Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.125
Filtrar
1.
Sci Rep ; 14(1): 15844, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982309

RESUMEN

Predicting the blood-brain barrier (BBB) permeability of small-molecule compounds using a novel artificial intelligence platform is necessary for drug discovery. Machine learning and a large language model on artificial intelligence (AI) tools improve the accuracy and shorten the time for new drug development. The primary goal of this research is to develop artificial intelligence (AI) computing models and novel deep learning architectures capable of predicting whether molecules can permeate the human blood-brain barrier (BBB). The in silico (computational) and in vitro (experimental) results were validated by the Natural Products Research Laboratories (NPRL) at China Medical University Hospital (CMUH). The transformer-based MegaMolBART was used as the simplified molecular input line entry system (SMILES) encoder with an XGBoost classifier as an in silico method to check if a molecule could cross through the BBB. We used Morgan or Circular fingerprints to apply the Morgan algorithm to a set of atomic invariants as a baseline encoder also with an XGBoost classifier to compare the results. BBB permeability was assessed in vitro using three-dimensional (3D) human BBB spheroids (human brain microvascular endothelial cells, brain vascular pericytes, and astrocytes). Using multiple BBB databases, the results of the final in silico transformer and XGBoost model achieved an area under the receiver operating characteristic curve of 0.88 on the held-out test dataset. Temozolomide (TMZ) and 21 randomly selected BBB permeable compounds (Pred scores = 1, indicating BBB-permeable) from the NPRL penetrated human BBB spheroid cells. No evidence suggests that ferulic acid or five BBB-impermeable compounds (Pred scores < 1.29423E-05, which designate compounds that pass through the human BBB) can pass through the spheroid cells of the BBB. Our validation of in vitro experiments indicated that the in silico prediction of small-molecule permeation in the BBB model is accurate. Transformer-based models like MegaMolBART, leveraging the SMILES representations of molecules, show great promise for applications in new drug discovery. These models have the potential to accelerate the development of novel targeted treatments for disorders of the central nervous system.


Asunto(s)
Barrera Hematoencefálica , Aprendizaje Automático , Permeabilidad , Barrera Hematoencefálica/metabolismo , Humanos , Células Endoteliales/metabolismo , Simulación por Computador , Descubrimiento de Drogas/métodos
2.
FASEB J ; 38(13): e23790, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38982638

RESUMEN

Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1ß, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.


Asunto(s)
Barrera Hematoencefálica , Compuestos Heterocíclicos con 3 Anillos , Oxazinas , Piperazinas , Piridonas , Animales , Ratones , Piperazinas/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Oxazinas/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Ratones Endogámicos C57BL , Femenino , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/efectos adversos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Masculino , Antirretrovirales/efectos adversos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
3.
Endocrinology ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984714

RESUMEN

The blood-brain barrier (BBB) is an extensive capillary network that protects the brain from environmental and metabolic toxins while limiting drug delivery to the central nervous system (CNS). The ATP-Binding Cassette (ABC) transporter Breast cancer resistance protein (Bcrp) reduces drug delivery across the BBB by actively transporting its clinical substrates back into peripheral circulation before their entry into the CNS compartment. 17ß-estradiol (E2)-elicited changes in Bcrp transport activity and expression have been documented previously. We report a novel signaling mechanism by which E2 decreases Bcrp transport activity in mouse brain capillaries (MBCs) via rapid non-genomic signaling through estrogen receptor α (ERα). We extended this finding to investigate the effects of different endocrine-disrupting compounds (EDCs) and selective estrogen receptor modulators (SERMs) on Bcrp transport function. We also demonstrate sex-dependent expression of Bcrp and E2-sensitive Bcrp transport activity at the BBB ex vivo. This work establishes an explanted tissue-based model by which to interrogate EDCs and SERMs as modulators of nongenomic estrogenic signaling with implications for sex and hormonal regulation of therapeutic delivery into the CNS.

4.
Trends Neurosci ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972795

RESUMEN

Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.

5.
Aging Cell ; : e14264, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953594

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with a distinct sex bias. Age-related vascular alterations, a hallmark of AD onset and progression, are consistently associated with sexual dimorphism. Here, we conducted an integrative meta-analysis of 335,803 single-nucleus transcriptomes and 667 bulk transcriptomes from the vascular system in AD and normal aging to address the underlying sex-dependent vascular aging in AD. All vascular cell types in male AD patients exhibited an activated hypoxia response and downstream signaling pathways including angiogenesis. The female AD vasculature is characterized by increased antigen presentation and decreased angiogenesis. We further confirmed that these sex-biased alterations in the cerebral vascular emerged and were primarily determined in the early stages of AD. Sex-stratified analysis of normal vascular aging revealed that angiogenesis and various stress-response genes were downregulated concurrently with female aging. Conversely, the hypoxia response increased steadily in males upon aging. An investigation of upstream driver transcription factors (TFs) revealed that altered communication between estrogen receptor alpha (ESR1) and hypoxia induced factors during menopause contributes to the inhibition of angiogenesis during normal female vascular aging. Additionally, inhibition of CREB1, a TF that targets estrogen, is also related to female AD. Overall, our study revealed a distinct cerebral vascular profile in females and males, and revealed novel targets for precision medicine therapy for AD.

6.
FEBS Lett ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955545

RESUMEN

The poliovirus (PV) enters the central nervous system (CNS) via the bloodstream, suggesting the existence of a mechanism to cross the blood-brain barrier. Here, we report that PV capsid proteins (VP1 and VP3) can penetrate cells, with VP3 being more invasive. Two independent parts of VP3 are responsible for this function. Both peptides can penetrate human umbilical cord vascular endothelial cells, and one peptide of VP3 could also penetrate peripheral blood mononuclear cells. In an in vitro blood-brain barrier model using rat-derived astrocytes, pericytes, and endothelial cells, both peptides were observed to traverse from the blood side to the brain side at 6 h after administration. These results provide insights into the molecular mechanisms underlying PV invasion into the CNS.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38957986

RESUMEN

BACKGROUND: Tight control of cytoplasmic Ca2+ in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavß3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS: We investigated the function of Cavß3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavß3-/- (Cav ß3-deficient) mice as controls. RESULTS: We identified Cavß3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavß3. After induction of experimental autoimmune encephalomyelitis, Cavß3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavß3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavß3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavß3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavß3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS: Independent of its function as a subunit of Cav channels, Cavß3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavß3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.

8.
Small ; : e2401045, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38948959

RESUMEN

A cerebral ischemia-reperfusion injury is ensued by an intricate interplay between various pathological processes including excitotoxicity, oxidative stress, inflammation, and apoptosis. For a long time, drug intervention policies targeting a single signaling pathway have failed to achieve the anticipated clinical efficacy in the intricate and dynamic inflammatory environment of the brain. Moreover, inadequate targeted drug delivery remains a significant challenge in cerebral ischemia-reperfusion injury therapy. In this study, a multifunctional nanoplatform (designated as PB-006@MSC) is developed using ZL006-loaded Prussian blue nanoparticles (PBNPs) camouflaged by a mesenchymal stem cell (MSC) membrane (MSCm). ZL006 is a neuroprotectant. It can be loaded efficiently into the free radical scavenger PBNP through mesoporous adsorption. This can simultaneously modulate multiple targets and pathways. MSCm biomimetics can reduce the nanoparticle immunogenicity, efficiently enhance their homing capability to the cerebral ischemic penumbra, and realize active-targeting therapy for ischemic stroke. In animal experiments, PB-006@MSC integrated reactive oxygen species (ROS) scavenging and neuroprotection. Thereby, it selectively targeted the cerebral ischemic penumbra (about fourfold higher accumulation at 24 h than in the non-targeted group), demonstrated a remarkable therapeutic efficacy in reducing the volume of cerebral infarction (from 37.1% to 2.3%), protected the neurogenic functions, and ameliorated the mortality.

9.
Imaging Neurosci (Camb) ; 2: 1-15, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38947942

RESUMEN

Vascular risk factors contribute to cognitive aging, with one such risk factor being dysfunction of the blood brain barrier (BBB). Studies using non-invasive magnetic resonance imaging (MRI) techniques, such as diffusion prepared arterial spin labeling (DP-ASL), can estimate BBB function by measuring water exchange rate (kw). DP-ASL kw has been associated with cognition, but the directionality and strength of the relationship is still under investigation. An additional variable that measures water in extracellular space and impacts cognition, MRI free water (FW), may help explain prior findings. A total of 94 older adults without dementia (Mean age = 74.17 years, 59.6% female) underwent MRI (DP-ASL, diffusion weighted imaging (DWI)) and cognitive assessment. Mean kw was computed across the whole brain (WB), and mean white matter FW was computed across all white matter. The relationship between kw and three cognitive domains (executive function, processing speed, memory) was tested using multiple linear regression. FW was tested as a mediator of the kw-cognitive relationship using the PROCESS macro. A positive association was found between WB kw and executive function [F(4,85) = 7.81, p < .001, R2= 0.269; ß = .245, p = .014]. Further, this effect was qualified by subsequent results showing that FW was a mediator of the WB kw-executive function relationship (indirect effect results: standardized effect = .060, bootstrap confidence interval = .0006 to .1411). Results suggest that lower water exchange rate (kw) may contribute to greater total white matter (WM) FW which, in turn, may disrupt executive function. Taken together, proper fluid clearance at the BBB contributes to higher-order cognitive abilities.

10.
Ageing Res Rev ; 99: 102394, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950868

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative pathologic entity characterized by the abnormal presence of tau and macromolecular Aß deposition that leads to the degeneration or death of neurons. In addition to that, glucose-6-phosphate dehydrogenase (G6PD) has a multifaceted role in the process of AD development, where it can be used as both a marker and a target. G6PD activity is dysregulated due to its contribution to oxidative stress, neuroinflammation, and neuronal death. In this context, the current review presents a vivid depiction of recent findings on the relationship between AD progression and changes in the expression or activity of G6PD. The efficacy of the proposed G6PD-based therapeutics has been demonstrated in multiple studies using AD mouse models as representative animal model systems for cognitive decline and neurodegeneration associated with this disease. Innovative therapeutic insights are made for the boosting of G6PD activity via novel innovative nanotechnology and microfluidics tools in drug administration technology. Such approaches provide innovative methods of surpassing the blood-brain barrier, targeting step-by-step specific neural pathways, and overcoming biochemical disturbances that accompany AD. Using different nanoparticles loaded with G6DP to target specific organs, e.g., G6DP-loaded liposomes, enhances BBB penetration and brain distribution of G6DP. Many nanoparticles, which are used for different purposes, are briefly discussed in the paper. Such methods to mimic BBB on organs on-chip offer precise disease modeling and drug testing using microfluidic chips, requiring lower sample amounts and producing faster findings compared to conventional techniques. There are other contributions to microfluid in AD that are discussed briefly. However, there are some limitations accompanying microfluidics that need to be worked on to be used for AD. This study aims to bridge the gap in understanding AD with the synergistic use of promising technologies; microfluid and nanotechnology for future advancements.

11.
CNS Neurosci Ther ; 30(7): e14825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954749

RESUMEN

AIMS: Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS: We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS: rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION: Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.


Asunto(s)
Fibrinolíticos , Neutrófilos , Proteínas Recombinantes , Activador de Tejido Plasminógeno , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Humanos , Masculino , Neutrófilos/efectos de los fármacos , Ratas , Proteínas Recombinantes/farmacología , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratas Sprague-Dawley , Anciano , Barrera Hematoencefálica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Femenino , Infiltración Neutrófila/efectos de los fármacos , Persona de Mediana Edad , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/inmunología , Modelos Animales de Enfermedad
12.
Phytother Res ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950958

RESUMEN

Global cerebral ischemia (GCI) results in damage to the neurons and leads to cognitive impairments. Berberine (BBR) is known for its neuroprotective qualities. This study aimed to investigate the effects of BBR on memory, Blood-brain barrier (BBB) permeability, biochemical factors, and neuronal structure. Sixty-three adult male Wistar rats were divided randomly into Sham (21), GCI (21), and GCI + BBR (21) groups. The GCI + BBR group received 50 mg/kg of BBR for 7 days before and 6 h after 20 min of GCI induction. After 24 h, assessments included hippocampal neuronal structure, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) levels, memory performance, and BBB permeability. The GCI + BBR group reduced volume loss in the CA1 and its sublayers (oriens, pyramidal, and radiatum) compared to the GCI group (p < 0.0001, p < 0.001, p < 0.01 and p < 0.001, respectively). Additionally, the GCI + BBR group showed higher pyramidal neuron density (p < 0.0001) and number (p < 0.0001) compared to the GCI group. BBR also decreased MDA levels (p < 0.0001) and increased CAT activity (p < 0.0001) in the GCI + BBR group compared to the GCI group, with GPX and SOD activity approaching Sham levels (p < 0.0001, both). BBR demonstrated significant improvements in short and long-term memory compared to the GCI group (p < 0.01, p < 0.0001, respectively). Furthermore, BBB permeability in the GCI + BBR group was significantly reduced compared to the GCI group (p < 0.0001). These findings demonstrated BBR's potential to protect the neurons in the CA1 and BBB structures, enhance antioxidant activity, and alleviate GCI-induced memory impairments.

13.
Neurochem Res ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951281

RESUMEN

The purpose of this study is to explore the shared molecular pathogenesis of traumatic brain injury (TBI) and high-grade glioma and investigate the mechanism of propofol (PF) as a potential protective agent. By analyzing the Chinese glioma genome atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, we compared the transcriptomic data of high-grade glioma and TBI patients to identify common pathological mechanisms. Through bioinformatics analysis, in vitro experiments and in vivo TBI model, we investigated the regulatory effect of PF on extracellular matrix (ECM)-related genes through Prrx1 under oxidative stress. The impact of PF on BBB integrity under oxidative stress was investigated using a dual-layer BBB model, and we explored the protective effect of PF on tight junction proteins and ECM-related genes in mice after TBI. The study found that high-grade glioma and TBI share ECM instability as an important molecular pathological mechanism. PF stabilizes the ECM and protects the BBB by directly binding to Prrx1 or indirectly regulating Prrx1 through miRNAs. In addition, PF reduces intracellular calcium ions and ROS levels under oxidative stress, thereby preserving BBB integrity. In a TBI mouse model, PF protected BBB integrity through up-regulated tight junction proteins and stabilized the expression of ECM-related genes. Our study reveals the shared molecular pathogenesis between TBI and glioblastoma and demonstrate the potential of PF as a protective agent of BBB. This provides new targets and approaches for the development of novel neurotrauma therapeutic drugs.

14.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961538

RESUMEN

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Asunto(s)
Efecto Espectador , Dependovirus , Vesículas Extracelulares , Terapia Genética , ARN Mensajero , Humanos , Terapia Genética/métodos , Dependovirus/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Vesículas Extracelulares/metabolismo , Mucopolisacaridosis III/terapia , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/genética , Vectores Genéticos , Acetiltransferasas/metabolismo , Acetiltransferasas/genética
15.
Nanotheranostics ; 8(4): 427-441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961889

RESUMEN

Background: The blood-brain barrier (BBB) is a major bottleneck in delivering therapeutics to the brain. Treatment strategies to transiently open this barrier include focused ultrasound combined with intravenously injected microbubbles (FUS+MB) and targeting of molecules that regulate BBB permeability. Methods: Here, we investigated BBB opening mediated by the claudin-5 binder cCPEm (a microorganismal toxin in a truncated form) and FUS+MB at a centre frequency of 1 MHz, assessing dextran uptake, broadband emission, and endogenous immunoglobulin G (IgG) extravasation. Results: FUS+MB-induced BBB opening was detectable at a pressure ≥0.35 MPa when assessed for leakage of 10 and 70 kDa dextran, and at ≥0.2 MPa for uptake of endogenous IgG. Treating mice with 20 mg/kg cCPEm failed to open the BBB, and pre-treatment with cCPEm followed by FUS+MB at 0.2 and 0.3 MPa did not overtly increase BBB opening compared to FUS+MB alone. Using passive cavitation detection (PCD), we found that broadband emission correlated with the peak negative pressure (PNP) and dextran leakage, indicating the possibility of using broadband emission for developing a feedback controller to monitor BBB opening. Conclusions: Together, our study highlights the challenges in developing combinatorial approaches to open the BBB and presents an additional IgG-based histological detection method for BBB opening.


Asunto(s)
Barrera Hematoencefálica , Claudina-5 , Microburbujas , Animales , Barrera Hematoencefálica/metabolismo , Ratones , Claudina-5/metabolismo , Inmunoglobulina G/metabolismo , Ondas Ultrasónicas , Ratones Endogámicos C57BL , Dextranos/química , Dextranos/farmacocinética
16.
Front Cell Neurosci ; 18: 1402479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962511

RESUMEN

Wound healing of the central nervous system (CNS) is characterized by the classical phases of 'hemostasis', 'inflammation', 'proliferation', and 'remodeling'. Uncontrolled wound healing results in pathological scar formation hindering tissue remodeling and functional recovery in the CNS. Initial blood protein extravasation and activation of the coagulation cascade secure hemostasis in CNS diseases featuring openings in the blood-brain barrier. However, the relevance of blood-derived coagulation factors was overlooked for some time in CNS wound healing and scarring. Recent advancements in animal models and human tissue analysis implicate the blood-derived coagulation factor fibrinogen as a molecular link between vascular permeability and scar formation. In this perspective, we summarize the current understanding of how fibrinogen orchestrates scar formation and highlight fibrinogen-induced signaling pathways in diverse neural and non-neural cells that may contribute to scarring in CNS disease. We particularly highlight a role of fibrinogen in the formation of the lesion border between the healthy neural tissue and the fibrotic scar. Finally, we suggest novel therapeutic strategies via manipulating the fibrinogen-scar-forming cell interaction to improve functional outcomes.

17.
Bioorg Chem ; 150: 107584, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38964146

RESUMEN

Developing multitargeted ligands as promising therapeutics for Alzheimer's disease (AD) has been considered important. Herein, a novel class of cinnamamide/ester-triazole hybrids with multifaceted effects on AD was developed based on the multitarget-directed ligands strategy. Thirty-seven cinnamamide/ester-triazole hybrids were synthesized, with most exhibiting significant inhibitory activity against Aß-induced toxicity at a single concentration in vitro. The most optimal hybrid compound 4j inhibited copper-induced Aß toxicity in AD cells. its action was superior to that of donepezil and memantine. It also moderately inhibited intracellular AChE activity and presented favorable bioavailability and blood-brain barrier penetration with low toxicity in vivo. Of note, it ameliorated cognitive impairment, neuronal degeneration, and Aß deposition in Aß1-42-injured mice. Mechanistically, the compound regulated APP processing by promoting the ADAM10-associated nonamyloidogenic signaling and inhibiting the BACE1-mediated amyloidogenic pathway. Moreover, it suppressed intracellular AChE activity and tau phosphorylation. Therefore, compound 4j may be a promising multitargeted active molecule against AD.

18.
Neuroscience ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964450

RESUMEN

Neurological disorders are a diverse group of conditions that can significantly impact individuals' quality of life. The maintenance of neural microenvironment homeostasis is essential for optimal physiological cellular processes. Perturbations in this delicate balance underlie various pathological manifestations observed across various neurological disorders. Current treatments for neurological disorders face substantial challenges, primarily due to the formidable blood-brain barrier and the intricate nature of neural tissue structures. These obstacles have resulted in a paucity of effective therapies and inefficiencies in patient care. Exosomes, nanoscale vesicles that contain a complex repertoire of biomolecules, are identifiable in various bodily fluids. They hold substantial promise in numerous therapeutic interventions due to their unique attributes, including targeted drug delivery mechanisms and the ability to cross the BBB, thereby enhancing their therapeutic potential. In this review, we investigate the therapeutic potential of exosomes across a range of neurological disorders, including neurodegenerative disorders, traumatic brain injury, peripheral nerve injury, brain tumors, and stroke. Through both in vitro and in vivo studies, our findings underscore the beneficial influence of exosomes in enhancing the neural microenvironment following neurological diseases, offering promise for improved neural recovery and management in these conditions.

19.
Expert Opin Drug Deliv ; : 1-12, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963225

RESUMEN

INTRODUCTION: Neurometabolic disorders remain challenging to treat, largely due to the limited availability of drugs that can cross the blood-brain barrier (BBB) and effectively target brain impairment. Key reasons for inadequate treatment include a lack of coordinated knowledge, few studies on BBB status in these diseases, and poorly designed therapies. AREAS COVERED: This paper provides an overview of current research on neurometabolic disorders and therapeutic options, focusing on the treatment of neurological involvement. It highlights the limitations of existing therapies, describes innovative protocols recently developed, and explores new opportunities for therapy design and testing, some of which are already under investigation. The goal is to guide researchers toward innovative and potentially more effective treatments. EXPERT OPINION: Advancing research on neurometabolic diseases is crucial for designing effective treatment strategies. The field suffers from a lack of collaboration, and a strong collective effort is needed to enhance synergy, increase knowledge, and develop a new therapeutic paradigm for neurometabolic disorders.

20.
Rev Neurosci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38967133

RESUMEN

The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA