Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Addict Biol ; 28(11): e13343, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37855071

RESUMEN

Opioid use disorder (OUD) is a critical problem in China and is accompanied by depression and deficits in cognitive control. In China, the most successful intervention for OUD is the community drug rehabilitation where methadone maintenance treatment (MMT) plays a key role. Even though methadone for the treatment of OUD can be helpful, it can cause severe somatic side-effects, which limit its effectivity. Even worse, it can have detrimental effects on cognitive control, which is crucial to regain control over drug intake. Here, we consider the potential use of auricular transcutaneous vagus nerve stimulation (atVNS) as an addition to MMT for opioid withdrawal treatment. Compared to other non-invasive brain stimulation methods, atVNS also targets the locus coeruleus (LC) important for noradrenaline (NA) synthesis. NA is an essential neurotransmitter impacted in opioid withdrawal and also critically involved in cognitive control processes. Its ADD-ON to MMT might be a useful mean to improve mood and enhance cognitive control processes impacted in OUD. We discuss the translational advantages of atVNS in China such as the cultural acceptance of the modality of treatment similar to electroacupuncture. Additionally, the wearability of the ear electrode and at-home self-administration without intense medical supervision makes of atVNS a useful tool to enhance clinical and cognitive outcomes especially in everyday life situation. We discuss how atVNS can be integrated in tele-medical health approaches allowing that innovative treatments can widely be disseminated and continued even in situations of restricted medical access.


Asunto(s)
Trastornos Relacionados con Opioides , Estimulación del Nervio Vago , Humanos , Analgésicos Opioides/uso terapéutico , Estimulación del Nervio Vago/métodos , Trastornos Relacionados con Opioides/tratamiento farmacológico , China , Metadona/uso terapéutico
2.
J Neurosci ; 43(25): 4709-4724, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37221097

RESUMEN

Everyday tasks and goal-directed behavior involve the maintenance and continuous updating of information in working memory (WM). WM gating reflects switches between these two core states. Neurobiological considerations suggest that the catecholaminergic and the GABAergic are likely involved in these dynamics. Both of these neurotransmitter systems likely underlie the effects to auricular transcutaneous vagus nerve stimulation (atVNS). We examine the effects of atVNS on WM gating dynamics and their underlying neurophysiological and neurobiological processes in a randomized crossover study design in healthy humans of both sexes. We show that atVNS specifically modulates WM gate closing and thus specifically modulates neural mechanisms enabling the maintenance of information in WM. WM gate opening processes were not affected. atVNS modulates WM gate closing processes through the modulation of EEG alpha band activity. This was the case for clusters of activity in the EEG signal referring to stimulus information, motor response information, and fractions of information carrying stimulus-response mapping rules during WM gate closing. EEG-beamforming shows that modulations of activity in fronto-polar, orbital, and inferior parietal regions are associated with these effects. The data suggest that these effects are not because of modulations of the catecholaminergic (noradrenaline) system as indicated by lack of modulatory effects in pupil diameter dynamics, in the inter-relation of EEG and pupil diameter dynamics and saliva markers of noradrenaline activity. Considering other findings, it appears that a central effect of atVNS during cognitive processing refers to the stabilization of information in neural circuits, putatively mediated via the GABAergic system.SIGNIFICANCE STATEMENT Goal-directed behavior depends on how well information in short-term memory can be flexibly updated but also on how well it can be shielded from distraction. These two functions were guarded by a working memory gate. We show how an increasingly popular brain stimulation techniques specifically enhances the ability to close the working memory gate to shield information from distraction. We show what physiological and anatomic aspects underlie these effects.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Masculino , Femenino , Humanos , Memoria a Corto Plazo/fisiología , Estudios Cruzados , Norepinefrina
3.
J Clin Med ; 12(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769845

RESUMEN

Long COVID, the postviral disorder caused by COVID-19, is expected to become one of the leading causes of disability in Europe. The cognitive consequences of long COVID have been described as "brain fog" and characterized by anxiety and depression, and by cognitive deficits. Long COVID is assumed to be a complex condition arising from multiple causes, including persistent brainstem dysfunction and disrupted vagal signaling. We recommend the potential application of auricular transcutaneous vagus nerve stimulation (atVNS) as an ADD-ON instrument to compensate for the cognitive decline and to ameliorate affective symptoms caused by long COVID. This technique enhances vagal signaling by directly activating the nuclei in the brainstem, which are hypoactive in long COVID to enhance mood and to promote attention, memory, and cognitive control-factors affected by long COVID. Considering that atVNS is a non-pharmacological intervention, its ADD-ON to standard pharmaceutical agents will be useful for non-responders, making of this method a suitable tool. Given that atVNS can be employed as an ecological momentary intervention (EMI), we outline the translational advantages of atVNS in the context of accelerating the cognitive and affective recovery from long COVID.

4.
Addict Biol ; 27(5): e13202, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001426

RESUMEN

Alcohol use disorder (AUD) is a relapsing-remitting condition characterized by excessive and/or continued alcohol consumption despite harmful consequences. New adjuvant tools, such as noninvasive brain stimulation techniques, might be helpful additions to conventional treatment approaches or even provide an alternative option for patients who fail to respond adequately to other treatment options. Here, we discuss the potential use of auricular transcutaneous vagus nerve stimulation (atVNS) as an ADD-ON intervention in AUD. Compared with other techniques, atVNS has the advantage of directly stimulating nuclei that synthesize GABA and catecholamines, both of which are functionally altered by alcohol intake in AUD patients. Pharmacological options targeting those neurotransmitters are widely available, but have relatively limited beneficial effects on cognition, even though restoring normal cognitive functioning, especially cognitive control, is key to maintaining abstinence. Against this background, atVNS could be a particularly useful add-on because there is substantial meta-analytic evidence based on studies in healthy individuals that atVNS can enhance cognitive control processes that are crucial to regaining control over drug intake. We discuss essential future research on using atVNS as an ADD-ON intervention in AUD to enhance clinical and cognitive outcomes by providing a translational application. Given that this novel technique can be worn like an earpiece and can be employed without medical supervision/outside the clinical settings, atVNS could be well integratable into the daily life of the patients, where the task of regaining control over drug intake is most challenging.


Asunto(s)
Alcoholismo , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Consumo de Bebidas Alcohólicas , Alcoholismo/terapia , Humanos , Estimulación Eléctrica Transcutánea del Nervio/métodos , Nervio Vago/fisiología , Estimulación del Nervio Vago/métodos
5.
Neurosci Biobehav Rev ; 137: 104677, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461986

RESUMEN

Obsessive-compulsive disorder (OCD) and attention-deficit hyperactivity disorder (ADHD) are multi-faceted neuropsychiatric conditions that in many aspects appear to be each other's antipodes. We suggest a dimensional approach, according to which these partially opposing disorders fall onto a continuum that reflects variability regarding alterations of cortico-striato-thalamo-cortical (CSTC) circuits and of the processing of neural noise during cognition. By using theoretical accounts of human cognitive metacontrol, we develop a framework according to which OCD can be characterized by a chronic bias towards exaggerated cognitive persistence, equivalent to a high signal-to-noise ratio (SNR)-which facilitates perseverative behaviour but impairs mental flexibility. In contrast, ADHD is characterized by a chronic bias towards inflated cognitive flexibility, equivalent to a low SNR-which increases behavioural variability but impairs the focusing on one goal and on relevant information. We argue that, when pharmacology is not feasible, novel treatments of these disorders may involve methods to manipulate the signal-to-noise ratio via non-invasive brain stimulation techniques, in order to normalize the situational imbalance between cognitive persistence and cognitive flexibility.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Obsesivo Compulsivo , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Cognición , Humanos , Motivación , Neurobiología , Trastorno Obsesivo Compulsivo/diagnóstico
6.
Int J Neuropsychopharmacol ; 25(6): 457-467, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137108

RESUMEN

BACKGROUND: Pursuing goals is compromised when being confronted with interfering information. In such situations, conflict monitoring is important. Theoretical considerations on the neurobiology of response selection and control suggest that auricular transcutaneous vagus nerve stimulation (atVNS) should modulate conflict monitoring. However, the neurophysiological-functional neuroanatomical underpinnings are still not understood. METHODS: AtVNS was applied in a randomized crossover study design (n = 45). During atVNS or sham stimulation, conflict monitoring was assessed using a Flanker task. EEG data were recorded and analyzed with focus on theta and alpha band activity. Beamforming was applied to examine functional neuroanatomical correlates of atVNS-induced EEG modulations. Moreover, temporal EEG signal decomposition was applied to examine different coding levels in alpha and theta band activity. RESULTS: AtVNS compromised conflict monitoring processes when it was applied at the second appointment in the crossover study design. On a neurophysiological level, atVNS exerted specific effects because only alpha-band activity was modulated. Alpha-band activity was lower in middle and superior prefrontal regions during atVNS stimulation and thus lower when there was also a decline in task performance. The same direction of alpha-band modulations was evident in fractions of the alpha-band activity coding stimulus-related processes, stimulus-response translation processes, and motor response-related processes. CONCLUSIONS: The combination of prior task experience and atVNS compromises conflict monitoring processes. This is likely due to reduction of the alpha-band-associated inhibitory gating process on interfering information in frontal cortices. Future research should pay considerable attention to boundary conditions affecting the direction of atVNS effects.


Asunto(s)
Estimulación del Nervio Vago , Estudios Cruzados , Electroencefalografía , Lóbulo Frontal , Nervio Vago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA