Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.188
Filtrar
1.
J Endod ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094780

RESUMEN

AIM: To assess the effect of combinations of two different endodontic sealers used in initial and endodontic retreatment on the bond strength of the secondary obturation and the penetrability of the sealers. METHODS: Forty-eight mandibular premolars were used, receiving standardized endodontic access and biomechanical preparation. Twenty-four teeth received AH Plus sealer (AHP) in primary obturation, and the others received Bio-C® Sealer (BCS) sealer. Retreatment protocol was performed with an R50 instrument. The samples were further subdivided into four groups (n=12) based on the combination of primary/secondary obturation sealers: AHP/AHP; AHP/BCS; BCS/AHP; BCS/BCS. Four samples from each subgroup received the addition of fluorophores to the sealer for penetrability analysis using laser scanning confocal fluorescence microscopy (LSCFM). The root portion on the 8 push-out samples was sectioned into 6 slices of 1.0 mm. Bond strength (BS) was assessed using a universal testing machine until displacement of the filling mass. Failure pattern was evaluated under a stereomicroscope (20x magnification). BS data were analyzed using two-way ANOVA followed by Tukey's test (p<0.05), and the association between the failure pattern and BS value was assessed using the chi-square test (p<0.05). Penetrability was qualitatively evaluated. RESULTS: The highest BS values were observed in the AHP/AHP (4.54±1.5 MPa) and BCS/AHP (5.00±1.0 MPa) groups (p<0.05), with a higher percentage of adhesive failures to the filling material for all groups. LSCFM images indicated greater penetrability of AHP compared to BCS, both in initial treatment and retreatment. CONCLUSION: AHP sealer exhibited higher BS and greater penetrability compared to BCS sealer.

2.
J Lasers Med Sci ; 15: e16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050997

RESUMEN

Introduction: Fiber-reinforced composite posts (FRCP) have become popular due to their multiple advantages in teeth with extensive crown destruction. Proper disinfection is essential for the successful bonding of these posts. Commonly used solutions for cleaning and disinfecting the root canals adversely affect the bond strength (BS). Photodynamic therapy is an alternative method for irrigating the root canal and disinfecting the post space.This study was designed to evaluate the impact of photodynamic therapy on the BS of fiber posts to root canal dentin. Methods: Human maxillary canines were recruited for this study. The tooth crowns were removed at the cervical line and endodontically treated. After fiber post spaces were prepared, the teeth were assigned to five groups based on the light-sensitive material: deionized water, indocyanine green and 810-nm laser, methylene blue and 660-nm laser, toluidine blue and 635-nm laser, curcumin and LED. The posts were cemented after photodynamic therapy. Cervical, middle, and apical samples were prepared by transverse sectioning. Push-out bond strength (PBS) values were measured in a universal testing machine. Finally, the data underwent statistical analyses with ANOVA and Howell-Games tests. Results: One-way ANOVA revealed no significant differences between the groups (P<0.001). The Games-Howell test showed that curcumin (7.23±3.75) and the control group (5.92±4.04) had a similar BS (P>0.005). The BS was lower in the methylene blue (3.34±2.15), indocyanine green (2.59±3.16), and toluidine blue (2.45±1.73) groups than in the control group (P<0.005). Conclusion: Unlike other light-sensitive materials, curcumin did not adversely affect the BS.

3.
Microsc Res Tech ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056241

RESUMEN

Assessment of the antimicrobial, micro tensile bond strength (µTBS), and degree of conversion (DC) of fifth-generation adhesive modified using photoactivated 0.5% rose bengal (RB) and photoactivated RB-doped titanium dioxide nanoparticles (TiO2NPs) in different concentrations (2% and 5%) as compared with the unmodified adhesive bonded to the carious affected dentin (CAD). Forty mandibular molars with caries progression up to the middle third of the dentin, as per the International Caries Detection and Assessment System (ICDAS) score of 4 and 5 were included. Specimens were divided into four groups based on etch and rinse adhesive (ERA) modification group 1: unmodified ERA, group 2: photoactivated 0.5% RB photosensitizer (PS) modified ERA, group 3: photoactivated RB-doped 2 wt% TiO2NPs adhesive, group 4: photoactivated RB-doped 5 wt% TiO2NPs adhesive. Followed by adhesive and composite restoration on the CAD surface. All the specimens were thermocycled and an assessment of µTBS and failure pattern analysis was performed. The antibacterial potency of RB and RB-doped TiO2NPs (2% and 5%) followed by their activation using visible light against Streptococcus mutans (S.mutans) were tested. The survival rate of S.mutans was assessed using the Kruskal-Wallis test. The analysis of µTBS involved the use of ANOVA, followed by a post-hoc Tukey honestly significant difference (HSD) multiple comparisons test. Group 1 (Unmodified ERA) (0.52 ± 0.31 CFU/mL) treated samples unveiled the highest means of bacterial survival and lowest µTBS (11.32 ± 0.63 MPa). Nevertheless, group 4: photoactivated RB-doped 5 wt% TiO2NPs adhesive displayed the lowest outcomes of S.mutans survival (0.11 ± 0.02 CFU/mL) and highest bond strength (18.76 ± 1.45 MPa). The photoactivated RB-doped 2 wt% TiO2NPs in adhesive demonstrated promising enhancements in both µTBS and antibacterial efficacy against S.mutans. However, it is noteworthy that this modification led to a decrease in the DC of the adhesive. RESEARCH HIGHLIGHTS: Unmodified ERA-treated samples unveiled the highest bacterial survival and the lowest µTBS. Photoactivated RB-doped 5 wt% TiO2NPs adhesive displayed the lowest S.mutans survival rate and highest bond strength. DC decreased with an increase in concentration of TiO2.

4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 359-364, 2024 Jun 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39049657

RESUMEN

OBJECTIVES: This study aims to investigate bond strength between zirconia and resin cement through surface treatments with Er: YAG laser, Nd: YAG laser, and Si-Zr coating. METHODS: Seventy-five round pre-sintered zirconia discs with a diameter of 18 mm and a thickness of 1.5 mm were prepared by a powder compactor. Fifty discs were randomly divided into five groups of 10 discs each and were subjected to five surface treatments: no treatment (control group), sandblasting with alumina particles (sandblasting group), Er: YAG laser treatment (Er: YAG laser group), Nd:YAG laser treatment (Nd: YAG laser group), and Si-Zr coating treatment (Si-Zr coating group). The discs were then bonded to composite resin columns with resin cement. The shear bond strength of each group was tested with a universal tester. Roughness tester, scanning electron microscope (SEM), and energy dispersive spectroscopy were used to analyze surface performance. RESULTS: The bond strength of the Si-Zr coating group was higher than that of the remaining groups (P<0.05). The difference in bond strength between the sandblasting group and the Er: YAG laser group was not statistically significant (P>0.05), but both of them had higher bond strength than the Nd: YAG laser group (P<0.05). The Si-Zr coating group had the highest surface roughness (P<0.05). The surface roughness of the sandblasting, Er: YAG laser, and Nd: YAG laser groups was higher than that of the control group (P<0.05), but the difference among the three groups was not statistically significant (P>0.05). SEM observations showed irregular scratches on the surface of the sandblasting group and large pits with holes on the surface of the Er: YAG and Nd: YAG laser groups. In the Er: YAG laser group, the crystal structure was replaced by a smooth surface with a large amount of microcracks due to partial melting. Complex porous structures that comprised "island-like" structures and mass pores among the grains were observed on the surface of the Si-Zr coating. Only Zr, O, and Y were detected on the surfaces of the control, Er: YAG laser, and Nd: YAG laser groups. Al was found on the surface of the sandblasted group, and a higher proportion of Si was detected on the surface of the Si-Zr coating group. CONCLUSIONS: Er: YAG laser and Nd: YAG laser treatment on the zirconia ceramic surface could increase roughness and improve the bond strength to resin cement. Si-Zr coating treatment is an effective alternative for increasing the roughness and bond strength of zirconia surface and is superior to sandblasting and laser treatments.


Asunto(s)
Cerámica , Láseres de Estado Sólido , Ensayo de Materiales , Propiedades de Superficie , Circonio , Circonio/química , Resistencia al Corte , Microscopía Electrónica de Rastreo , Recubrimiento Dental Adhesivo , Resinas Compuestas , Análisis del Estrés Dental , Silicio
5.
Dent J (Basel) ; 12(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39056993

RESUMEN

The objective of this work was to assess the efficacy of different proteolytic agents on the bond strength of pit and fissure sealants to bovine enamel. Eighty-four bovine enamel specimens were randomly assigned in groups according to the pit and fissure sealant applied (HelioSeal F or Dyad Flow). Then, the specimens were subdivided according to the proteolytic agent used (n = 7): Group 1, distilled water (control); Group 2, 10 wt.% Tergazyme®; Group 3, 10 wt.% ZYME®; Group 4, 10% papain gel; Group 5, 10% bromelain gel; and Group 6, 5.25 wt.% sodium hypochlorite. The cell viability of the proteolytic solutions was assessed through the MTT assay. The proteolytic agents were applied on the enamel surface prior to the acid-etching procedure; then, the pit and fissure sealants were placed. The micro-shear bond strength was evaluated after 24 h or 6 months of water storing at 37 °C. Representative SEM images were taken for each experimental group. The bond strength data were statistically analyzed by a three-way ANOVA test using a significance level of α = 0.05. Bromelain and papain proteolytic solutions did not exert any cytotoxic effect on the human dental pulp cells. After 24 h and 6 months of aging, for both pit and fissure sealants, sodium hypochlorite, papain, bromelain, and Tergazyme® achieved statistically significant higher bond strength values (p < 0.05). Irrespective of the deproteinizing agent used, Dyad Flow resulted in a better bond strength after 6 months of aging. The type 1 etching pattern was identified for sodium hypochlorite, papain, and bromelain. Tergazyme®, papain, and bromelain demonstrated efficacy in deproteinizing enamel surfaces prior to acid etching, leading to the improved bond strength of pit and fissure sealants. Clinically, this suggests that these proteolytic agents can be considered viable alternatives to traditional methods for enhancing sealant retention and longevity. Utilizing these agents in dental practice could potentially reduce sealant failures.

6.
Dent J (Basel) ; 12(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39057005

RESUMEN

Objective: To determine the effect of grit-blasting before and after sintering on the surface roughness of zirconia and the micro-tensile bond strength of a pressable veneering ceramic to zirconia. Methods: Pre-sintered zirconia blocks (IPS e.max ZirCAD, Ivoclar) were divided into four test groups of three specimens each and a control group ('CTR'; no surface treatment). Pre-S-30, Pre-S-50, and Pre-S-110 were grit-blasted with 30-µm SiO2-coated Al2O3, 50-µm Al2O3 and 110-µm Al2O3 particles, respectively, before sintering. Post-S-30 was grit-blasted with 30-µm SiO2-coated Al2O3 after sintering. For each treatment, the surface roughness was measured (Ra, Perthometer M4P, Mahr Perthen). After sintering the zirconia blocks, a liner was applied and a pressable ceramic (IPS e.max ZirPress, Ivoclar) was heat-pressed. Sixteen microbars were obtained from each block and submitted to micro-tensile bond-strength (µTBS) testing. Data were analyzed with one-way ANOVA. Any correlation between Ra and µTBS was evaluated (Sperman test). Results: Grit-blasting before sintering with 110-µm Al2O3 (RaPre-S-110 = 3.4 ± 0.4 µm), 50-µm Al2O3 (RaPre-S-50 = 2.3 ± 0.5 µm), and 30-µm SiO2-coated Al2O3 (RaPre-S-30 = 1.2 ± 0.2 µm) resulted in significantly higher roughness than grit-blasting after sintering with 30-µm SiO2-coated Al2O3 (RaPost-S-30 = 0.5 ± 0.1 µm). The highest µTBS was measured when the sintered zirconia was grit-blasted with 30-µm SiO2-coated Al2O3 (µTBSPost-S-30 = 28.5 ± 12.6 MPa), which was significantly different from that of specimens that were grit-blasted before sintering (µTBSPre-S-30 = 21.8 ± 10.4; µTBSPre-S-50 = 24.1 ± 12.6; µTBSPre-S-110 = 26.4 ± 14.1) or were not grit-blasted (µTBSCTR = 20.2 ± 11.2). Conclusions: Grit-blasting zirconia before sintering enhanced the surface roughness proportionally to the particle size of the sand used. Grit-blasting with 30-µm SiO2-coated Al2O3 after sintering improved bonding of the veneering ceramic to zirconia. Clinical Significance: As grit-blasting with 30-µm SiO2-coated Al2O3 after sintering improved bonding of the veneering ceramic to zirconia, it may reduce veneering ceramic fractures/chipping.

7.
Cureus ; 16(6): e62337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011214

RESUMEN

Introduction Incorporation of remineralizing agents with fluoride-releasing bracket adhesives may prevent the development of white spot lesions (WSL) or reverse the established WSL in patients undergoing fixed orthodontic treatment. We aimed to find out how effectively casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and fluoride varnish (FV) can remineralize teeth when mixed with fluoride-releasing orthodontic adhesive. Materials and methods We randomly assigned a total of 60 premolar teeth, therapeutically extracted for orthodontic purposes, into two equal groups. Group I (n = 30) utilized fluoride-releasing adhesive (FR), and Group II (n = 30) bonded with non-fluoride adhesive (NFR). Based on the applied remineralizing agent, we further divided each of the two groups into three equal subgroups of 10: Group IA (FR+FV), Group IB (FR+CPP-ACP), Group IC (control-only FR), Group IIA (NFR+FV), Group IIB (NFR+CPP-ACP), and Group IIC (control-only NFR). Following bonding procedures, all the samples underwent pH cycling for 28 days, where the enamel samples were immersed in 20 ml of demineralizing solution for three hours, followed by immersion in 30 ml of remineralizing solution for 17 hours. The samples were analyzed for shear bond strength (SBS) on a universal testing machine and hardness values (HV) by the Vickers microhardness test (VMT) using the indentation method. We also evaluated the adhesive remnant index (ARI) scores to determine the site of bracket failure. Statistical analysis The shear bond strength (SBS) and hardness value (HV) were expressed as the mean, standard deviation (SD), and median for each subgroup. We used the non-parametric Kruskal-Wallis test to analyze the SBS and HV, followed by the Dunn-Bonferroni test for intra-pair differences. The ARI score was expressed as the frequency of the percentage distribution, and the difference in the distribution of ARI scores between the groups was assessed by the Cochran chi-square test. The probability (p) value equal to or less than 0.05 was considered statistically significant. Results The results show that Group IB, bonded with a fluoride-releasing adhesive and a CPP-ACP remineralizing agent surface treatment, has the highest HV of 300.23 units. Group IIC (only NFR) has the lowest hardness of 153.3 units, which is statistically significant (p < 0.001). However, the ARI scores are not statistically significant between the groups tested. Conclusion The bond strength of the adhesive and the surface hardness of the enamel increased with the addition of fluoride varnish and CPP-ACP to both the fluoride-releasing and non-fluoride-releasing adhesives.

8.
J Esthet Restor Dent ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016071

RESUMEN

OBJECTIVE: To evaluate the in vitro influence of prior silane application on the microshear bond strength (µSBS) of Scotchbond Universal Plus to glass ceramic. MATERIALS AND METHODS: Thirty blocks of lithium disilicate ceramic were etched with hydrofluoric acid for 20 s and distributed into Group 1 (no silane and no adhesive), Group 2 (adhesive), Group 3 (silane + adhesive). Three cylinders of resin cement were made on each ceramic block. Five blocks (n = 15 cylinders) were subjected to the µSBS test after 24 h, and the other five blocks (n = 15 cylinders) were tested after 6 months of water storage. RESULTS: According to two-way ANOVA, followed by Tukey's test, the means of µSBS (MPa), denoted by different letters, show significant differences (p < 0.05): after 24 h-Group 1 (31.7)B, Group 2 (43.3)A, and Group 3 (31.3)B; after 6 months-Group 1 (14.8)B, Group 2 (33.6)A, and Group 3 (30.3)A. After 6 months of storage, there was a significant decrease in µSBS for Groups 1 and 2, along with an increase in adhesive failures across all groups. CONCLUSIONS: Prior application of silane did not increase the µSBS between Scotchbond Universal Plus and ceramic, and there was degradation at the bond interface over time. CLINICAL SIGNIFICANCE: Prior application of a silane agent is not necessary when using Scotchbond Universal Plus for bonding to glass ceramics. Regardless of the prior application of silane, there is degradation at the bond interface over time.

9.
Materials (Basel) ; 17(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998172

RESUMEN

The results of orthodontic therapy largely depend, among other factors, on the preparation of the tooth enamel itself and the choice of material used to bond orthodontic brackets. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of thermo-cured glass-ionomers on different pretreated enamel, in comparison with the commonly used composite cement. Three commercially available nano-ionomer or highly viscous glass-ionomer cements (EQUIA Forte® Fil, EQUIA Fil, Ketac Universal) and two types of compo-sites (Heliosit Orthodontic, ConTec Go!) were investigated in this study. The research involved two hundred human premolars. The teeth were cleaned and polished, then randomly divided into five groups according to the enamel preparation method and the type of material. The enamel was treated in three different ways: polyacrylic acid, phosphoric acid, 5% NaOCl + etching with phosphoric acid, and a control group without treatment. Glass-ionomer cement was thermo-cured with heat from a polymerization unit during setting. Statistical analysis was performed using a Chi-square test and one-way ANOVA for independent samples. Spearman's Rho correlation coefficient was used to examine the relationship. Regardless of the material type, the results indicated that the weakest bond between the bracket and tooth enamel was found in samples without enamel pretreatment. The majority of the materials stayed on the brackets in samples without enamel preparation, according to ARI scores. The study's findings demonstrated that the strength of the adhesion between the bracket and enamel is greatly influenced by enamel etching and glass-ionomer thermo-curing. Clinical investigations would be required to validate the outcomes.

10.
Materials (Basel) ; 17(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998179

RESUMEN

Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using air abrasion alone. We used 100 zirconia blocks, of which 20 blocks remained untreated, 20 blocks were sandblasted, and 60 blocks were acid-etched using three different zirconia-etching systems: Zircos-E etching (strong-acid etching), smart etching (acid etching after air abrasion), and cloud etching (acid etching under a hot stream). Each group was subjected to a bonding procedure with dual-polymerized resin cement, and then 50 specimens were thermocycled. The shear bond strengths between the resin cement and zirconia before and after the thermocycling were evaluated. We observed that in the groups that did not undergo thermocycling, specimens surface-treated with solution did not show a significant increase in shear bond strength compared to the sandblasted specimens (p > 0.05). Among the thermocycled groups, the smart-etched specimens showed the highest shear bond strength. In the short term, various etching agents did not show a significant increase in bond strength compared to sandblasting alone, but in the long term, smart etching showed stability in bond strength (p < 0.05).

11.
Cureus ; 16(6): e62646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39036201

RESUMEN

AIM: This study aims to evaluate and compare the effect of different types of bleaching dentifrices on the shear bond strength of orthodontic metal brackets bonded by light-cured composite adhesive to human teeth. MATERIALS AND METHODS: Forty-five human premolar teeth were randomly divided into three groups, receiving the following treatments: Group 1 (control group; teeth in this group were not bleached), Group 2 (teeth in this group were treated with active oxygen bleaching dentifrice), and Group 3 (teeth in this group were treated with peroxide bleaching dentifrice). Orthodontic brackets were bonded using a light-cured composite adhesive. A universal measuring device was used to assess the shear bond strength with a crosshead speed of 0.5 mm/min. One-way ANOVA, post hoc Tukey tests, and an independent t-test were used to analyse the data. RESULTS: There was a highly significant difference (p≤0.001) in the mean shear bond strength of orthodontic brackets bonded to untreated teeth as compared to teeth treated with bleaching dentifrice. There was no significant difference in the mean shear bond strength of orthodontic brackets bonded to teeth treated with peroxide bleaching dentifrice or active oxygen bleaching dentifrice. CONCLUSION: There was a significant reduction in the mean shear bond strength of orthodontic metal brackets when bonded to human teeth treated with bleaching dentifrices.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39038181

RESUMEN

OBJECTIVES: To assess and compare the microtensile dentin bond strength (µTBS) and interfacial micromorphology of three universal adhesives. METHODS: 96 human molars were assigned to three universal adhesives: Single Bond Universal (SBU), CLEARFIL Universal Bond Quick (UBQ), and RE-GEN Universal Adhesive (REGEN). Adhesives were applied in self-etch mode. SBU and REGEN were applied following the manufacturers' instructions. UBQ was divided into two subgroups: one following the manufacturer's instructions (UBQ Short) and the other with an extended application time (UBQ Extended). Teeth were restored with nanohybrid resin composite. Specimens were divided into immediate and delayed subgroups. The delayed subgroups were stored for 6 months and subjected to 5000 thermocycles. µTBS was tested, and failure mode was analyzed. Interfacial micromorphology was assessed using a scanning electron microscope. The data were statistically analyzed (p⟨ 0.05). RESULTS: The adhesive choice, aging, and their interaction significantly affected µTBS. SBU exhibited the highest immediate µTBS, comparable to UBQ (Extended) and REGEN, and significantly higher than UBQ (Short). In delayed testing, SBU outperformed the other adhesives. CONCLUSIONS: Aging negatively affected the µTBS of UBQ and REGEN, while SBU wasn't affected. The quick application concept of UBQ deteriorated its µTBS compared to the extended application time.

13.
BMC Oral Health ; 24(1): 822, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033294

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the effect of in-vivo produced Nisin which is an antimicrobial peptide (AMP) added to adhesive resin on shear bond strength (SBS) and the adhesive remnant index (ARI) of orthodontic brackets. METHODS: Bacterial AMP was produced by fermentation and the ideal AMP/Bond concentration and antimicrobial efficacy of the mixture were tested. To evaluate the SBS and ARI scores of AMP-added adhesive resins, 80 maxillary premolar teeth extracted for orthodontic purposes were used and randomly assigned into 2 groups (n = 40). Group 1: Control Group (teeth bonded with standard adhesive resin); Group 2: Experimental Group (teeth bonded with AMP-added adhesive resin). Statistical analysis was performed using the SPSS package program and applying the Mann-Whitney U and Fisher's exact tests. P < 0.05 was considered as statistically significant. RESULTS: Nisin synthesized in-vivo from Lactococcus lactis (L. lactis) (ATCC 7962) bacteria was provided to form a homogenous solution at an ideal concentration To find the minimum AMP/Bond mixture ratio that showed maximum antimicrobial activity, AMP and Bond mixtures were tested at various concentration levels between 1/160 and 1/2 (AMP/Bond). As a result, the optimum ratio was determined as 1/40. The antimicrobial efficacy of Nisin-added adhesive resin was tested against Streptococcus mutans (S. mutans) (ATCC 35,688) and Lactobacillus strains (cariogenic microorganisms). AMP formed a 2.7 cm diameter zone alone, while 1/40 AMP-bond mixture formed a 1.2 cm diameter zone. SBS values of the teeth bonded with Nisin added adhesive (17.49 ± 5.31) were significantly higher than the control group (14.54 ± 4.96) (P = 0.004). According to the four point scale, Nisin added adhesive provided a higher ARI score in favour of the adhesive and tooth compared to the control group (ARI = 3, n = 20). CONCLUSIONS: Nisin produced from L. lactis (ATCC 7962) had greater antimicrobial effects after mixing with adhesive bond against cariogenic microorganisms S. mutans (ATCC 35,688) and Lactobacillus strains. Nisin added adhesive increased shear bond strength (SBS) of orthodontic brackets and ARI scores in favor of adhesive & teeth. CLINICAL RELEVANCE: Clinicians should take into account that using Nisin-added adhesive resin in orthodontic treatments can provide prophylaxis against tooth decay, especially in patients with poor oral hygiene.


Asunto(s)
Recubrimiento Dental Adhesivo , Nisina , Soportes Ortodóncicos , Cementos de Resina , Resistencia al Corte , Nisina/farmacología , Humanos , Cementos de Resina/farmacología , Cementos de Resina/química , Recubrimiento Dental Adhesivo/métodos , Lactococcus lactis , Análisis del Estrés Dental , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Streptococcus mutans/efectos de los fármacos , Diente Premolar
14.
Artículo en Inglés | MEDLINE | ID: mdl-39046646

RESUMEN

PURPOSE: This study aimed to evaluate the effects of two surface treatments on the tensile bond strength of prefabricated zirconia crowns (PZCs) using bioactive and resin cements. METHODS: Forty extracted human primary maxillary incisors were prepared and divided into four groups based on surface treatment and cement type: (1) sandblast with bioactive cement, (2) sandblast with resin cement, (3) 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) with bioactive cement, and (4) 10-MDP with resin cement. After 24 h of cementation, specimens underwent 5000 thermocycling cycles between 5 °C and 55 °C. Tensile bond strengths were measured using a universal testing machine. The data were analyzed using two-way ANOVA and Tukey's post hoc test, with significance set at p < 0.05. RESULTS: The mean tensile bond strengths observed were 2.25 ± 1.27 MPa for sandblast with bioactive cement, 1.39 ± 0.95 MPa for sandblast with resin cement, 2.45 ± 1.15 MPa for 10-MDP with bioactive cement, and 1.68 ± 1.03 MPa for 10-MDP with resin cement. Significant improvements in bond strength were observed in the bioactive cement group treated with 10-MDP compared to those treated with sandblasting (p < 0.05). The 10-MDP treatment did not enhance bond strength for the resin cement compared to sandblasting. CONCLUSIONS: Bioactive cement generally provides a higher tensile bond strength than resin cement. While 10-MDP treatment enhances bond strength when used with bioactive cement, it does not show a similar enhancement when used with resin cement compared to sandblasting, indicating its effectiveness is selective based on the type of cement used.

15.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065304

RESUMEN

Increasing demand for adult orthodontic treatment using clear aligners has highlighted challenges in bonding clear aligner attachments to various restorations. Specifically, the bond strength of clear aligner attachments to glazed monolithic zirconia has not been extensively studied. This study aims to compare the shear bond strength (SBS) and mode of failure (MOF) of conventional bonding methods versus Superbond C&B (4-META/MMA-TBB resin cement) for clear aligner attachments on glazed monolithic zirconia. Fifty sintered and glazed zirconia samples were divided into five groups and attached with clear aligner attachments: Si (silane), B (bonding agent), SiB (bonding agent and silane), SU (Superbond C&B), and SiSU (silane and Superbond C&B). SBS and MOF of these samples were analyzed. Results indicated a significant difference in bond strength among the groups. SiSU exhibited the highest bond strength, followed by SU, while B had the lowest bond strength. SEM analysis revealed that SiSU and SU predominantly exhibited mixed failure, indicating high bond strength without affecting the glazed layers of the zirconia. In contrast, B exhibited only adhesive failure at the interface, resulting in insufficient bond strength for effective orthodontic treatment. In conclusion, using 4-META/MMA-TBB resin cement provides high bond strength for clear aligner attachments on glazed zirconia with minimal material damage during debonding.

16.
Heliyon ; 10(12): e32493, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975209

RESUMEN

This in vitro study was to evaluate the effect of different non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. In this study, The Y-TZP specimens were divided into 4 groups according to the surface treatment methods as follows: Control (no surface treatment), Sb (Sandblasting), AP(argon NTP), and CP(20 % oxygen and 80 % argon combination NTP). Y-TZP specimens were randomly selected from each group to observe and test the following indexes: scanning electron microscope to observe the surface morphology; atomic force microscope to detect the surface roughness; contact angle detector to detect the surface contact angle; energy spectrometer to analyze the surface elements. Then, resin cement (Rely X-U200) was bonded to human isolated teeth with Y-TZP specimens to measure SBS. The results showed that for the SE test, the NTP group was significantly higher than the control group (p < 0.05). The results of the SBS test showed that the SBS values of the NTP group were significantly higher than those of the other groups, regardless of the plasma treatment (p < 0.05). However, there was no significant difference between groups AP and CP in a test of SBS (p > 0.05). This study shows that non-thermal atmospheric pressure plasma can improve the shear bond strength of Y-TZP by increasing the surface energy. The addition of oxygen ratio to argon is more favorable to increase the shear bond strength and is worth further investigation.

17.
Odontology ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951300

RESUMEN

This study aimed to evaluate the influence of radiotherapy and different endodontic treatment protocols on the bond strength to pulp chamber dentin. Eighty mandibular molars were randomly divided into two groups (n = 40): non-irradiated and irradiated (60 Gy). The pulp chambers were sectioned, and each group was subdivided (n = 8), according to the endodontic treatment protocol: no treatment (Control); Single-visit; Two-visits; Immediate dentin sealing (IDS) + single-visit; and IDS + two-visits. Each endodontic treatment visit was simulated through irrigation with 2.5% NaOCl, 17% EDTA and distilled water. IDS was performed by actively applying two coats of a universal adhesive to the lateral walls of the pulp chamber. After, the pulp chambers were restored with resin composite and four sticks were obtained for microtensile test. In addition, the dentin of the pulp chamber roof was assessed for surface roughness, chemical composition, and topography after each treatment protocol. Two-way ANOVA, Tukey's post hoc, Mann-Whitney, Kruskal-Wallis and Dunn's post hoc were performed (α = 5%). The treatment protocol affected bond strength (p < 0.05), while the irradiation did not (p > 0.05). The control group presented the highest values (p < 0.05). The single-visit group demonstrated better performance compared to the other groups (p < 0.05), which did not differ from each other (p > 0.05) The use of IDS changed the surface roughness (p < 0.05), chemical composition (p < 0.05) and topography of the dentin. In conclusion, the treatment protocol influenced dentin adhesion, while irradiation did not.

18.
Chin J Dent Res ; 27(2): 161-168, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38953481

RESUMEN

OBJECTIVE: To evaluate the effect of different adhesives and veneering resins on the shear bond strength (SBS) of polyetheretherketone (PEEK). METHODS: A total of 138 PEEK specimens were randomly divided into 6 groups according to adhesive material application: Control (C, no application), Adhese Universal (A) (Ivoclar Vivadent, Schaan, Liechtenstein), Gluma Bond Universal (G) (Heraeus Kulzer, South Bend, IN, USA), G-PremioBOND (P) (GC Corporation, Tokyo, Japan), Single Bond Universal (S) (3M, Saint Paul, MN, USA) and visio.link (V) (Bredent, Senden, Germany). Each adhesive group was divided into two subgroups according to the type of veneering material: Estenia direct composite (D) and Gradia Plus indirect composite (IN) (both GC Corporation). After the veneering process, the specimens were aged by thermal cycling. Kruskal-Wallis and Mann-Whitney U tests were used for SBS analysis (P < 0.05). RESULTS: The highest SBS results were obtained in the VIN group, followed by the VD, PD, GIN, AIN, AD, SIN, SD, PIN, GD, CIN and CD groups, respectively (P = 0.001). There were no significant differences in terms of the type of veneering composite when the same adhesive was applied (P > 0.05), except for Gluma Bond Universal (P = 0.009). All the adhesives tested showed clinically acceptable SBS results. CONCLUSION: Visio.link offered the highest adhesion to PEEK, whereas the tested universal adhesives may be used as an alternative to visio.link in clinical settings. It was determined that changing the veneer type has no statistical difference when the same adhesive material is used.


Asunto(s)
Benzofenonas , Resinas Compuestas , Coronas con Frente Estético , Cetonas , Polietilenglicoles , Polímeros , Resistencia al Corte , Cetonas/química , Ensayo de Materiales , Recubrimiento Dental Adhesivo , Humanos , Cementos de Resina , Análisis del Estrés Dental , Bisfenol A Glicidil Metacrilato
19.
J Contemp Dent Pract ; 25(4): 342-345, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956849

RESUMEN

AIM: The purpose of this study was to evaluate the effectiveness and strength of three various dentin-bonding agents used with adhesives on primary teeth. MATERIALS AND METHODS: The study used 80 recently extracted, healthy human maxillary anterior primary teeth that had undergone physiologic resorption, or over-retention. Teeth were cut to expose a flat dentin surface at a depth of 1.5 mm. All samples were divided into four groups (20 samples in each group) as follows: Group I-Control group, Group II-Primary teeth bonding with 6th-generation bonding agent, Group III-Primary teeth bonding with 7th-generation bonding agent, Group IV-Primary teeth bonding with 8th-generation bonding agent. All of the samples' dentinal surfaces were covered with composite resin using a Teflon mold after adhesive had been applied. A universal testing machine (INSTRON) was used to assess the shear bond strength. Data were collected and statistically analyzed. RESULTS: The maximum mean shear bond strength was found in 8th-generation bonding agent (30.76 ± 0.16), followed by 7th-generation bonding agent (26.08 ± 0.21), 6th-generation bonding agent (25.32 ± 0.06), and control group (6.18 ± 0.09). Statistically significant difference was found between the three different bonding agents (p < 0.001). CONCLUSION: On conclusion, the 8th-generation bonding agent demonstrated a greater shear bond strength to dentin than the 7th and 6th-generation bonding agent. CLINICAL SIGNIFICANCE: The emergence of different bonding techniques to the market improves the durability and quality of restorations. An effective bonding to the tooth would also reduce bacterial penetration, marginal microleakage, possibility of pulpal inflammation preserve tooth structure, and postoperative sensitivity by allowing less cavity preparation. How to cite this article: Alqarni AS, Al Ghwainem A. Assessment of the Efficacy and Bond Strength of Different Dentin-bonding Agents with Adhesives on Primary Teeth: An In Vitro Study. J Contemp Dent Pract 2024;25(4):342-345.


Asunto(s)
Recubrimiento Dental Adhesivo , Análisis del Estrés Dental , Recubrimientos Dentinarios , Resistencia al Corte , Diente Primario , Humanos , Recubrimientos Dentinarios/química , Recubrimiento Dental Adhesivo/métodos , Técnicas In Vitro , Resinas Compuestas , Ensayo de Materiales , Cementos de Resina , Dentina/efectos de los fármacos , Cementos Dentales/uso terapéutico
20.
Dent Mater ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39079766

RESUMEN

OBJECTIVE: Evaluation of biaxial flexural strength (BFS) of nanoglass (NG) and multiwalled carbon nanotubes (MWCNTs) reinforced 3D-printed denture base resins and their shear bond strength (SBS) to 3D-printed and acrylic denture teeth. METHODS: Silanized NG and MWCNTs were added to 3D-printed denture base resin to obtain four groups: Control, 0.25 wt% NG, 0.25 wt% MWCNTs, and a combination group with 0.25 wt% of both fillers. All specimens were tested before and after 600 cycles of thermal aging. BFS (n = 88) was tested using disk-shaped specimens (12 ×2 mm) centralized on an O ring in a universal testing machine. Weibull analysis was conducted to assess predictability of failure. SBS (n = 176) was tested for acrylic and 3D-printed denture teeth attached to bar-shaped specimens in a universal testing machine followed by failure mode analysis using stereomicroscope. Two and three-way ANOVA tests followed by Tukey post hoc test were conducted for BFS and SBS. Kruskal-Wallis test compared percent change among groups with subsequent Dunn post hoc test with Bonferroni correction (α = 0.05). RESULTS: BFS was affected significantly by filler content (P < 0.001) and thermal cycling (P < 0.001), with thermal cycling displaying the uppermost effect (È p2 =0.551). A significant interaction between filler content, thermal cycling, and teeth type was displayed by SBS results (P < 0.001, F=10.340, È p2 =0.162). The highest BFS values belonged to 0.25 % MWCNTs while the highest SBS to printed teeth was displayed by the combination. SIGNIFICANCE: The combination group displayed higher BFS and SBS to printed teeth compared to control which allows 3D-printed materials to have a long-term clinical success.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA