Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Glob Chang Biol ; 30(8): e17432, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092542

RESUMEN

How terrestrial ecosystems will accumulate carbon as the climate continues to change is a major source of uncertainty in projections of future climate. Under growth-stimulating environmental change, time lags inherent in population and community dynamic processes have been posed to dampen, or alternatively amplify, short-term carbon gain in terrestrial vegetation, but these outcomes can be difficult to predict. To theoretically frame this problem, we developed a simple model of vegetation dynamics that identifies the stage-structured demographic and competitive processes that could govern the timescales of carbon storage and loss. We show that demographic lags associated with growth-stimulating environmental change can allow a rapid increase in population-level carbon storage that is lost back to the atmosphere in later years. However, this transient carbon storage only emerges when environmental change increases the transition of adult individuals into a larger size class that suffers markedly higher mortality. Otherwise, demographic lags simply slow carbon accumulation. Counterintuitively, an analogous tradeoff between maximum adult size and survivorship in two-species models, coupled with environmental change-driven replacement, does not generate the transient carbon gain seen in the single-species models. Instead lags in competitive replacement slow the approach to the eventual carbon trajectory. Together, our results suggest that time lags inherent in demographic and compositional turnover tend to slow carbon accumulation in systems responding to growth-stimulating environmental change. Only under specific conditions will lagged demographic processes in such systems drive transient carbon accumulation, conditions that investigators can examine in nature to help project future carbon trajectories.


Asunto(s)
Cambio Climático , Ecosistema , Carbono/metabolismo , Carbono/análisis , Plantas/metabolismo , Secuestro de Carbono , Modelos Biológicos , Dinámica Poblacional , Modelos Teóricos , Ciclo del Carbono
2.
Huan Jing Ke Xue ; 45(8): 4683-4695, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168687

RESUMEN

To understand the land use development trends in Shaanxi Province under different scenarios and effectively assess the spatiotemporal evolution of terrestrial ecological carbon stocks in Shaanxi Province under land use changes, the study used Markov-FLUS and InVEST models to analyze the impact of land use changes in Shaanxi Province from 2000 to 2020. The impact of carbon storage changes and the spatiotemporal changes in land use structure, carbon storage, and carbon density under three different scenarios were simulated and assessed in Shaanxi Province in 2025 and 2030. The results showed: ① The ROC values of various categories in the coupled Markov-FLUS model were all above 0.7, showing high accuracy and excellent classification performance. The model had a good ability to explain the land use driving factors in the study area, with high accuracy and excellent classification performance. ② From 2000 to 2020, the cultivated land in Shaanxi Province increased significantly. Forest land increased significantly, and the increase in forest land area with high carbon sequestration efficiency caused the carbon storage in Shaanxi Province to increase from 1 546.95 Tg to 1 616.25 Tg. The changes in various regions in Shaanxi Province from 2000 to 2020 were different, among which the carbon storage in Yan'an was significantly increased by 18.89 Tg, whereas the carbon storage in Yulin significantly decreased by 3.29 Tg in 20 years. ③ Altitude, precipitation, and temperature became the main factors affecting the spatiotemporal changes in carbon storage in Shaanxi Province from 2020 to 2030. In three of the years between 2025 and 2030, under different scenarios, the carbon stocks under the ecological priority scenario were 1 632.27 Tg and 1 647.43 Tg, respectively. The carbon storage and its growth rate were significantly higher than in the natural development scenario and the cultivated land protection scenario. ④ The proportion of carbon storage increase areas under the ecological priority scenario was high. In the cultivated land protection scenario, the proportion of reduction areas was lower than that of the natural development scenario, and the distribution of carbon storage was the most balanced. At the same time, the southern and northern areas of the Loess Plateau in northern Shaanxi need to focus on the protection of the ecological environment in future development. The research results can, to a certain extent, provide reference for promoting the construction of ecological Shaanxi and formulating carbon neutral strategic planning.

3.
Mar Pollut Bull ; 207: 116850, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182403

RESUMEN

Shanghai's extensive coastline and offshore marine areas feature diverse ecosystems. This study aimed to determine the current status, spatial distribution, and total capacity of marine carbon storage in Shanghai. Surveys were conducted on oyster reefs, phytoplankton, and fish populations from August to November 2022, with samples collected to quantify biomass and carbon content. The carbon storage of oyster reefs, phytoplankton, and fish was found to be 2.045 × 105 tC, 5113.19 kgC, and 56.6014 tC, respectively. The spatial distributions exhibited significant heterogeneity, influenced by substrate type, nutrient concentrations, and fishing activities. The total marine carbon storage capacity in Shanghai's offshore waters was estimated at 2.045 × 105 tC, highlighting a pathway for achieving regional carbon neutrality goals. This study enriches baseline data, elucidates carbon sequestration functions and spatial patterns, and provides scientific support for marine ecological protection and blue carbon resource utilization. Future research should investigate spatiotemporal variation mechanisms and potential regulation pathways.

4.
Sci Total Environ ; 950: 175347, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117208

RESUMEN

As nature-based solutions, urban park plant communities play a pivotal role in regulating urban carbon cycles, alleviating global climate change, and fostering sustainable urban development. However, the factors influencing the carbon sink efficiency of plant communities in urban parks within temperate monsoon climate zones have not been fully investigated. This study used multivariate heterogeneous data to evaluate plant communities' carbon storage (CS) and annual carbon sequestration (ACS) in 25 urban parks across different biotope types in Jinan, a city located in China's temperate monsoon climate zone. The driving mechanisms affecting carbon sink efficacy were revealed using Spearman correlation, regression, principal component analyses, and structural equation modeling. Results demonstrated that: 1) Closed broadleaf multi-layer green space has significant carbon sink potential compared to other vegetation structures. 2) The carbon sink efficiency of the plant communities negatively correlated with the sky view factor and planting layout density. Three-dimensional green quantity (3DGQ), the ratio of trees and shrubs, species richness, and vertical structures positively correlated with plant communities' carbon storage and sequestration. 3) Whether increasing 3DGQ, the ratio of trees and shrubs, or the total number of individuals of all species, there is a certain threshold bottleneck in enhancing the carbon sink benefits of plant communities. 4) Plant community structure, species composition, and species diversity influenced carbon sink efficiency, collectively forming the first principal component. The 3DGQ affected carbon sink efficiency as the second principal component. Synergistic effects existed among these driving factors, jointly explained 64.3 % and 90.1 % of the CS and ACS of plant communities, respectively. Optimization design strategies for different plant communities in urban parks were proposed.


Asunto(s)
Secuestro de Carbono , Parques Recreativos , Plantas , China , Cambio Climático , Ciudades , Monitoreo del Ambiente , Clima
5.
Biology (Basel) ; 13(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39194511

RESUMEN

One of the most fascinating wetlands on Peru's central coast is the Santa Rosa wetland (Chancay, Lima), an ecosystem threatened by anthropogenic activities. Some of these impacts have led to the uncontrolled growth of Pistia stratiotes, an invasive aquatic plant. This study sought to quantify the regulation and provisioning of ecosystem services provided by P. stratiotes using carbon storage and the provision of biomass as indicators. To this end, the biomasses of 50 plots measuring 0.0625 m2 were weighed and georeferenced and the percentages of dry biomass (%DB) and total organic carbon in the biomass (%C) were quantified. The biomass and its coordinates were entered into ArcGIS and a Kriging interpolation technique was applied to determine the total amount of biomass (B). It was found that P. stratiotes stored 3942.57 tCO2 and that 2132.41 tons of biomass could be obtained for fodder. The total carbon stored by this aquatic plant represented 28.46% of the total carbon sequestered in the wetland ecosystem by vascular plants, suggesting that its contribution to the carbon cycle is significant. This is the first study to estimate the biomass of a floating aquatic plant population in a coastal Peruvian wetland and is a pioneering study addressing the in situ carbon estimation of Peruvian floating aquatic plants. The results and methods proposed in this research will serve in the evaluation of the potential of ecosystem services among similar populations of floating aquatic species. In addition, the data presented can be used to establish plans for the management and use of this biomass in the production of soil fertilizers and cattle forage.

6.
J Environ Manage ; 368: 122052, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128359

RESUMEN

Climate change presents formidable challenges to forest biodiversity and carbon storage. Bamboo forests will be affected particularly in Southwest China's mountainous regions. Bamboo serves as not only a key food resource and habitat for giant panda Ailuropoda melanoleuca but also a potential carbon sink due to its rapid energy-to-matter conversion capability. We employ the MaxEnt model to project the distribution shifts of 20 giant panda foraged bamboo species in Sichuan Province under future climate scenarios, utilizing climate data of 30m resolution. Based on the changes in the diversity and distribution area of bamboo communities caused by climate change, the changing of giant pandas' food resources and the carbon storage of bamboo forests were calculated. The results indicated that the area of bamboo communities is projected to expand by 17.94%-60.88% more than now by the end of the 21st century. We analyzed the energy balance between the dietary needs of giant pandas and the energy provided by bamboo. We predicted that bamboo communities from 2000 to 2150 could support the continuous growth of the giant panda population (6533 wild individuals by 2140-2150 in an ideal state in Sichuan province). However, the species diversity and carbon storage of bamboo forests face out-of-sync fluctuations, both temporally and spatially. This is a critical issue for subalpine forest ecosystem management under climate change. Therefore, we propose a dynamic conservation management framework for giant panda habitats across spatial and temporal scales. This framework aims to facilitate the adaptation of subalpine forest ecosystems to climate change. This innovative approach, which integrates climate change into the conservation strategy for endangered species, contributes a conservation perspective to global climate action, highlighting the interconnectedness of biodiversity preservation and climate mitigation.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Bosques , Ursidae , Animales , Biodiversidad , China , Sasa
7.
J Environ Manage ; 368: 122214, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39191057

RESUMEN

Biodiversity loss and forest degradation have received increasing attention worldwide, and their effects on forest biomass carbon storage and stability have not yet been well defined. This study examined 1275 tree plots using the field survey method to quantify the effects of tree diversity, tree sizes, and mycorrhizal symbiont abundance on biomass carbon storages (Cs) and NDVI (Normalized Difference Vegetation Index)-based ecosystem stability (standard deviation/mean NDVI = NDVI_S) during the field survey period from 2008 to 2018. Our data showed Cs and NDVI_S averaged at 31-108 t ha-1 and 32.04-49.28, respectively, and positive relations between Cs and NDVI_S were observed (p < 0.05). Large forest-type and regional variations were found in these two parameters. Broadleaf forests had 74% of Cs (p < 0.05) of the conifer forests, but no differences were in NDVI_S. Cold regions at high latitudes had 71% of NDVI_S in the warm regions at low latitudes, while no differences were in Cs. Moist regions at high longitudes had 2.04 and 1.28-fold higher Cs and NDVI_S (p < 0.05). The >700 m a.s.l. regions had 1.24-fold higher Cs (p < 0.01) than the <700 m a.s.l. regions, but similar NDVI_S (p > 0.05). Nature Reserves had 1.94-fold higher Cs but 30% lower NDVI_S than outside Reserves (p < 0.001). > 40-year-old forests had 1.3- and 2-fold higher Cs and NDVI_S than the young forests. Structural equation modeling and hierarchical partitioning revealed the driving paths responsible for these variations. Tree richness was positively associated with Cs and ecosystem stability, contributing 21.6%-30.6% to the total effects on them; tree sizes significantly promoted the Cs, but had negligible impacts on NDVI_S. MAT's total effects on NDVI_S of conifer forests were 40% higher than that of broadleaf forests, MAP's total effects on Cs varied with forest types; arbuscular mycorrhizal tree dominance exhibited a smaller positive impact on Cs and ecosystem stability in comparison to other factors. Our findings underscore that the significance of climatic-adapted forest management, diversity conservation, and big-sized tree protections can support the achievement of carbon neutrality in China from biomass carbon sequestration and ecosystem stability.


Asunto(s)
Biodiversidad , Biomasa , Secuestro de Carbono , Ecosistema , Bosques , Árboles , China , Carbono/análisis , Micorrizas
8.
Sci Total Environ ; 951: 175720, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181264

RESUMEN

How environmental factors affecting dissolved carbon remains unclear in lakes on the Qinghai-Tibetan Plateau (QTP), which limits the understanding of the lake carbon cycle. In this study, 60 lakes on the QTP in summer were investigated to clarify the variation in dissolved carbon, estimate dissolved carbon storage, and reveal how environmental factors affect the variation in dissolved carbon. The average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) contents of 60 lakes on the QTP in summer were 12.78 mg/L and 103.66 mg/L, respectively. Salinity and total nitrogen were the important drivers of variations in DIC and DOC, respectively. Lake salinity and temperature were reduced only when precipitation was >50 mm, thus affecting the variations in lake dissolved carbon. Importantly, the elevation and area of the lake also significantly affected the variation in lake dissolved carbon. The total storage amounts of DOC and DIC in the 60 lakes on the QTP in summer were 58.94 Tg and 6.22 Tg, respectively. Lake area was the most direct factor influencing dissolved carbon storage in lakes on the QTP. Moreover, the TN and pH of the lake water also affected the DOC and DIC storage in the lakes, respectively. Interestingly, the lake pH at 9.1 was an important turning point that caused variations in lake DIC storage. Surprisingly, we found that rivers were able to transport 30 % of the DIC into QTP lakes and were the main source of DIC in the lakes in summer. The findings of this study clarify the sources of dissolved carbon and its drivers and improve our understanding of the carbon cycling processes in the lake system on the QTP.

9.
Glob Chang Biol ; 30(8): e17446, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109391

RESUMEN

Tree-mycorrhizal associations are associated with patterns in nitrogen (N) availability and soil organic matter storage; however, we still lack a mechanistic understanding of what tree and fungal traits drive these patterns and how they will respond to global changes in soil N availability. To address this knowledge gap, we investigated how arbuscular mycorrhizal (AM)- and ectomycorrhizal (EcM)-associated seedlings alter rhizodeposition in response to increased seedling inorganic N acquisition. We grew four species each of EcM and AM seedlings from forests of the eastern United States in a continuously 13C-labeled atmosphere within an environmentally controlled chamber and subjected to three levels of 15N-labeled fertilizer. We traced seedling 15N uptake from, and 13C-labeled inputs (net rhizodeposition) into, root-excluded or -included soil over a 5-month growing season. N uptake by seedlings was positively related to rhizodeposition for EcM- but not AM-associated seedlings in root-included soils. Despite this contrast in rhizodeposition, there was no difference in soil C storage between mycorrhizal types over the course of the experiment. Instead root-inclusive soils lost C, while root-exclusive soils gained C. Our findings suggest that mycorrhizal associations mediate tree belowground C investment in response to inorganic N availability, but these differences do not affect C storage. Continued soil warming and N deposition under global change will increase soil inorganic N availability and our seedling results indicate this could lead to greater belowground C investment by EcM-associated trees. This potential for less efficient N uptake by EcM-trees could contribute to AM-tree success and a shift toward more AM-dominated temperate forests.


Asunto(s)
Carbono , Bosques , Micorrizas , Nitrógeno , Plantones , Suelo , Micorrizas/fisiología , Plantones/microbiología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Nitrógeno/metabolismo , Suelo/química , Carbono/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Árboles/microbiología , Árboles/crecimiento & desarrollo , Microbiología del Suelo
10.
Sci Total Environ ; 951: 175884, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216760

RESUMEN

Although seagrass meadows are intense carbon sinks, information on the regional variability in seagrass blue carbon stocks and carbon sequestration remains limited. We estimated the organic carbon (Corg) stocks and carbon accumulation rates (CAR) of seven seagrass meadows along the subtropical coast of China's Zhanjiang City and analyzed the driving factors of variability in sediment Corg stocks in three seagrass meadows. Results showed that most Corg (99.83 %) was stored in the sediments, and the contribution of living biomass was minor. The average Corg stocks of living biomass and sediments across all sites were 0.04 ± 0.01 and 42.03 ± 25.07 Mg C ha-1, respectively, which were significantly lower than the world average (2.52 ± 0.48 and 194.2 Mg C ha-1). The sediment Corg stocks of the upper 1 m ranged from 24.26 to 157.12 Mg C ha-1 with substantial variability among sites: Liusha Bay (64.93 ± 22.31 Mg C ha-1) > Donghai Island (33.8 ± 10.65 Mg C ha-1) > Dongshen Ferry (27.35 ± 4.15 Mg C ha-1). The average sediment CAR was 53.47 g C m-2 yr-1, and the total CAR of 864.18 ha seagrass meadows was 260.76 ± 4.86 Mg C yr-1 in these studied sites. Physicochemical factors, such as high moisture content, salinity, CaCO3 content, and low dry bulk density, jointly inhibited the mineralization rate of Corg in sediments. Our study provides data from understudied regions to a growing dataset on seagrass carbon stocks and sequestration rates and highlights the significance of local and regional differences in seagrass blue carbon storage to accurately assess the climate change mitigation potential of seagrass ecosystems.

11.
Sci Rep ; 14(1): 15984, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987401

RESUMEN

Land-use change is the main driver of carbon storage change in terrestrial ecosystems. Currently, domestic and international studies mainly focus on the impact of carbon storage changes on climate, while studies on the impact of land-use changes on carbon storage in complex terrestrial ecosystems are few. The Jialing River Basin (JRB), with a total area of ~ 160,000 km2, diverse topography, and elevation differences exceeding 5 km, is an ideal case for understanding the complex interactions between land-use change and carbon storage dynamics. Taking the JRB as our study area, we analyzed land-use changes from 2000 to 2020. Subsequently, we simulated land-use patterns for business-as-usual (BAU), cropland protection (CP), and ecological priority (EP) scenarios in 2035 using the PLUS model. Additionally, we assessed carbon storage using the InVEST model. This approach helps us to accurately understand the carbon change processes in regional complex terrestrial ecosystems and to formulate scientifically informed land-use policies. The results revealed the following: (1) Cropland was the most dominant land-use type (LUT) in the region, and it was the only LUT experiencing net reduction, with 92.22% of newly designated construction land originating from cropland. (2) In the JRB, total carbon storage steadily decreased after 2005, with significant spatial heterogeneity. This pattern was marked by higher carbon storage levels in the north and lower levels in the south, with a distinct demarcation line. The conversion of cropland to construction land is the main factor driving the reduction in carbon storage. (3) Compared with the BAU and EP scenarios, the CP scenario demonstrated a smaller reduction in cropland area, a smaller addition to construction land area, and a lower depletion in the JRB total carbon storage from 2020 to 2035. This study demonstrates the effectiveness of the PLUS and InVEST models in analyzing complex ecosystems and offers data support for quantitatively assessing regional ecosystem services. Strict adherence to the cropland replenishment task mandated by the Chinese government is crucial to increase cropland areas in the JRB and consequently enhance the carbon sequestration capacity of its ecosystem. Such efforts are vital for ensuring the food and ecological security of the JRB, particularly in the pursuit of the "dual-carbon" objective.

12.
BMC Plant Biol ; 24(1): 719, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39069617

RESUMEN

BACKGROUND: With the profound changes in the global climate, the issue of grassland degradation is becoming increasingly prominent. Grassland degradation poses a severe threat to the carbon cycle and carbon storage within grassland ecosystems. Additionally, it will adversely affect the sustainability of food production. The grassland ecosystem in the northwest region of Liaoning Province, China, is particularly vulnerable due to factors such as erosion from the northern Horqin Sandy Land, persistent arid climate, and issues related to overgrazing and mismanagement of grassland. The degradation issue is especially pronounced in this ecological environment. However, previous research on the carbon density of degraded grasslands in Northeast China has predominantly focused on Inner Mongolia, neglecting the impact on the grasslands in the northwest of Liaoning Province. Therefore, this experiment aims to assess the influence of grassland degradation intensity on the vegetation and soil carbon density in the northwest of Liaoning Province. The objective is to investigate the changes in grassland vegetation and soil carbon density resulting from different degrees of grassland degradation. METHODOLOGY: This study focuses on the carbon density of grasslands at different degrees of degradation in the northwest of Liaoning Province, exploring the variations in vegetation and soil carbon density under different levels of degradation. This experiment employed field sampling techniques to establish 100 × 100 m plots in grasslands exhibiting varying degrees of degradation. Six replications of 100 × 100 m plots per degradation intensity were sampled. Vegetation and soil samples were collected for analysis of carbon density. RESULTS: The results indicate that in the context of grassland degradation, there is a significant reduction in vegetation carbon density. Furthermore, it was found that root carbon density is the primary contributor to vegetation carbon density. In comparison to mildly degraded grasslands, moderately and severely degraded grasslands experience a reduction in vegetation carbon density by 25.6% and 52.6%, respectively. However, with regard to the impact of grassland degradation on soil carbon density, it was observed that while grassland degradation leads to a slight decrease in soil carbon density, there is no significant change in soil carbon density in the short term under the influence of grassland degradation. CONCLUSIONS: Therefore, grassland degradation has exerted a negative impact on aboveground vegetation carbon density, reducing the carbon storage of above-ground vegetation in grasslands. However, there was no significant effect on grassland soil carbon density.


Asunto(s)
Carbono , Pradera , Suelo , Suelo/química , Carbono/metabolismo , China , Conservación de los Recursos Naturales , Poaceae/metabolismo , Ecosistema
13.
Sci Total Environ ; 948: 174837, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029764

RESUMEN

Mangrove ecosystems represent low-cost climate-regulating systems through carbon storage in their sediments. However, considering the complex shifts in shallow coastal ecosystems, it is clear from just a few sets of environmental impacts on their carbon storage that there is a deficit in the information required for preserving this service. Here, we investigated the spatial and temporal variability of hydrographic factors (water temperature, pH, salinity, dissolved oxygen (DO), flow velocity, turbidity) and sediment characteristics (sedimentation rate and sediment grain size) on the intricate carbon dynamics of mangroves by examining which key variable(s) control mangrove sediment organic matter (OM). We used in-situ monitoring to assess the hydrographic dynamics, sedimentation rate, sediment organic content, and granulometry. Laboratory loss-on-ignition and granulometric methods were employed to quantify OM in trapped and bottom sediments and sediment grain size, respectively. Based on the findings, water pH, salinity, and DO were the key regulators of OM in sediments. Despite conventional expectations, the study observed positive effects of DO on OM, highlighting the possible role of aquatic plant photosynthesis and freshwater inflow. Sedimentation rates, usually considered crucial for OM accumulation, showed no significant relationship, emphasizing the importance of sediment content over quantity. Noteworthy findings include the role of sediment grain size in OM storage within mangrove sediments. Even though the grain size class of 63 µm diameter had the highest mean weight across the studied sites, there were significant positive correlations between Trap and Bottom OM with 500 and 2000 µm grain size classes, emphasizing the need to consider sediment characteristics in carbon dynamics assessments. Overall, this research provides valuable insights into the intricate environmental dynamics of mangrove ecosystems that are crucial to understanding and managing these vital coastal habitats.

14.
Chemosphere ; 362: 142918, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043273

RESUMEN

Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.


Asunto(s)
Carbono , Carbón Orgánico , Micorrizas , Microbiología del Suelo , Suelo , Humedales , Carbón Orgánico/química , Carbono/metabolismo , Suelo/química , Micorrizas/fisiología , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Fotosíntesis , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
15.
Sci Total Environ ; 949: 174769, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067592

RESUMEN

Peatlands are a major store of soil carbon, due to their high concentration of carbon-rich decayed plant material. Consequently, accurate assessment of peat volumes is important for determining land-use carbon budgets, especially in the Northern hemisphere. Determination of carbon stocks at the scale of individual peat sites has principally relied on either mechanical probing or electromagnetic geophysical methods. In this study, we investigated the use of seismic nodal instrumentation for quantifying peat depth. We used Stryde™ nodes for a deployment at the Whixall moss in Shropshire, England. We measured seismic arrival times from peat-bottom reflections, as well as dispersive surface waves to invert for a model of variable peat depth along a linear cross-section. The use of very small seismic nodes (micronodes) allows for particularly rapid deployment on challenging terrain.

16.
J Environ Manage ; 367: 122005, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079485

RESUMEN

Soil organic carbon and nitrogen play pivotal roles as indicators of soil quality and ecological functioning in wetlands. The escalating impact of human activities and climate change has led to a severe degradation of wetland soils, particularly in semi-arid regions. However, an understanding of the factors governing the dynamics of total soil organic carbon (TSOC) and total soil nitrogen (TSN) in semi-arid areas remains elusive, impeding a comprehensive understanding of wetland ecological functions. The present study investigated variations in TSOC and TSN content as well as vegetation and soil physicochemical properties under five different land management practices (mowed wetlands, mowed and slightly grazed wetlands, moderately grazed wetlands, heavily grazed wetlands, and natural wetlands unaffected by human interference) in the semi-arid Songnen Plain region of China. The results revealed significant decreases in TSOC and TSN content within managed wetlands compared to natural wetlands. Moreover, positive correlations were observed between pairs of SOC-TN or their storage values for SOC (TSOC)-TN (TSN). Furthermore, TSOC and TSN exhibited significant positive associations with aboveground and belowground biomass levels, stem C:N, stem C:P, soil C:P, and soil N:P. Additionally, redundancy analysis indicated that species diversity accounted for 37.4% of the variations in TSOC-TSN while belowground biomass accounted for 8.5% of the variations. Furthermore, nutrient content within stems (particularly N content and C:P) contributed to a 37.2% variation in TSOC and TSN whereas root nutrient content (especially N:P, C:N, and C:P) contributed to a 15.3% variation. Soil C:P, C:N, and total phosphorous (TP) content accounted for 65.7%, 9.6%, and 7.5% of variations of TSOC and TSN, respectively. Besides, variation partitioning analysis revealed that plant community characteristics, community nutrient content, and soil physicochemical properties collectively influenced the dynamics of TSOC and TSN. Among these factors, soil physicochemical properties emerged as the primary drivers of carbon and nitrogen dynamics in degraded wetlands in semi-arid regions. The impact on TSN was more pronounced than that of TSOC. This study provides valuable insights for understanding the processes and mechanisms underlying carbon and nitrogen accumulation in degraded wetlands, facilitating the development of regionally adaptive management plans under different management practices.


Asunto(s)
Carbono , Nitrógeno , Suelo , Humedales , Nitrógeno/análisis , Suelo/química , Carbono/análisis , China , Biomasa
17.
Environ Res ; 260: 119623, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019140

RESUMEN

Carbon storage and the aboveground biomass of farmland provide practical significance for understanding global changes and ensuring food production and quality. Based on soil carbon storage, aboveground biomass, climate, geochemistry, and other data from 19 farmland ecological stations in China, we analysed the distribution characteristics of farmland carbon storage in topsoil and aboveground biomass. We notably revealed the response direction and degree of climate and geochemical factors to farmland carbon storage in topsoil and aboveground biomass. The results indicated that the average carbon stocks of farmland in different regions ranged from 0.28 to 7.91 kg m-2, the average fresh weight of the aboveground biomass (FAB) ranged from 1370.64 to 5997.28 g m-2, and the average dry weight of the aboveground biomass (DAB) ranged from 119.95 to 852.35 g m-2. The least angle regression (LARS) and the best subsection selection regression (BSS) showed that evapotranspiration and extreme low temperatures were significant climatic factors affecting carbon sequestration and aboveground biomass on long-time scales. The linear mixed-effects model (LMM) further showed that AN and AP had significant long-term effects on carbon sequestration and aboveground biomass (p < 0.05), with AN having the highest contribution to SOC%, FAB, and DAB. The structural equation model (SEM) showed that carbon sequestration and aboveground biomass in agricultural fields were significantly positively correlated (p < 0.05). Moreover, the climate had a less direct contribution to carbon sequestration and above-ground biomass compared to geochemistry (PCc < 0.1

Asunto(s)
Biomasa , Carbono , Cambio Climático , Productos Agrícolas , Suelo , China , Suelo/química , Carbono/análisis , Productos Agrícolas/crecimiento & desarrollo , Agricultura , Secuestro de Carbono
18.
Data Brief ; 55: 110643, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39049968

RESUMEN

This dataset encompasses high-resolution computed tomography scans of small samples of the lower Mount Simon Sandstone from the subsurface of the Illinois Basin. Samples were collected as part of various geological carbon storage characterization efforts and publications focusing on the Mount Simon as a storage reservoir, with scanning performed at the National Energy Technology Laboratory. Thirty-seven three-dimensional (3D) volumes at various resolutions are described and presented as a resource that illustrates the pore and grain size distributions, as well as other petrographic characteristics. This high-quality, fine resolution, 3D image dataset of an important carbon storage target rock formation can be utilized by researchers as a training dataset for machine learning algorithms and for further reservoir characterizations.

19.
Mar Environ Res ; 199: 106621, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38909538

RESUMEN

The seabed of the Antarctic continental shelf hosts most of Antarctica's known species, including taxa considered indicative of vulnerable marine ecosystems (VMEs). Nonetheless, the potential impact of climatic and environmental change, including marine icescape transition, on Antarctic shelf zoobenthos, and their blue carbon-associated function, is still poorly characterised. To help narrow knowledge gaps, four continental shelf study areas, spanning a southern polar gradient, were investigated for zoobenthic (principally epi-faunal) carbon storage (a component of blue carbon), and potential environmental influences, employing a functional group approach. Zoobenthic carbon storage was highest at the two southernmost study areas (with a mean estimate of 41.6 versus 7.2 g C m-2) and, at each study area, increased with morphotaxa richness, overall faunal density, and VME indicator density. Functional group mean carbon content varied with study area, as did each group's percentage contribution to carbon storage and faunal density. Of the environmental variables explored, sea-ice cover and primary production, both likely to be strongly impacted by climate change, featured in variable subsets most highly correlating with assemblage and carbon storage (by functional groups) structures. The study findings can underpin biodiversity- and climate-considerate marine spatial planning and conservation measures in the Southern Ocean.


Asunto(s)
Biodiversidad , Carbono , Cambio Climático , Regiones Antárticas , Carbono/metabolismo , Carbono/análisis , Animales , Ecosistema , Monitoreo del Ambiente , Organismos Acuáticos , Secuestro de Carbono , Cubierta de Hielo/química
20.
Sci Total Environ ; 944: 173848, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38871318

RESUMEN

More than 80 % of China's grasslands are classified as degraded, and the loss of soil carbon storage due to degradation has a significant impact on China's terrestrial carbon sinks as well as carbon neutrality targets. The loss of soil carbon storage in degraded grasslands can serve as a benchmark for quantifying the carbon sequestration capacity of restored grasslands in the future. Here, above- and below-ground biomass, soil organic carbon (SOC) content at various depths (0-100 cm) and soil bulk density were collected from 226 degradation sequences around China. The above information was integrated and statistically analyzed to quantify the difference of SOC storage between the degraded and natural grassland at national scale. The result showed that grassland degradation led to a significant reduction in SOC storage across different depths. SOC (0-100 cm) of degraded grassland decreased by 39 % compared to that of natural grassland, ranging from 21 % in the lightly degraded sites to 59 % of the extremely degraded sites. 15 potential predictors were used to estimate the national amount of these differences of 0-20 cm depth SOC storage as 5.29 ± 1.59 Pg C. This considerable carbon storage gap implies the necessity of China's grassland restoration project in achieving carbon neutrality goals in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA