Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 560: 398-406, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31676128

RESUMEN

Bottom-up synthesis of fluorescent boron-nitride based dots is a challenging task because an accurate design of the structure-properties relationship is, in general, difficult to achieve. Incorporation of the dots into a solid-state matrix is also another important target to develop light-emitting devices. Two-colour fluorescent boron oxynitride nanodots have been obtained by a bottom-up synthesis route and incorporated into a hybrid organic-inorganic film. A combination of different analytical techniques such as XPS, XRD, TEM, UV-Vis, TGA-DTA and fluorescence has been used to characterise the structure, composition and properties of the boron oxynitride dots. The presence of defects in the boron oxynitride structure is the source of the two-colour fluorescence. The BN dots thermal stability is limited to around 100 °C; higher temperatures induce condensation of the structure, which leads to a lower emission. Upon incorporation into a hybrid organic-inorganic film deposited by spin-coating, the boron oxynitride dots maintain their fluorescence and have shown to be highly compatible with the sol-gel chemistry.

2.
Adv Mater ; 30(38): e1802951, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30085381

RESUMEN

Emerging graphene quantum dots (GQDs) have received much attention for use as next-generation light-emitting diodes. However, in the solid-state, π-interaction-induced aggregation-caused photoluminescence (PL) quenching (ACQ) in GQDs makes it challenging to realize high-performance devices. Herein, GQDs incorporated with boron oxynitride (GQD@BNO) are prepared from a mixture of GQDs, boric acid, and urea in water via one-step microwave heating. Due to the effective dispersion in the BNO matrix, ACQ is significantly suppressed, resulting in high PL quantum yields (PL-QYs) of up to 36.4%, eightfold higher than that of pristine GQD in water. The PL-QY enhancement results from an increase in the spontaneous emission rate of GQDs due to the surrounding BNO matrix, which provides a high-refractive-index material and fluorescence energy transfer from the larger-gap BNO donor to the smaller-gap GQD acceptor. A high solid-state PL-QY makes the GQD@BNO an ideal active material for use in AC powder electroluminescent (ACPEL) devices, with the luminance of the first working GQD-based ACPEL device exceeding 283 cd m-2 . This successful demonstration shows promise for the use of GQDs in the field of low-cost, ecofriendly electroluminescent devices.

3.
Adv Mater ; 30(14): e1706259, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29457289

RESUMEN

Although doping with appropriate heteroatoms is a powerful way of increasing visible light absorption of wide-bandgap metal oxide photocatalysts, the incorporation of heteroatoms into the photocatalysts usually leads to the increase of deleterious recombination centers of photogenerated charge carriers. Here, a conceptual strategy of increasing visible light absorption without causing additional recombination centers by constructing an ultrathin insulating heterolayer of amorphous boron oxynitride on wide-bandgap photocatalysts is shown. The nature of this strategy is that the active composition nitrogen in the heterolayer can noninvasively modify the electronic structure of metal oxides for visible light absorption through the interface contact between the heterolayer and metal oxides. The photocatalysts developed show significant improvements in photocatalytic activity under both UV-vis and visible light irradiation compared to the doped counterparts by conventional doping process. These results may provide opportunities for flexibly tailoring the electronic structure of metal oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA