Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Sci Rep ; 14(1): 23549, 2024 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384601

RESUMEN

In the field of brain-computer interface (BCI) based on motor imagery (MI), multi-channel electroencephalography (EEG) data is commonly utilized for MI task recognition to achieve sensory compensation or precise human-computer interaction. However, individual physiological differences, environmental variations, or redundant information and noise in certain channels can pose challenges and impact the performance of BCI systems. In this study, we introduce a channel selection method utilizing Hybrid-Recursive Feature Elimination (H-RFE) combined with residual graph neural networks for MI recognition. This channel selection method employs a recursive feature elimination strategy and integrates three classification methods, namely random forest, gradient boosting, and logistic regression, as evaluators for adaptive channel selection tailored to specific subjects. To fully exploit the spatiotemporal information of multi-channel EEG, this study employed a graph neural network embedded with residual blocks to achieve precise recognition of motor imagery. We conducted algorithm testing using the SHU dataset and the PhysioNet dataset. Experimental results show that on the SHU dataset, utilizing 73.44% of the total channels, the cross-session MI recognition accuracy is 90.03%. Similarly, in the PhysioNet dataset, using 72.5% of the channel data, the classification result also reaches 93.99%. Compared to traditional strategies such as selecting three specific channels, correlation-based channel selection, mutual information-based channel selection, and adaptive channel selection based on Pearson coefficients and spatial positions, the proposed method improved classification accuracy by 34.64%, 10.8%, 3.25% and 2.88% on the SHU dataset, and by 46.96%, 5.04%, 5.81% and 2.32% on the PhysioNet dataset, respectively.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Redes Neurales de la Computación , Humanos , Electroencefalografía/métodos , Imaginación , Encéfalo/fisiología
2.
IEEE J Solid-State Circuits ; 59(4): 1123-1136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39391047

RESUMEN

This paper presents a data-compressive neural recording IC for single-cell resolution high-bandwidth brain-computer interfaces. The IC features wired-OR lossy compression during digitization, thus preventing data deluge and massive data movement. By discarding unwanted baseline samples of the neural signals, the output data rate is reduced by 146× on average while allowing the reconstruction of spike samples. The recording array consists of pulse position modulation-based active digital pixels with a global single-slope analog-to-digital conversion scheme, which enables a low-power and compact pixel design with significantly simple routing and low array readout energy. Fabricated in a 28-nm CMOS process, the neural recording IC features 1024 channels (i.e., 32 × 32 array) with a pixel pitch of 36 µm that can be directly matched to a high-density microelectrode array. The pixel achieves 7.4 µVrms input-referred noise with a -3 dB bandwidth of 300-Hz to 5-kHz while consuming only 268 nW from a single 1-V supply. The IC achieves the smallest area per channel (36 × 36 µm2) and the highest energy efficiency among the state-of-the-art neural recording ICs published to date.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39355516

RESUMEN

The utmost issue in Motor Imagery Brain-Computer Interfaces (MI-BCI) is the BCI poor performance known as 'BCI inefficiency'. Although past research has attempted to find a solution by investigating factors influencing users' MI-BCI performance, the issue persists. One of the factors that has been studied in relation to MI-BCI performance is gender. Research regarding the influence of gender on a user's ability to control MI-BCIs remains inconclusive, mainly due to the small sample size and unbalanced gender distribution in past studies. To address these issues and obtain reliable results, this study combined four MI-BCI datasets into one large dataset with 248 subjects and equal gender distribution. The datasets included EEG signals from healthy subjects from both gender groups who had executed a right- vs. left-hand motor imagery task following the Graz protocol. The analysis consisted of extracting the Mu Suppression Index from C3 and C4 electrodes and comparing the values between female and male participants. Unlike some of the previous findings which reported an advantage for female BCI users in modulating mu rhythm activity, our results did not show any significant difference between the Mu Suppression Index of both groups, indicating that gender may not be a predictive factor for BCI performance.

5.
J Neural Eng ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374625

RESUMEN

The advancements in Brain-Computer Interface (BCI) have substantially evolved people's lives by enabling direct communication between the human brain and external peripheral devices. In recent years, the integration of machine larning (ML) and deep learning (DL) models have considerably imrpoved the performances of BCIs for decoding the motor imagery (MI) tasks. However, there still exist several limitations, e.g., extensive training time and high sensitivity to noises or outliers with those existing models, which largely hinder the rapid developments of BCIs. To address such issues, this paper proposes a novel extreme learning machine (ELM) based self-attention (E-SAT) mechanism to enhance subject-specific classification performances. Specifically, for E-SAT, ELM is employed both to imrpove self-attention module generalization ability for feature extraction and to optimize the model's parameter initialization process. Meanwhile, the extracted features are also classified using ELM, and the end-to-end ELM based setup is used to evaluate E-SAT performances on different MI EEG signals. Extensive experiments with different datasets, such as BCI Competition III Dataset IV-a, IV-b and BCI Competition IV Datasets 1,2a,2b,3, are conducted to verify the effectiveness of proposed E-SAT strategy. Results show that E-SAT outperforms several state-of-the-art (SOTA) existing methods in subject-specific classification on all the datasets, with an average classification accuracy of 99.8%,99.1%,98.9%,75.8%, 90.8%, and 95.4%, being achieved for each datasets, respectively. The experimental results not only show outstanding performance of E-SAT in feature extractions, but also demonstrate that it helps achieves the best results among nine other robust ones. In addition, results in this study also demonstrate that E-SAT achieves exceptional performance in both binary and multi-class classification tasks, as well as for noisy and non-noisy datatsets. .

7.
J Neural Eng ; 21(5)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39231465

RESUMEN

Objective. Over the last decades, error-related potentials (ErrPs) have repeatedly proven especially useful as corrective mechanisms in invasive and non-invasive brain-computer interfaces (BCIs). However, research in this context exclusively investigated the distinction of discrete events intocorrectorerroneousto the present day. Due to this predominant formulation as a binary classification problem, classical ErrP-based BCIs fail to monitor tasks demanding quantitative information on error severity rather than mere qualitative decisions on error occurrence. As a result, fine-tuned and natural feedback control based on continuously perceived deviations from an intended target remains beyond the capabilities of previously used BCI setups.Approach.To address this issue for future BCI designs, we investigated the feasibility of regressing rather than classifying error-related activity non-invasively from the brain.Main results.Using pre-recorded data from ten able-bodied participants in three sessions each and a multi-output convolutional neural network, we demonstrated the above-chance regression of ongoing target-feedback discrepancies from brain signals in a pseudo-online fashion. In a second step, we used this inferred information about the target deviation to correct the initially displayed feedback accordingly, reporting significant improvements in correlations between corrected feedback and target trajectories across feedback conditions.Significance.Our results indicate that continuous information on target-feedback discrepancies can be successfully regressed from cortical activity, paving the way to increasingly naturalistic, fine-tuned correction mechanisms for future BCI applications.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Masculino , Adulto , Femenino , Electroencefalografía/métodos , Adulto Joven , Redes Neurales de la Computación , Encéfalo/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-39286921

RESUMEN

Motor imagery brain computer interface (BCI) systems are considered one of the most crucial paradigms and have received extensive attention from researchers worldwide. However, the non-stationary from subject-to-subject transfer is a substantial challenge for robust BCI operations. To address this issue, this paper proposes a novel approach that integrates joint multi-feature extraction, specifically combining common spatial patterns (CSP) and wavelet packet transforms (WPT), along with transfer learning (TL) in motor imagery BCI systems. This approach leverages the time-frequency characteristics of WPT and the spatial characteristics of CSP while utilizing transfer learning to facilitate EEG identification for target subjects based on knowledge acquired from non-target subjects. Using dataset IVa from BCI Competition III, our proposed approach achieves an impressive average classification accuracy of 93.4%, outperforming five kinds of state-of-the-art approaches. Furthermore, it offers the advantage of enabling the design of various auxiliary problems to learn different aspects of the target problem from unlabeled data through transfer learning, thereby facilitating the implementation of innovative ideas within our proposed approach. Simultaneously, it demonstrates that integrating CSP and WPT while transferring knowledge from other subjects is highly effective in enhancing the average classification accuracy of EEG signals and it provides a novel solution to address subject-to-subject transfer challenges in motor imagery BCI systems.

9.
Neural Netw ; 180: 106665, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39241437

RESUMEN

In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.

11.
Sci Rep ; 14(1): 20420, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227389

RESUMEN

Injection molding is a common plastic processing technique that allows melted plastic to be injected into a mold through pressure to form differently shaped plastic parts. In injection molding, in-mold electronics (IME) can include various circuit components, such as sensors, amplifiers, and filters. These components can be injected into the mold to form a whole within the melted plastic and can therefore be very easily integrated into the molded part. The brain-computer interface (BCI) is a direct connection pathway between a human or animal brain and an external device. Through BCIs, individuals can use their own brain signals to control these components, enabling more natural and intuitive interactions. In addition, brain-computer interfaces can also be used to assist in medical treatments, such as controlling prosthetic limbs or helping paralyzed patients regain mobility. Brain-computer interfaces can be realized in two ways: invasively and noninvasively, and in this paper, we adopt a noninvasive approach. First, a helmet model is designed according to head shape, and second, a printed circuit film is made to receive EEG signals and an IME injection mold for the helmet plastic parts. In the electronic film, conductive ink is printed to connect each component. However, improper parameterization during the injection molding process can lead to node displacements and residual stress changes in the molded part, which can damage the circuits in the electronic film and affect its performance. Therefore, in this paper, the use of the BCI molding process to ensure that the node displacement reaches the optimal value is studied. Second, the multistrategy differential evolutionary algorithm is used to optimize the injection molding parameters in the process of brain-computer interface formation. The relationship between the injection molding parameters and the actual target value is investigated through Latin hypercubic sampling, and the optimized parameters are compared with the target parameters to obtain the optimal parameter combination. Under the optimal parameters, the node displacement can be optimized from 0.585 to 0.027 mm, and the optimization rate can reach 95.38%. Ultimately, by detecting whether the voltage difference between the output inputs is within the permissible range, the reliability of the brain-computer interface after node displacement optimization can be evaluated.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Electroencefalografía/métodos , Humanos , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador
12.
Ethics Hum Res ; 46(5): 37-42, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39277877

RESUMEN

The research and development of emerging technologies has potential long-term and societal impacts that pose governance challenges. This essay summarizes the development of research ethics in China over the past few decades, as well as the measures taken by the Chinese government to build its ethical governance system of science and technology after the occurrence of the CRISPR-babies incident. The essay then elaborates on the current problems of this system through the case study of ethical governance of brain-computer interface research, and explores how the transition from research ethics to translational bioethics, which encourages interdisciplinary collaboration and focuses on societal implications, may respond to the challenges of ethical governance of science and technology.


Asunto(s)
Bioética , Interfaces Cerebro-Computador , Investigación Biomédica Traslacional , China , Humanos , Interfaces Cerebro-Computador/ética , Investigación Biomédica Traslacional/ética , Ética en Investigación
13.
Comput Biol Med ; 182: 109132, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39332118

RESUMEN

The classification of handwritten letters from invasive neural signals has lately been subject of research to restore communication abilities in people with limited movement capacities. This study explores the classification of ten letters (a,d,e,f,j,n,o,s,t,v) from non-invasive neural signals of 20 participants, offering new insights into the neural correlates of handwriting. Letters were classified with two methods: the direct classification from low-frequency and broadband electroencephalogram (EEG) and a two-step approach comprising the continuous decoding of hand kinematics and the application of those in subsequent classification. The two-step approach poses a novel application of continuous movement decoding for the classification of letters from EEG. When using low-frequency EEG, results show moderate accuracies of 23.1% for ten letters and 39.0% for a subset of five letters with highest discriminability of the trajectories. The two-step approach yielded significantly higher performances of 26.2% for ten letters and 46.7% for the subset of five letters. Hand kinematics could be reconstructed with a correlation of 0.10 to 0.57 (average chance level: 0.04) between the decoded and original kinematic. The study shows the general feasibility of extracting handwritten letters from non-invasively recorded neural signals and indicates that the proposed two-step approach can improve performances. As an exploratory investigation of the neural mechanisms of handwriting in EEG, we found significant influence of the written letter on the low-frequency components of neural signals. Differences between letters occurred mostly in central and occipital channels. Further, our results suggest movement speed as the most informative kinematic for the decoding of short hand movements.

14.
Neural Netw ; 180: 106734, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332212

RESUMEN

It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.

15.
Sensors (Basel) ; 24(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275636

RESUMEN

This study explores neuroplasticity through the use of virtual reality (VR) and brain-computer interfaces (BCIs). Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections in response to learning, experience, and injury. VR offers a controlled environment to manipulate sensory inputs, while BCIs facilitate real-time monitoring and modulation of neural activity. By combining VR and BCI, researchers can stimulate specific brain regions, trigger neurochemical changes, and influence cognitive functions such as memory, perception, and motor skills. Key findings indicate that VR and BCI interventions are promising for rehabilitation therapies, treatment of phobias and anxiety disorders, and cognitive enhancement. Personalized VR experiences, adapted based on BCI feedback, enhance the efficacy of these interventions. This study underscores the potential for integrating VR and BCI technologies to understand and harness neuroplasticity for cognitive and therapeutic applications. The researchers utilized the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method to conduct a comprehensive and systematic review of the existing literature on neuroplasticity, VR, and BCI. This involved identifying relevant studies through database searches, screening for eligibility, and assessing the quality of the included studies. Data extraction focused on the effects of VR and BCI on neuroplasticity and cognitive functions. The PRISMA method ensured a rigorous and transparent approach to synthesizing evidence, allowing the researchers to draw robust conclusions about the potential of VR and BCI technologies in promoting neuroplasticity and cognitive enhancement.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo , Plasticidad Neuronal , Realidad Virtual , Humanos , Encéfalo/fisiología , Cognición/fisiología , Plasticidad Neuronal/fisiología
16.
J Neural Eng ; 21(5)2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39265614

RESUMEN

Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results.Approach.To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline.Main results.Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR.Significance.Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Relación Señal-Ruido , Humanos , Masculino , Femenino , Estudios Longitudinales , Electroencefalografía/métodos , Adulto , Corteza Sensoriomotora/fisiología , Ondas Encefálicas/fisiología , Adulto Joven , Reproducibilidad de los Resultados
17.
Polymers (Basel) ; 16(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274138

RESUMEN

Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to embed electronic components directly into the surface of a product. IME technology improves the integration and performance of a product by embedding conductive materials and functional components in the mold. Brain-computer interfaces (BCIs) are a rapidly growing field of research that aims to capture, analyze, and feedback brain signals by directly connecting the brain to external devices. The Utah array, a high-density microelectrode array, has been widely used for the recording and transmission of brain signals. However, the traditional fabrication method of the Utah array suffers from high cost and low integration, which limits its promotion in practical applications. The lines that receive EEG signals are one of the key parts of a brain-computer interface system. The optimization of injection molding parameters is particularly important in order to effectively embed these lines into thin films and to ensure the precise displacement of the line nodes and the stability of signal transmission during the injection molding process. In this study, a method based on the Kriging prediction model and sparse regression partial differential equations (PDEs) is proposed to optimize the key parameters in the injection molding process. This method can effectively predict and control the displacement of nodes in the film, ensure the stability and reliability of the line during the injection process, and improve the accuracy of EEG signal transmission and system performance. The optimal injection parameters were finally obtained: a holding pressure of 525 MPa, a holding time of 50 s, and a melting temperature of 285 °C. Under this condition, the average node displacement of UA was reduced from the initial 0.19 mm to 0.89 µm, with an optimization rate of 95.32%.

18.
Sensors (Basel) ; 24(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39338733

RESUMEN

Decoding semantic concepts for imagination and perception tasks (SCIP) is important for rehabilitation medicine as well as cognitive neuroscience. Electroencephalogram (EEG) is commonly used in the relevant fields, because it is a low-cost noninvasive technique with high temporal resolution. However, as EEG signals contain a high noise level resulting in a low signal-to-noise ratio, it makes decoding EEG-based semantic concepts for imagination and perception tasks (SCIP-EEG) challenging. Currently, neural network algorithms such as CNN, RNN, and LSTM have almost reached their limits in EEG signal decoding due to their own short-comings. The emergence of transformer methods has improved the classification performance of neural networks for EEG signals. However, the transformer model has a large parameter set and high complexity, which is not conducive to the application of BCI. EEG signals have high spatial correlation. The relationship between signals from different electrodes is more complex. Capsule neural networks can effectively model the spatial relationship between electrodes through vector representation and a dynamic routing mechanism. Therefore, it achieves more accurate feature extraction and classification. This paper proposes a spatio-temporal capsule network with a self-correlation routing mechaninsm for the classification of semantic conceptual EEG signals. By improving the feature extraction and routing mechanism, the model is able to more effectively capture the highly variable spatio-temporal features from EEG signals and establish connections between capsules, thereby enhancing classification accuracy and model efficiency. The performance of the proposed model was validated using the publicly accessible semantic concept dataset for imagined and perceived tasks from Bath University. Our model achieved average accuracies of 94.9%, 93.3%, and 78.4% in the three sensory modalities (pictorial, orthographic, and audio), respectively. The overall average accuracy across the three sensory modalities is 88.9%. Compared to existing advanced algorithms, the proposed model achieved state-of-the-art performance, significantly improving classification accuracy. Additionally, the proposed model is more stable and efficient, making it a better decoding solution for SCIP-EEG decoding.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Redes Neurales de la Computación , Semántica , Electroencefalografía/métodos , Humanos , Imaginación/fisiología , Percepción/fisiología , Procesamiento de Señales Asistido por Computador
19.
Neural Netw ; 179: 106617, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180976

RESUMEN

Vigilance state is crucial for the effective performance of users in brain-computer interface (BCI) systems. Most vigilance estimation methods rely on a large amount of labeled data to train a satisfactory model for the specific subject, which limits the practical application of the methods. This study aimed to build a reliable vigilance estimation method using a small amount of unlabeled calibration data. We conducted a vigilance experiment in the designed BCI-based cursor-control task. Electroencephalogram (EEG) signals of eighteen participants were recorded in two sessions on two different days. And, we proposed a contrastive fine-grained domain adaptation network (CFGDAN) for vigilance estimation. Here, an adaptive graph convolution network (GCN) was built to project the EEG data of different domains into a common space. The fine-grained feature alignment mechanism was designed to weight and align the feature distributions across domains at the EEG channel level, and the contrastive information preservation module was developed to preserve the useful target-specific information during the feature alignment. The experimental results show that the proposed CFGDAN outperforms the compared methods in our BCI vigilance dataset and SEED-VIG dataset. Moreover, the visualization results demonstrate the efficacy of the designed feature alignment mechanisms. These results indicate the effectiveness of our method for vigilance estimation. Our study is helpful for reducing calibration efforts and promoting the practical application potential of vigilance estimation methods.


Asunto(s)
Nivel de Alerta , Interfaces Cerebro-Computador , Electroencefalografía , Redes Neurales de la Computación , Humanos , Electroencefalografía/métodos , Masculino , Nivel de Alerta/fisiología , Femenino , Adulto , Adulto Joven , Encéfalo/fisiología , Algoritmos , Procesamiento de Señales Asistido por Computador
20.
Brain Sci ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199537

RESUMEN

Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals. BCIs based on code-modulated visual evoked potentials (cVEPs) are based on visual stimuli, thus appropriate visual feedback on the interface is crucial for an effective BCI system. Many previous studies have demonstrated that implementing visual feedback can improve information transfer rate (ITR) and reduce fatigue. This research compares a dynamic interface, where target boxes change their sizes based on detection certainty, with a threshold bar interface in a three-step cVEP speller. In this study, we found that both interfaces perform well, with slight variations in accuracy, ITR, and output characters per minute (OCM). Notably, some participants showed significant performance improvements with the dynamic interface and found it less distracting compared to the threshold bars. These results suggest that while average performance metrics are similar, the dynamic interface can provide significant benefits for certain users. This study underscores the potential for personalized interface choices to enhance BCI user experience and performance. By improving user friendliness, performance, and reducing distraction, dynamic visual feedback could optimize BCI technology for a broader range of users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA