Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Genet ; 15: 1378809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161422

RESUMEN

Introduction: Developing effective breast cancer survival prediction models is critical to breast cancer prognosis. With the widespread use of next-generation sequencing technologies, numerous studies have focused on survival prediction. However, previous methods predominantly relied on single-omics data, and survival prediction using multi-omics data remains a significant challenge. Methods: In this study, considering the similarity of patients and the relevance of multi-omics data, we propose a novel multi-omics stacked fusion network (MSFN) based on a stacking strategy to predict the survival of breast cancer patients. MSFN first constructs a patient similarity network (PSN) and employs a residual graph neural network (ResGCN) to obtain correlative prognostic information from PSN. Simultaneously, it employs convolutional neural networks (CNNs) to obtain specificity prognostic information from multi-omics data. Finally, MSFN stacks the prognostic information from these networks and feeds into AdaboostRF for survival prediction. Results: Experiments results demonstrated that our method outperformed several state-of-the-art methods, and biologically validated by Kaplan-Meier and t-SNE.

2.
Front Oncol ; 13: 1147604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342184

RESUMEN

Background: Breast cancer (BC) survival prediction can be a helpful tool for identifying important factors selecting the effective treatment reducing mortality rates. This study aims to predict the time-related survival probability of BC patients in different molecular subtypes over 30 years of follow-up. Materials and methods: This study retrospectively analyzed 3580 patients diagnosed with invasive breast cancer (BC) from 1991 to 2021 in the Cancer Research Center of Shahid Beheshti University of Medical Science. The dataset contained 18 predictor variables and two dependent variables, which referred to the survival status of patients and the time patients survived from diagnosis. Feature importance was performed using the random forest algorithm to identify significant prognostic factors. Time-to-event deep-learning-based models, including Nnet-survival, DeepHit, DeepSurve, NMLTR and Cox-time, were developed using a grid search approach with all variables initially and then with only the most important variables selected from feature importance. The performance metrics used to determine the best-performing model were C-index and IBS. Additionally, the dataset was clustered based on molecular receptor status (i.e., luminal A, luminal B, HER2-enriched, and triple-negative), and the best-performing prediction model was used to estimate survival probability for each molecular subtype. Results: The random forest method identified tumor state, age at diagnosis, and lymph node status as the best subset of variables for predicting breast cancer (BC) survival probabilities. All models yielded very close performance, with Nnet-survival (C-index=0.77, IBS=0.13) slightly higher using all 18 variables or the three most important variables. The results showed that the Luminal A had the highest predicted BC survival probabilities, while triple-negative and HER2-enriched had the lowest predicted survival probabilities over time. Additionally, the luminal B subtype followed a similar trend as luminal A for the first five years, after which the predicted survival probability decreased steadily in 10- and 15-year intervals. Conclusion: This study provides valuable insight into the survival probability of patients based on their molecular receptor status, particularly for HER2-positive patients. This information can be used by healthcare providers to make informed decisions regarding the appropriateness of medical interventions for high-risk patients. Future clinical trials should further explore the response of different molecular subtypes to treatment in order to optimize the efficacy of breast cancer treatments.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37166185

RESUMEN

Accurate survival prediction is a critical goal in the prognosis of breast cancer patients because it can help physicians make more patient-friendly decisions and further guide appropriate treatment. Breast cancer is often caused by genetic abnormalities, which prompts researchers to consider information such as gene expression and copy number variation in addition to clinical data in their studies. The integration of these multi-modal data can improve the predictive power of models. However, with the highly unbalanced information of breast cancer patient data, it becomes a new challenge for breast cancer patient survival prediction to fully extract the characteristic information of these multi-modal data and to consider the complementarity of this information. To this end, we propose a deep multi-modal fusion network (DMMFN) to predict the five-year survival of breast cancer patients by integrating clinical data, copy number variation data, and gene expression data. The imbalanced dataset is first processed using the oversampling method SMOTE-NC. Then the abstract modal features of the multi-modal data are extracted by the two-layer one-dimensional convolutional neural network and the bi-directional long short-term memory network. Next, the weight coefficients of each modal data are dynamically adjusted using gated multimodal units to obtain fusion features. Finally, the fusion features are fed into the MaxoutMLP classifier to obtain the final prediction results. We conducted experiments on the METABRIC dataset to verify the validity of the multi-modal data and compared it with other methods. The comprehensive performance evaluation shows that DMMFN has better prediction performance.

4.
Comput Methods Programs Biomed ; 161: 45-53, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29852967

RESUMEN

BACKGROUND AND OBJECTIVE: Breast cancer is a leading cause of death from cancer for females. The high mortality rate of breast cancer is largely due to the complexity among invasive breast cancer and its significantly varied clinical outcomes. Therefore, improving the accuracy of breast cancer survival prediction has important significance and becomes one of the major research areas. Nowadays many computational models have been proposed for breast cancer survival prediction, however, most of them generate the predictive models by employing only the genomic data information and few of them consider the complementary information from pathological images. METHODS: In our study, we introduce a novel method called GPMKL based on multiple kernel learning (MKL), which efficiently employs heterogeneous information containing genomic data (gene expression, copy number alteration, gene methylation, protein expression) and pathological images. With above heterogeneous features, GPMKL is proposed to execute feature fusion which is embedded in breast cancer classification. RESULTS: Performance analysis of the GPMKL model indicates that the pathological image information plays a critical part in accurately predicting the survival time of breast cancer patients. Furthermore, the proposed method is compared with other existing breast cancer survival prediction methods, and the results demonstrate that the proposed framework with pathological images performs remarkably better than the existing survival prediction methods. CONCLUSIONS: All results performed in our study suggest that the usefulness and superiority of GPMKL in predicting human breast cancer survival.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Genómica , Algoritmos , Neoplasias de la Mama/mortalidad , Simulación por Computador , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Informática Médica , Modelos Estadísticos , Distribución Normal , Análisis de Componente Principal , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Regresión , Sensibilidad y Especificidad , Resultado del Tratamiento
5.
Technol Health Care ; 24(1): 31-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26409558

RESUMEN

BACKGROUND: Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. OBJECTIVE: The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. METHODS: We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. RESULTS: Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). CONCLUSIONS: This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of accuracy. Therefore, this model is recommended as a useful tool for breast cancer survival prediction as well as medical decision making.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/diagnóstico , Diagnóstico por Computador/métodos , Detección Precoz del Cáncer/métodos , Aprendizaje Automático , Valor Predictivo de las Pruebas , Tasa de Supervivencia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA