Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neural Eng ; 21(4)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959877

RESUMEN

Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.


Asunto(s)
Amígdala del Cerebelo , Brazo , Ritmo beta , Desempeño Psicomotor , Humanos , Amígdala del Cerebelo/fisiología , Masculino , Femenino , Adulto , Ritmo beta/fisiología , Desempeño Psicomotor/fisiología , Brazo/fisiología , Adulto Joven , Movimiento/fisiología , Persona de Mediana Edad , Epilepsia Refractaria/fisiopatología , Electroencefalografía/métodos
2.
J Neural Eng ; 21(4)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914073

RESUMEN

Objective.Can we classify movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between 'Go' and 'No-go' trials in a Go/No-go arm-reaching task.Approach.Our approach centers on capturing the modulation of beta-band (13-30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a 'center-out' Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between 'Go' and 'No-go' trials. The accuracy of five different discriminant functions was evaluated using cross-validation.Main results.The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants.Significance.This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain-computer interface applications.


Asunto(s)
Brazo , Ritmo beta , Hipocampo , Humanos , Hipocampo/fisiología , Femenino , Ritmo beta/fisiología , Masculino , Adulto , Brazo/fisiología , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Electroencefalografía/métodos , Electroencefalografía/clasificación , Análisis de Componente Principal , Adulto Joven , Reproducibilidad de los Resultados , Persona de Mediana Edad
3.
Neuroimage ; 264: 119749, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379420

RESUMEN

PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.


Asunto(s)
Mapeo Encefálico , Comprensión , Adulto , Humanos , Mapeo Encefálico/métodos , Comprensión/fisiología , Magnetoencefalografía , Imagen por Resonancia Magnética , Lóbulo Temporal
4.
Brain Lang ; 231: 105139, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35687945

RESUMEN

Code-switching, i.e. the alternation between languages in a conversation, is a typical, yet socially-constrained practice in bilingual communities. For instance, code-switching is permissible only when other conversation partners are fluent in both languages. Studying code-switching provides insight in the cognitive and neural mechanisms underlying language control, and their modulation by linguistic and non-linguistic factors. Using time-frequency representations, we analyzed brain oscillation changes in EEG data recorded in a prior study (Kaan et al., 2020). In this study, Spanish-English bilinguals read sentences with and without switches in the presence of a bilingual or monolingual partner. Consistent with prior studies, code-switches were associated with a power decrease in the lower beta band (15-18 Hz). In addition, code-switches were associated with a power decrease in the upper gamma band (40-50 Hz), but only when a bilingual partner was present, suggesting the semantic/pragmatic processing of code-switches differs depending on who is present.


Asunto(s)
Multilingüismo , Encéfalo/fisiología , Humanos , Lenguaje , Lingüística , Lectura
5.
Front Neurol ; 13: 819603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418932

RESUMEN

Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.

6.
Front Physiol ; 12: 624317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889086

RESUMEN

BACKGROUND: Abnormal synchronization of neuronal activity in dopaminergic circuits is related to motor impairment in Parkinson's disease (PD). Vibrotactile coordinated reset (vCR) fingertip stimulation aims to counteract excessive synchronization and induce sustained unlearning of pathologic synaptic connectivity and neuronal synchrony. Here, we report two clinical feasibility studies that examine the effect of regular and noisy vCR stimulation on PD motor symptoms. Additionally, in one clinical study (study 1), we examine cortical beta band power changes in the sensorimotor cortex. Lastly, we compare these clinical results in relation to our computational findings. METHODS: Study 1 examines six PD patients receiving noisy vCR stimulation and their cortical beta power changes after 3 months of daily therapy. Motor evaluations and at-rest electroencephalographic (EEG) recordings were assessed off medication pre- and post-noisy vCR. Study 2 follows three patients for 6+ months, two of whom received daily regular vCR and one patient from study 1 who received daily noisy vCR. Motor evaluations were taken at baseline, and follow-up visits were done approximately every 3 months. Computationally, in a network of leaky integrate-and-fire (LIF) neurons with spike timing-dependent plasticity, we study the differences between regular and noisy vCR by using a stimulus model that reproduces experimentally observed central neuronal phase locking. RESULTS: Clinically, in both studies, we observed significantly improved motor ability. EEG recordings observed from study 1 indicated a significant decrease in off-medication cortical sensorimotor high beta power (21-30 Hz) at rest after 3 months of daily noisy vCR therapy. Computationally, vCR and noisy vCR cause comparable parameter-robust long-lasting synaptic decoupling and neuronal desynchronization. CONCLUSION: In these feasibility studies of eight PD patients, regular vCR and noisy vCR were well tolerated, produced no side effects, and delivered sustained cumulative improvement of motor performance, which is congruent with our computational findings. In study 1, reduction of high beta band power over the sensorimotor cortex may suggest noisy vCR is effectively modulating the beta band at the cortical level, which may play a role in improved motor ability. These encouraging therapeutic results enable us to properly plan a proof-of-concept study.

7.
Neurobiol Dis ; 154: 105348, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33781923

RESUMEN

The availability of enticing sweet, fatty tastes is prevalent in the modern diet and contribute to overeating and obesity. In animal models, the subthalamic area plays a role in mediating appetitive and consummatory feeding behaviors, however, its role in human feeding is unknown. We used intraoperative, subthalamic field potential recordings while participants (n = 5) engaged in a task designed to provoke responses of taste anticipation and receipt. Decreased subthalamic beta-band (15-30 Hz) power responses were observed for both sweet-fat and neutral tastes. Anticipatory responses to taste-neutral cues started with an immediate decrease in beta-band power from baseline followed by an early beta-band rebound above baseline. On the contrary, anticipatory responses to sweet-fat were characterized by a greater and sustained decrease in beta-band power. These activity patterns were topographically specific to the subthalamic nucleus and substantia nigra. Further, a neural network trained on this beta-band power signal accurately predicted (AUC ≥ 74%) single trials corresponding to either taste. Finally, the magnitude of the beta-band rebound for a neutral taste was associated with increased body mass index after starting deep brain stimulation therapy. We provide preliminary evidence of discriminatory taste encoding within the subthalamic area associated with control mechanisms that mediate appetitive and consummatory behaviors.


Asunto(s)
Anticipación Psicológica/fisiología , Ritmo beta/fisiología , Enfermedad de Parkinson/psicología , Núcleo Subtalámico/fisiología , Percepción del Gusto/fisiología , Aumento de Peso/fisiología , Anciano , Señales (Psicología) , Estimulación Encefálica Profunda/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/terapia , Estimulación Luminosa/métodos , Gusto/fisiología
8.
J Affect Disord ; 265: 416-422, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090768

RESUMEN

BACKGROUND: Quality of life is severely impaired in patients with depressive disorders. Previous studies have focused on biomarkers predicting depressive symptomatology; however, studies investigating biomarkers predicting quality of life outcomes are limited. Improving quality of life is important because it is related not only to mental health but also to physical health. We need to develop a biomarker related to quality of life as a therapeutic target for patients with depressive disorders. Resting-state electroencephalography (EEG) is easy to record in clinical settings. The index of bandwidth spectral power predicts treatment response in depressive disorders and thus may be a candidate biomarker. However, no longitudinal studies have investigated whether EEG-recorded power could predict quality of life outcomes in patients with depressive disorders. METHODS: The resting-state EEG-recorded bandwidth spectral power at baseline and the World Health Organization Quality of Life (QOL)-26 scores at 3-year follow-up were measured in 44 patients with depressive disorders. RESULTS: The high beta band power (20-30 Hz) at baseline significantly predicted QOL at the 3-year follow-up after considering depressive symptoms and medication effects in a longitudinal investigation in patients with depressive disorders (ß = 0.38, p = 0.01). LIMITATIONS: We did not have healthy subjects as a comparison group in this study. CONCLUSIONS: Our findings suggest that resting-state beta activity has the potential to be a useful biomarker for predicting future quality of life outcomes in patients with depressive disorders.


Asunto(s)
Trastorno Depresivo , Calidad de Vida , Biomarcadores , Electroencefalografía , Humanos
9.
J Neurophysiol ; 122(5): 2156-2172, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553682

RESUMEN

Whereas numerous motor control theories describe the control of arm trajectory during reach, the control of stabilization in a constant arm position (i.e., visuomotor control of arm posture) is less clear. Three potential mechanisms have been proposed for visuomotor control of arm posture: 1) increased impedance of the arm through co-contraction of antagonistic muscles, 2) corrective muscle activity via spinal/supraspinal reflex circuits, and/or 3) intermittent voluntary corrections to errors in position. We examined the cortical mechanisms of visuomotor control of arm posture and tested the hypothesis that cortical error networks contribute to arm stabilization. We collected electroencephalography (EEG) data from 10 young healthy participants across four experimental planar movement tasks. We examined brain activity associated with intermittent voluntary corrections of position error and antagonist co-contraction during stabilization. EEG beta-band (13-26 Hz) power fluctuations were used as indicators of brain activity, and coherence between EEG electrodes was used as a measure of functional connectivity between brain regions. Cortical activity in the sensory, motor, and visual areas during arm stabilization was similar to activity during volitional arm movements and was larger than activity during co-contraction of the arm. However, cortical connectivity between the sensorimotor and visual regions was higher during arm stabilization compared with volitional arm movements and co-contraction of the arm. The difference in cortical activity and connectivity between tasks might be attributed to an underlying visuomotor error network used to update motor commands for visuomotor control of arm posture.NEW & NOTEWORTHY We examined cortical activity and connectivity during control of stabilization in a constant arm position (i.e., visuomotor control of arm posture). Our findings provide evidence for cortical involvement during control of stabilization in a constant arm position. A visuomotor error network appears to be active and may update motor commands for visuomotor control of arm posture.


Asunto(s)
Brazo/fisiología , Desempeño Psicomotor , Corteza Sensoriomotora/fisiología , Adulto , Ritmo beta , Femenino , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/fisiología
10.
Front Psychol ; 8: 1991, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29184523

RESUMEN

The question of whether background music is able to enhance cognitive task performance is of interest to scholars, educators, and stakeholders in business alike. Studies have shown that background music can have beneficial, detrimental or no effects on cognitive task performance. Extraversion-and its postulated underlying cause, cortical arousal-is regarded as an important factor influencing the outcome of such studies. According to Eysenck's theory of personality, extraverts' cortical arousal at rest is lower compared to that of introverts. Scholars have thus hypothesized that extraverts should benefit from background music in cognitive tasks, whereas introverts' performance should decline with music in the background. Reviewing studies that have considered extraversion as a mediator of the effect of background music on cognitive task performance, it is demonstrated that there is as much evidence in favor as there is against Eysenck's theory of personality. Further, revisiting Eysenck's concept of cortical arousal-which has traditionally been assessed by activity in the EEG alpha band-and reviewing literature on the link between extraversion and cortical arousal, it is revealed that there is conflicting evidence. Due to Eysenck's focus on alpha power, scholars have largely neglected higher frequency bands in the EEG signal as indicators of cortical arousal. Based on recent findings, it is suggested that beta power might not only be an indicator of alertness and attention but also a predictor of cognitive task performance. In conclusion, it is proposed that focused music listening prior to cognitive tasks might be a more efficient way to boost performance than listening to background music during cognitive tasks.

11.
Neuroimage ; 128: 293-301, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26780574

RESUMEN

While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework.


Asunto(s)
Encéfalo/fisiología , Lingüística , Percepción del Habla/fisiología , Estimulación Acústica , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Procesamiento de Señales Asistido por Computador , Adulto Joven
12.
Neuroimage ; 114: 88-104, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25862265

RESUMEN

Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía/métodos , Meditación , Modelos Neurológicos , Tálamo/fisiología , Adulto , Ritmo alfa , Ritmo beta , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología
13.
J Neurophysiol ; 113(7): 2342-50, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25568160

RESUMEN

The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept.


Asunto(s)
Percepción Auditiva/fisiología , Ritmo beta/fisiología , Corteza Cerebral/fisiología , Ilusiones/fisiología , Percepción del Habla/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA