Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Mov Disord ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360864

RESUMEN

Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Cell Regen ; 13(1): 21, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388038

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by massive neuronal loss in the brain. Both cortical glutamatergic neurons and basal forebrain cholinergic neurons (BFCNs) in the AD brain are selectively vulnerable. The degeneration and dysfunction of these two subtypes of neurons are closely associated with the cognitive decline of AD patients. The determination of cellular and molecular mechanisms involved in AD pathogenesis, especially in the early stage, will largely facilitate the understanding of this disease and the development of proper intervention strategies. However, due to the inaccessibility of living neurons in the brains of patients, it remains unclear how cortical glutamatergic neurons and BFCNs respond to pathological stress in the early stage of AD. In this study, we established in vitro differentiation systems that can efficiently differentiate patient-derived iPSCs into BFCNs. We found that AD-BFCNs secreted less Aß peptide than cortical glutamatergic neurons did, even though the Aß42/Aß40 ratio was comparable to that of cortical glutamatergic neurons. To further mimic the neurotoxic niche in AD brain, we treated iPSC-derived neurons with Aß42 oligomer (AßO). BFCNs are less sensitive to AßO induced tau phosphorylation and expression than cortical glutamatergic neurons. However, AßO could trigger apoptosis in both AD-cortical glutamatergic neurons and AD-BFCNs. In addition, AD iPSC-derived BFCNs and cortical glutamatergic neurons exhibited distinct electrophysiological firing patterns and elicited different responses to AßO treatment. These observations revealed that subtype-specific neurons display distinct neuropathological changes during the progression of AD, which might help to understand AD pathogenesis at the cellular level.

3.
Food Chem Toxicol ; 193: 114988, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251036

RESUMEN

Imidacloprid (IMI), the most widely used worldwide neonicotinoid biocide, produces cognitive disorders after repeated and single treatment. However, little was studied about the possible mechanisms that produce this effect. Cholinergic neurotransmission regulates cognitive function. Most cholinergic neuronal bodies are present in the basal forebrain (BF), regulating memory and learning process, and their dysfunction or loss produces cognition decline. BF SN56 cholinergic wild-type or acetylcholinesterase (AChE), ß-amyloid-precursor-protein (ßAPP), Tau, glycogen-synthase-kinase-3-beta (GSK3ß), beta-site-amyloid-precursor-protein-cleaving enzyme 1 (BACE1), and/or nuclear-factor-erythroid-2-related-factor-2 (NRF2) silenced cells were treated for 1 and 14 days with IMI (1 µM-800 µM) with or without recombinant heat-shock-protein-70 (rHSP70), recombinant proteasome 20S (rP20S) and with or without N-acetyl-cysteine (NAC) to determine the possible mechanisms that mediate this effect. IMI treatment for 1 and 14 days altered cholinergic transmission through AChE inhibition, and triggered cell death partially through oxidative stress generation, AChE-S overexpression, HSP70 downregulation, P20S inhibition, and Aß and Tau peptides accumulation. IMI produced oxidative stress through reactive oxygen species production and antioxidant NRF2 pathway downregulation, and induced Aß and Tau accumulation through BACE1, GSK3ß, HSP70, and P20S dysfunction. These results may assist in determining the mechanisms that produce cognitive dysfunction observed following IMI exposure and provide new therapeutic tools.

4.
Neurobiol Aging ; 144: 30-42, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265450

RESUMEN

Individuals with DS develop Alzheimer's disease (AD) neuropathology, including endosomal-lysosomal system abnormalities and degeneration of basal forebrain cholinergic neurons (BFCNs). We investigated whether maternal choline supplementation (MCS) affects early endosome pathology within BFCNs using the Ts65Dn mouse model of DS/AD. Ts65Dn and disomic (2N) offspring from dams administered MCS were analyzed for endosomal pathology at 3-4 months or 10-12 months. Morphometric analysis of early endosome phenotype was performed on individual BFCNs using Imaris. The effects of MCS on the endosomal interactome were interrogated by relative co-expression (RCE) analysis. MCS effectively reduced age- and genotype-associated increases in early endosome number in Ts65Dn and 2N offspring, and prevented increases in early endosome size in Ts65Dn offspring. RCE revealed a loss of interactome cooperativity among endosome genes in Ts65Dn offspring that was restored by MCS. These findings demonstrate MCS rescues early endosome pathology, a driver of septohippocampal circuit dysfunction. The genotype-independent benefits of MCS on endosomal phenotype indicate translational applicability as an early-life therapy for DS as well as other neurodevelopmental/neurodegenerative disorders involving endosomal pathology.

5.
Exp Neurol ; 382: 114969, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332798

RESUMEN

The sleep-wake cycle plays an influential role in the development and progression of repeat mild traumatic brain injury (RmTBI)-related pathology. Therefore, we first aimed to manipulate the sleep-wake cycle post-RmTBI using modafinil, a wake-promoting substance used for the treatment of narcolepsy. We hypothesized that modafinil would exacerbate RmTBI-induced deficits. Chronic behavioural analyses were completed along with a 27-plex serum cytokine array, metabolomic and proteomic analyses of cerebrospinal fluid (CSF), as well as immunohistochemical staining in structures important for sleep/wake cycles, to examine orexin, melanin-concentrating hormone, tyrosine hydroxylase, and choline acetyltransferase, in the lateral hypothalamus, locus coeruleus, and basal forebrain, respectively. Contrary to expectation, modafinil administration attenuated behavioural deficits, metabolomic changes, and neuropathological modifications. Therefore, the second aim was to determine if the beneficial effects of modafinil treatment were driven by the orexinergic system. The same experimental protocol was used; however, RmTBI rats received chronic orexin-A administration instead of modafinil. Orexin-A administration produced drastically different outcomes, exacerbating anxiety-related and motor deficits, while also significantly disrupting their metabolomic and neuropathological profiles. These results suggest that the beneficial effects of modafinil administration post-RmTBI, work independently of its wake-promoting properties, as activation of the orexinergic wake-promoting system with orexin-A was detrimental. Overall, these findings highlight the complexity of sleep-wake changes in the injured brain and showcase the potential of the arousal and sleep systems in its treatment.

6.
Antioxidants (Basel) ; 13(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39199230

RESUMEN

Vascular cognitive impairment and dementia (VCID) is the second leading cause of dementia. There is currently no effective treatment for VCID. Resveratrol (RSV) is considered an antioxidant; however, our group has observed pleiotropic effects in stroke paradigms, suggesting more effects may contribute to mechanistic changes beyond antioxidative properties. The main goal of this study was to investigate if administering RSV twice a week could alleviate cognitive declines following the induction of a VCID model. Additionally, our aim was to further describe whether this treatment regimen could decrease cell death in brain areas vulnerable to changes in cerebral blood flow, such as the hippocampus and medial septum. We hypothesized RSV treatments in a mouse model of gradual cerebral hypoperfusion protect against cognitive impairment. We utilized gradual bilateral common carotid artery stenosis (GBCCAS) via the surgical implantation of ameroid constrictor devices. RSV treatment was administered on the day of implantation and twice a week thereafter. Cerebral perfusion was measured by laser speckle contrast imaging, and cognitive functions, including the recognition memory, the spatial working memory, and associative learning, were assessed by novel object recognition (NOR), Y-maze testing, and contextual fear conditioning (CFC), respectively. RSV treatment did not alleviate cerebral perfusion deficits but mitigated cognitive deficits in CFC and NOR after GBCCAS. Despite these deficits, no hippocampal pathology was observed; however, cholinergic cell loss in the medial septum was significantly increased after GBCCAS. This cholinergic cell loss was mitigated by RSV. This study describes a novel mechanism by which chronic RSV treatments protect against a VCID-induced cognitive decline through the preservation of cholinergic cell viability to improve memory performance.

7.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131297

RESUMEN

Background: Deep brain stimulation (DBS), the direct electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine, is under consideration as a method to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. Objective: We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain. Methods: 2-photon imaging was combined with deep brain stimulation. Stimulating electrodes were implanted in the subpallidal basal forebrain, and the ipsilateral somatosensory cortex was imaged. Acetylcholine activity was determined using the GRABACh-3.0 muscarinic acetylcholine receptor sensor, and blood vessels were imaged with Texas red. Results: Experiments manipulating pulse train frequency demonstrated that integrated acetylcholine induced fluorescence was insensitive to frequency, and that peak levels were achieved with frequencies from 60 to 130 Hz. Altering pulse train length indicated that longer stimulation resulted in higher peaks and more activation with sublinear summation. The acetylcholinesterase inhibitor donepezil increased the peak response to 10s of stimulation at 60Hz, and the integrated response increased 57% with the 2 mg/kg dose, and 126% with the 4 mg/kg dose. Acetylcholine levels returned to baseline with a time constant of 14 to 18 seconds in all experiments. Conclusions: These data demonstrate that acetylcholine receptor activation is insensitive to frequency between 60 and 130 Hz. High peak responses are achieved with up to 900 pulses. Donepezil increases total acetylcholine receptor activation associated with DBS but did not change temporal kinetics. The long time constants observed in the cerebral cortex add to the evidence supporting volume in addition to synaptic transmission.

8.
Res Sq ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39149491

RESUMEN

Cholinergic projection neurons of the nucleus basalis and substantia innominata (NBM/SI) densely innervate the basolateral amygdala (BLA) and have been shown to contribute to the encoding of fundamental and life-threatening experiences. Given the vital importance of these circuits in the acquisition and retention of memories that are essential for survival in a changing environment, it is not surprising that the basic anatomical organization of the NBM/SI is well conserved across animal classes as diverse as teleost and mammal. What is not known is the extent to which the physiology and morphology of NBM/SI neurons have also been conserved. To address this issue, we made patch-clamp recordings from NBM/SI neurons in ex vivo slices of two widely divergent mammalian species, mouse and rhesus macaque, focusing our efforts on cholinergic neurons that project to the BLA. We then reconstructed most of these recorded neurons post hoc to characterize neuronal morphology. We found that rhesus macaque BLA-projecting cholinergic neurons were both more intrinsically excitable and less morphologically compact than their mouse homologs. Combining measurements of 18 physiological features and 13 morphological features, we illustrate the extent of the separation. Although macaque and mouse neurons both exhibited considerable within-group diversity and overlapped with each other on multiple individual metrics, a combined morpho-electric analysis demonstrates that they form two distinct neuronal classes. Given the shared purpose of the circuits in which these neurons participate, this finding raises questions about (and offers constraints on) how these distinct classes result in similar behavior.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39112615

RESUMEN

BACKGROUND: The nucleus basalis of Meynert (NBM) is known to play a crucial role in the development and pathogenesis of Alzheimer's Disease (AD), particularly the cholinergic system within the NBM. However, the relationship between synaptic loss in the NBM and the clinical profile of AD remains unclear. METHODS: In our study, we included 44 Aß-negative normal controls (CN) and 76 Aß-positive participants with cognitive impairment (CI). All participants underwent structural and diffusion magnetic resonance imaging (MRI), as well as positron emission tomography (PET) imaging to measure synaptic vesicle glycoprotein 2 A (SV2A) levels (Trial registration: NCT05623124. Registered 21 November 2022). The SV2A standardized uptake value ratios (SUVR) distribution in the NBM of CN participants was used as the reference norm. We investigated the association between NBM synaptic density and clinical performance, traditional AD biomarkers, and white matter tracts that passed the NBM. RESULTS: Participants with cognitive impairment (CI) who had NBM synaptic density below 1.5 standard deviations (SD) or 0.5 SD of the norm exhibited worse cognitive performance compared to cognitively normal (CN) individuals. Crucially, the extent of deviation in synaptic density from the norm was directly proportional to the severity of cognitive impairment and neurodegeneration biomarkers. Furthermore, among patients with cognitive impairment, synaptic loss in the NBM was associated with potential impairment in the density and organization of neurites within the white matter tracts connected to the NBM. Finally, neurite density index in the medial tracts may play a mediating role in the relationship between NBM synaptic density and MMSE scores. CONCLUSION: The extent that synaptic density in NBM deviated from the norm suggested the extent of worse cognitive performance and severe neurodegeneration. Furthermore, cognitive impairment associated with synaptic loss in the NBM may be mediated by its pathological impact on NBM white matter tracts.

10.
Alzheimers Res Ther ; 16(1): 185, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148136

RESUMEN

BACKGROUND: The cholinergic neurotransmitter system is crucial to cognitive function, with the basal forebrain (BF) being particularly susceptible to Alzheimer's disease (AD) pathology. However, the interaction of white matter hyperintensities (WMH) in cholinergic pathways and BF atrophy without amyloid pathology remains poorly understood. METHODS: We enrolled patients who underwent neuropsychological tests, magnetic resonance imaging, and 18F-florbetaben positron emission tomography due to cognitive impairment at the teaching university hospital from 2015 to 2022. Among these, we selected patients with negative amyloid scans and additionally excluded those with Parkinson's dementia that may be accompanied by BF atrophy. The WMH burden of cholinergic pathways was quantified by the Cholinergic Pathways Hyperintensities Scale (CHIPS) score, and categorized into tertile groups because the CHIPS score did not meet normal distribution. Segmentation of the BF on volumetric T1-weighted MRI was performed using FreeSurfer, then was normalized for total intracranial volume. Multivariable regression analysis was performed to investigate the association between BF volumes and CHIPS scores. RESULTS: A total of 187 patients were enrolled. The median CHIPS score was 12 [IQR 5.0; 24.0]. The BF volume of the highest CHIPS tertile group (mean ± SD, 3.51 ± 0.49, CHIPSt3) was significantly decreased than those of the lower CHIPS tertile groups (3.75 ± 0.53, CHIPSt2; 3.83 ± 0.53, CHIPSt1; P = 0.02). In the univariable regression analysis, factors showing significant associations with the BF volume were the CHIPSt3 group, age, female, education, diabetes mellitus, smoking, previous stroke history, periventricular WMH, and cerebral microbleeds. In multivariable regression analysis, the CHIPSt3 group (standardized beta [ßstd] = -0.25, P = 0.01), female (ßstd = 0.20, P = 0.04), and diabetes mellitus (ßstd = -0.22, P < 0.01) showed a significant association with the BF volume. Sensitivity analyses showed a negative correlation between CHIPS score and normalized BF volume, regardless of WMH severity. CONCLUSIONS: We identified a significant correlation between strategic WMH burden in the cholinergic pathway and BF atrophy independently of amyloid positivity and WMH severity. These results suggest a mechanism of cholinergic neuronal loss through the dying-back phenomenon and provide a rationale that strategic WMH assessment may help identify target groups that may benefit from acetylcholinesterase inhibitor treatment.


Asunto(s)
Prosencéfalo Basal , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Sustancia Blanca , Humanos , Femenino , Masculino , Anciano , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Prosencéfalo Basal/diagnóstico por imagen , Prosencéfalo Basal/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Atrofia/patología , Anciano de 80 o más Años
11.
Foods ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39123618

RESUMEN

Chlorpyrifos (CPF) biocide, exposure to which is mainly produced in the human population through diet, induces several neurotoxic effects. CPF single and repeated exposure induces memory and learning disorders, although the mechanisms that produce these outcomes are complex and not well understood. CPF treatment (single and repeated) of cholinergic septal SN56 cells induced an increase in phosphorylated-P38α levels that led to WNT/ß-Catenin and NGF/P75NTR/TrkA pathways disruption and cell death. These results provide new knowledge on the mechanisms that mediate CPF basal forebrain cholinergic neuronal loss induced by CPF single and repeated exposure and can help unravel the way through which this compound produces cognitive decline and develop efficient treatments against these effects.

12.
Front Cell Neurosci ; 18: 1426153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049824

RESUMEN

Cholinergic cells have been proposed to innervate simultaneously those cortical areas that are mutually interconnected with each other. To test this hypothesis, we investigated the cholinergic innervation of functionally linked amygdala and prefrontal cortical regions. First, using tracing experiments, we determined that cholinergic cells located in distinct basal forebrain (BF) areas projected to the different nuclei of the basolateral amygdala (BLA). Specifically, cholinergic cells in the ventral pallidum/substantia innominata (VP/SI) innervated the basal nucleus (BA), while the horizontal limb of the diagonal band of Broca (HDB) projected to its basomedial nucleus (BMA). In addition, cholinergic neurons in these two BF areas gave rise to overlapping innervation in the medial prefrontal cortex (mPFC), yet their axons segregated in the dorsal and ventral regions of the PFC. Using retrograde-anterograde viral tracing, we demonstrated that a portion of mPFC-projecting cholinergic neurons also innervated the BLA, especially the BA. By injecting retrograde tracers into the mPFC and BA, we found that 28% of retrogradely labeled cholinergic cells were double labeled, which typically located in the VP/SI. In addition, we found that vesicular glutamate transporter type 3 (VGLUT3)-expressing neurons within the VP/SI were also cholinergic and projected to the mPFC and BA, implicating that a part of the cholinergic afferents may release glutamate. In contrast, we uncovered that GABA is unlikely to be a co-transmitter molecule in HDB and VP/SI cholinergic neurons in adult mice. The dual innervation strategy, i.e., the existence of cholinergic cell populations with single as well as simultaneous projections to the BLA and mPFC, provides the possibility for both synchronous and independent control of the operation in these cortical areas, a structural arrangement that may maximize computational support for functionally linked regions. The presence of VGLUT3 in a portion of cholinergic afferents suggests more complex functional effects of cholinergic system in cortical structures.

13.
BMC Neurosci ; 25(1): 34, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039434

RESUMEN

The regulation of circadian rhythms and the sleep-wake states involves in multiple neural circuits. The suprachiasmatic nucleus (SCN) is a circadian pacemaker that controls the rhythmic oscillation of mammalian behaviors. The basal forebrain (BF) is a critical brain region of sleep-wake regulation, which is the downstream of the SCN. Retrograde tracing of cholera toxin subunit B showed a direct projection from the SCN to the horizontal limbs of diagonal band (HDB), a subregion of the BF. However, the underlying function of the SCN-HDB pathway remains poorly understood. Herein, activation of this pathway significantly increased non-rapid eye movement (NREM) sleep during the dark phase by using optogenetic recordings. Moreover, activation of this pathway significantly induced NREM sleep during the dark phase for first 4 h by using chemogenetic methods. Taken together, these findings reveal that the SCN-HDB pathway participates in NREM sleep regulation and provides direct evidence of a novel SCN-related pathway involved in sleep-wake states regulation.


Asunto(s)
Vías Eferentes , Optogenética , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/fisiología , Masculino , Ratones , Vías Eferentes/fisiología , Ratones Endogámicos C57BL , Fases del Sueño/fisiología , Prosencéfalo Basal/fisiología , Ritmo Circadiano/fisiología , Electroencefalografía
14.
Brain Commun ; 6(4): fcae204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978722

RESUMEN

Cholinergic innervation in the brain is involved in modulating neurovascular function including cerebral blood flow haemodynamics in response to neuronal activity. Cholinergic deficit is associated with pathophysiology in Alzheimer's disease, albeit the aetiology remains to be clarified. In the current study, neocortex cerebral blood flow response to acetylcholine was evaluated by Laser-Doppler Flowmetry (LDF) in 3xTgAD Alzheimer's disease model) and wild-type mice of two age groups. The peak of cerebral blood flow to acetylcholine (i.v.) from baseline levels (% ΔrCBF) was higher in young 3xTgAD versus in wild-type mice (48.35; 95% CI:27.03-69.67 versus 22.70; CI:15.5-29.91, P < 0.05); this was reversed in old 3xTgAD mice (21.44; CI:2.52-40.35 versus 23.25; CI:23.25-39). Choline acetyltransferase protein was reduced in neocortex, while cerebrovascular reactivity to acetylcholine was preserved in young 3×TgAD mice. This suggests endogenous acetylcholine deficit and possible cholinergic denervation from selected cholinergic nuclei within the basal forebrain. The early deposition of tauopathy moieties (mutant hTau and pTau181) and its coincidence in cholinergic cell clusters (occasionaly), were observed at the basal forebrain of 3xTgAD mice including substantia innominate, nucleus Basalis of Meynert and nucleus of horizontal limb diagonal band of Broca. A prominent feature was microglia interacting tauopathy and demonstrated a variety of morphology changes particularly when located in proximity to tauopathy. The microglia ramified phenotype was reduced as evaluated by the ramification index and Fractal analysis. Increased microglia senescence, identified as SASP (senescence-associated secretory phenotype), was colocalization with p16Ink4ɑ, a marker of irreversible cell-cycle arrest in old 3xTgAD versus wild-type mice (P = 0.001). The p16Ink4ɑ was also observed in neuronal cells bearing tauopathy within the basal forebrain of 3xTgAD mice. TNF-ɑ, the pro-inflammatory cytokine elevated persistently in microglia (Pearson's correlation coefficient = 0.62) and the loss of cholinergic cells in vulnerable basal forebrain environment, was indicated by image analysis in 3xTgAD mice, which linked to the cholinergic deficits in neocortex rCBF haemodynamics. Our study revealed the early change of CBF haemodynamics to acetylcholine in 3xTgAD model. As a major effector of brain innate immune activation, microglia SASP with age-related disease progression is indicative of immune cell senescence, which contributes to chronic inflammation and cholinergic deficits at the basal forebrain. Targeting neuroinflammation and senescence may mitigate cholinergic pathophysiology in Alzheimer's disease.

15.
Neuropeptides ; 107: 102449, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38908356

RESUMEN

Previous research has demonstrated that basal forebrain (BF) regulates arousal during propofol anesthesia. However, as the BF comprises cholinergic neurons alongside two other types of neurons, the specific role of cholinergic neurons has not been definitively elucidated. In our study, calcium signal imaging was utilized to monitor the real-time activities of cholinergic neurons in the BF during propofol anesthesia. Additionally, we selectively stimulated these neurons to investigate EEG and behavioral responses during propofol anesthesia. Furthermore, we specifically lesioned cholinergic neurons in the BF to investigate the sensitivity to propofol and the induction time. The results revealed that propofol suppressed calcium signals of cholinergic neurons within the BF following intraperitoneal injection. Notably, upon recovery of the righting reflex, the calcium signals partially recovered. Spectral analysis of the EEG elucidated that optical stimulation of cholinergic neurons led to a decrease in δ power underlie propofol anesthesia. Conversely, depletion of cholinergic neurons in the BF enhanced sensitivity to propofol and shortened the induction time. These findings clarify the role of cholinergic neurons in the anesthesia-arousal process, as well as the depth and the sensitivity of propofol anesthesia.


Asunto(s)
Anestésicos Intravenosos , Prosencéfalo Basal , Neuronas Colinérgicas , Propofol , Propofol/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Animales , Prosencéfalo Basal/efectos de los fármacos , Prosencéfalo Basal/metabolismo , Masculino , Anestésicos Intravenosos/farmacología , Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Electroencefalografía , Anestesia , Ratones
16.
Cells ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891027

RESUMEN

Sleep disruption is a frequent problem of advancing age, often accompanied by low-grade chronic central and peripheral inflammation. We examined whether chronic neuroinflammation in the preoptic and basal forebrain area (POA-BF), a critical sleep-wake regulatory structure, contributes to this disruption. We developed a targeted viral vector designed to overexpress tumor necrosis factor-alpha (TNFα), specifically in astrocytes (AAV5-GFAP-TNFα-mCherry), and injected it into the POA of young mice to induce heightened neuroinflammation within the POA-BF. Compared to the control (treated with AAV5-GFAP-mCherry), mice with astrocytic TNFα overproduction within the POA-BF exhibited signs of increased microglia activation, indicating a heightened local inflammatory milieu. These mice also exhibited aging-like changes in sleep-wake organization and physical performance, including (a) impaired sleep-wake functions characterized by disruptions in sleep and waking during light and dark phases, respectively, and a reduced ability to compensate for sleep loss; (b) dysfunctional VLPO sleep-active neurons, indicated by fewer neurons expressing c-fos after suvorexant-induced sleep; and (c) compromised physical performance as demonstrated by a decline in grip strength. These findings suggest that inflammation-induced dysfunction of sleep- and wake-regulatory mechanisms within the POA-BF may be a critical component of sleep-wake disturbances in aging.


Asunto(s)
Envejecimiento , Astrocitos , Prosencéfalo Basal , Área Preóptica , Sueño , Factor de Necrosis Tumoral alfa , Animales , Astrocitos/metabolismo , Astrocitos/patología , Envejecimiento/metabolismo , Área Preóptica/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Sueño/fisiología , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patología , Vigilia , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Trastornos del Sueño-Vigilia/metabolismo , Trastornos del Sueño-Vigilia/patología
17.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891978

RESUMEN

Binge alcohol consumption during adolescence can produce lasting deficits in learning and memory while also increasing the susceptibility to substance use disorders. The adolescent intermittent ethanol (AIE) rodent model mimics human adolescent binge drinking and has identified the nucleus basalis magnocellularis (NbM) as a key site of pathology. The NbM is a critical regulator of prefrontal cortical (PFC) cholinergic function and attention. The cholinergic phenotype is controlled pro/mature neurotrophin receptor activation. We sought to determine if p75NTR activity contributes to the loss of cholinergic phenotype in AIE by using a p75NTR modulator (LM11A-31) to inhibit prodegenerative signaling during ethanol exposure. Male and female rats underwent 5 g/kg ethanol (AIE) or water (CON) exposure following 2-day-on 2-day-off cycles from postnatal day 25-57. A subset of these groups also received a protective dose of LM11A-31 (50 mg/kg) during adolescence. Rats were trained on a sustained attention task (SAT) and behaviorally relevant acetylcholine (ACh) activity was recorded in the PFC with a fluorescent indicator (AChGRAB 3.0). AIE produced learning deficits on the SAT, which were spared with LM11A-31. In addition, PFC ACh activity was blunted by AIE, which LM11A-31 corrected. Investigation of NbM ChAT+ and TrkA+ neuronal expression found that AIE led to a reduction of ChAT+TrkA+ neurons, which again LM11A-31 protected. Taken together, these findings demonstrate the p75NTR activity during AIE treatment is a key regulator of cholinergic degeneration.


Asunto(s)
Acetilcolina , Neuronas Colinérgicas , Etanol , Corteza Prefrontal , Animales , Femenino , Masculino , Ratas , Acetilcolina/metabolismo , Atrofia , Conducta Animal/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Modelos Animales de Enfermedad , Etanol/toxicidad , Proteínas del Tejido Nervioso , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento , Receptores de Factor de Crecimiento Nervioso/metabolismo
18.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38755010

RESUMEN

Cholinergic neurons of the basal forebrain represent the main source of cholinergic innervation of large parts of the neocortex and are involved in adults in the modulation of attention, memory, and arousal. During the first postnatal days, they play a crucial role in the development of cortical neurons and cortical cytoarchitecture. However, their characteristics, during this period have not been studied. To understand how they can fulfill this role, we investigated the morphological and electrophysiological maturation of cholinergic neurons of the substantia innominata-nucleus basalis of Meynert (SI/NBM) complex in the perinatal period in mice. We show that cholinergic neurons, whether or not they express gamma-aminobutyric acid (GABA) as a cotransmitter, are already functional at Embryonic Day 18. Until the end of the first postnatal week, they constitute a single population of neurons with a well developed dendritic tree, a spontaneous activity including bursting periods, and a short-latency response to depolarizations (early-firing). They are excited by both their GABAergic and glutamatergic afferents. During the second postnatal week, a second, less excitable, neuronal population emerges, with a longer delay response to depolarizations (late-firing), together with the hyperpolarizing action of GABAA receptor-mediated currents. This classification into early-firing (40%) and late-firing (60%) neurons is again independent of the coexpression of GABAergic markers. These results strongly suggest that during the first postnatal week, the specific properties of developing SI/NBM cholinergic neurons allow them to spontaneously release acetylcholine (ACh), or ACh and GABA, into the developing cortex.


Asunto(s)
Prosencéfalo Basal , Neuronas Colinérgicas , Ácido gamma-Aminobutírico , Animales , Neuronas Colinérgicas/fisiología , Neuronas Colinérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Prosencéfalo Basal/fisiología , Prosencéfalo Basal/metabolismo , Animales Recién Nacidos , Ratones Endogámicos C57BL , Femenino , Núcleo Basal de Meynert/fisiología , Núcleo Basal de Meynert/metabolismo , Sustancia Innominada/fisiología , Sustancia Innominada/metabolismo , Ratones , Receptores de GABA-A/metabolismo , Potenciales de Acción/fisiología , Técnicas de Placa-Clamp , Ácido Glutámico/metabolismo
19.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798371

RESUMEN

Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded the dynamics of prefrontal NE and ACh in mice performing an inhibitory control task. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Chemogenetic inhibition of locus coeruleus (LC) neurons that project to the basal forebrain region reduced inhibitory control performance to chance levels. However, this manipulation did not diminish the difference in NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between the successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair the inhibitory control performance, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the prefrontal cortex with and without inhibiting LC neurons that project to the basal forebrain during inhibitory control. The LC inhibition reduced the number of prefrontal neurons encoding inhibitory control. Demixed principal component analysis (dPCA) further revealed that population firing patterns representing inhibitory control were impaired by the LC inhibition. Disparities in NE-ACh phase synchrony relevant to inhibitory control occurred only in the prefrontal cortex, but not in the parietal cortex, somatosensory cortex, and the somatosensory thalamus. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further revealed that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.

20.
Biochem Pharmacol ; 224: 116201, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38608783

RESUMEN

Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.


Asunto(s)
Neuronas Colinérgicas , Colon , Histamina , Permeabilidad , Ratas Sprague-Dawley , Receptor de Adenosina A2B , Nervio Vago , Animales , Histamina/metabolismo , Histamina/farmacología , Ratas , Masculino , Receptor de Adenosina A2B/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Nervio Vago/metabolismo , Colon/metabolismo , Colon/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA