and Ultraflo®L of the starting raw sesame hull. The different fractions obtained were comprehensively characterized by determining low molecular weight carbohydrates and monomeric compositions, average Mw and dispersity, and oligosaccharide structure by MALDI-TOF-MS. The results indicated that sesame hull can be a useful source for polysaccharides extraction (pectin and hemicellulose) and derived oligosaccharides, especially AXOS.


Asunto(s)
Oligosacáridos , Sesamum , Sesamum/química , Oligosacáridos/química , Hidrólisis , Polisacáridos/química , Xilanos/química , Xilanos/aislamiento & purificación , Pectinas/química , Pectinas/aislamiento & purificación , Residuos Industriales , Arabinosa/química , Xilosa/química
17.
J Agric Food Chem ; 72(29): 16237-16249, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984620

RESUMEN

Dietary fiber and polyphenols have been shown to possess antiobesity properties. However, their combined effects need further investigation. This study investigated the individual and combined effects of arabinoxylan oligosaccharides (AXOS) from rice bran and green tea polyphenols (GTP) in high-fat diet-induced obese mice. We found that the combination of AXOS and GTP (A + G) significantly reduced overall fat mass and improved lipid profiles, although the effects were not synergistic. AXOS and GTP regulated lipid metabolism in different tissues and exhibited counteractive effects on gut microbiota. AXOS decreased α diversity and promoted Bifidobacterium, with GTP counteracting these effects. In vitro fermentation confirmed that GTP counteracted AXOS-induced microbiota changes in a dose-dependent manner. This study highlights the potential of tailored combinations of dietary fiber and polyphenols to treat obesity while considering their complex microbial interplay.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Obesidad , Oligosacáridos , Polifenoles , , Xilanos , Animales , Xilanos/administración & dosificación , Xilanos/farmacología , Xilanos/metabolismo , Polifenoles/farmacología , Polifenoles/administración & dosificación , Polifenoles/química , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/microbiología , Obesidad/dietoterapia , Ratones , Oligosacáridos/administración & dosificación , Oligosacáridos/farmacología , Masculino , Té/química , Humanos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/genética , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Camellia sinensis/química , Fibras de la Dieta/metabolismo , Fibras de la Dieta/farmacología , Oryza/química
18.
AMB Express ; 14(1): 83, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033088

RESUMEN

Bifidobacterium adolescentis gene BAD_1527 has previously been suggested to code for a ß-xylosidase (Kobayashi et al., Mar Drugs 18:174, 2020). Our detailed investigation of the substrate specificity of the GH43_22 protein using a wide spectrum of natural and artificial substrates showed that the enzyme hydrolyzed neither linear xylooligosaccharides nor glucuronoxylan. Xylose was released only from the artificial 4-nitrophenyl ß-D-xylopyranoside (1.58 mU/mg). The corresponding α-L-arabinofuranoside was by three orders of magnitude better substrate (2.17 U/mg). Arabinose was the only monosaccharide liberated from arabinoxylan and α-1,3- or α-1,2-singly arabinosylated xylooligosaccharides. Moreover, the enzyme efficiently debranched sugar beet arabinan and singly arabinosylated α-1,5-L-arabinooligosaccharides, although short linear α-1,5-L-arabinooligosaccharides were also slowly degraded. On the other hand, debranched arabinan, arabinogalactan as well as 2,3-doubly arabinosylated main chain residues of arabinan and arabinoxylan did not serve as substrates. Thus, the enzyme encoded by the BAD_1527 gene is a typical α-L-arabinofuranosidase of AXH-m specificity.

19.
Int J Biol Macromol ; 276(Pt 2): 133950, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029848

RESUMEN

On the basis of revealing the interaction mechanism between corn starch (CS) and water-extractable arabinoxylan (WEAX) with high/low molecular weight (H-WEAX, L-WEAX), the degree of gelatinization (DG) on structural behaviors and in vitro digestibility of CS-WEAX complexes (CS/H, CS/L) was evaluated. With the increased DG from 50 % to 95 %, the water adsorption capacity of CS/L was increased 64 %, 58 %, 47 %, which were higher than that of CS/H (39 %, 54 %, 33 %). The gelatinization of starch was inhibited by WEAX, resulting in the enhancement of crystallinity, short-range ordered structure and molecular size of CS-WEAX complexes. Stronger interaction was detected in CS/L than with CS/H as proved by the increased hydrogen bonds and electrostatic force. Complexes exhibited higher resistant starch content (RS) at diverse DG, especially for CS/L. Notability, RS content of samples with 50 % DG were increased from 27.72 % to 32.89 % (CS/H), 36.96 % (CS/L). Except for the reduction of gelatinization degree by adding WEAX, the other possible mechanisms of retarding digestibility were explained as the small steric hindrance of L-WEAX promoted encapsulation of starch granules, limiting enzyme accessibility. Additionally, the fragmentation of CS granules with high DG promoted the movement of H-WEAX, reducing the difference in digestibility compared to CS/L.


Asunto(s)
Almidón , Agua , Xilanos , Zea mays , Xilanos/química , Almidón/química , Zea mays/química , Agua/química , Digestión , Enlace de Hidrógeno , Peso Molecular , Gelatina/química , Hidrólisis
20.
Food Chem X ; 23: 101549, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39036482

RESUMEN

Solid-state fermentation (SSF) and extrusion are effective methods to improve the nutritional and sensory quality of rice bran. The effect of the processing sequence of SSF and extrusion and microbial strains on the quality of rice bran was studied. The results showed that the first SSF followed by extrusion increased the contents of phenolic, flavonoid and γ-oryzanol, but the color changed to brown. The first extrusion followed by SSF caused damage to bioactive components and antioxidant activity, but significantly increased the content of arabinoxylans. The difference between the two processing sequences may be related to the process time and the effect of substrate on microbial induction. Aspergillus oryzae and Neurospora sitophila were suitable for increasing the bioactive components of rice bran, while Lactiplantibacillus plantarum was suitable for increasing water-extractable arabinoxylan content. Different processing sequences and microbial strains have their advantages, and these results can provide reference for rice bran processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA