Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Am J Hum Genet ; 111(10): 2219-2231, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226896

RESUMEN

Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.


Asunto(s)
Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Secuenciación del Exoma , Enfermedades de las Válvulas Cardíacas , Linaje , Humanos , Enfermedad de la Válvula Aórtica Bicúspide/genética , Enfermedad de la Válvula Aórtica Bicúspide/patología , Válvula Aórtica/anomalías , Válvula Aórtica/patología , Enfermedades de las Válvulas Cardíacas/genética , Masculino , Femenino , Predisposición Genética a la Enfermedad , Edad de Inicio , Fenotipo , Exoma/genética , Adulto , Cadenas Pesadas de Miosina/genética , Fibrilina-2/genética , Miosinas Cardíacas/genética
2.
Res Sq ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38947076

RESUMEN

Background: The demand for genetic services has outpaced the availability of resources, challenging clinicians untrained in genetic integration into clinical decision-making. The UTHealth Adult Cardiovascular Genomics Certificate (CGC) program trains non-genetic healthcare professionals to recognize, assess, and refer patients with heritable cardiovascular diseases. This asynchronous online course includes 24 modules in three tiers of increasing complexity, using realistic clinical scenarios, interactive dialogues, quizzes, and tests to reinforce learning. We hypothesized that the CGC will increase genomic competencies in this underserved audience and encourage applying genomic concepts in clinical practice. Methods: Required course evaluations include pre- and post-assessments, knowledge checks in each module, and surveys for module-specific feedback. After 6 months, longitudinal feedback surveys gathered data on the long-term impact of the course on clinical practice and conducted focused interviews with learners. Results: The CGC was accredited in September 2022. Principal learners were nurses (24%), nurse practitioners (21%), physicians (16%), and physician assistants. Scores of 283 learners in paired pre- and post-assessments increased specific skills related to recognizing heritable diseases, understanding inheritance patterns, and interpreting genetic tests. Interviews highlighted the CGC's modular structure and linked resources as key strengths. Learners endorsed confidence to use genetic information in clinical practice, such as discussing genetic concepts and risks with patients and referring patients for genetic testing. Learners were highly likely to recommend the CGC to colleagues, citing its role in enhancing heritable disease awareness. Conclusions: The CGC program effectively empowers non-genetic clinicians to master genomic competencies, fostering collaboration to prevent deaths from heritable cardiovascular diseases, and potentially transforming healthcare education and clinical practice.

3.
Genes (Basel) ; 15(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39062663

RESUMEN

The JAK2 V617F somatic variant is a well-known driver of myeloproliferative neoplasms (MPN) associated with an increased risk for athero-thrombotic cardiovascular disease. Recent studies have demonstrated its role in the development of thoracic aortic aneurysm (TAA). However, limited clinical information and level of JAK2 V617F burden have been provided for a comprehensive evaluation of potential confounders. A retrospective genotype-first study was conducted to identify carriers of the JAK2 V617F variant from an internal exome sequencing database in Yale DNA Diagnostics Lab. Additionally, the overall incidence of somatic variants in the JAK2 gene across various tissue types in the healthy population was carried out based on reanalysis of SomaMutDB and data from the UK Biobank (UKBB) cohort to compare our dataset to the population prevalence of the variant. In our database of 12,439 exomes, 594 (4.8%) were found to have a thoracic aortic aneurysm (TAA), and 12 (0.049%) were found to have a JAK2 V617F variant. Among the 12 JAK2 V617F variant carriers, five had a TAA (42%), among whom four had an ascending TAA and one had a descending TAA, with a variant allele fraction ranging from 11.2% to 20%. Among these five patients, 60% were female, and average age at diagnosis was 70 (49-79). The mean ascending aneurysm size was 5.05 cm (range 4.6-5.5 cm), and four patients had undergone surgical aortic replacement or repair. UKBB data revealed a positive correlation between the JAK2 V617F somatic variant and aortic valve disease (effect size 0.0086, p = 0.85) and TAA (effect size = 0.004, p = 0.92), although not statistically significant. An unexpectedly high prevalence of TAA in our dataset (5/594, 0.84%) is greater than the prevalence reported before for the general population, supporting its association with TAA. JAK2 V617F may contribute a meaningful proportion of otherwise unexplained aneurysm patients. Additionally, it may imply a potential JAK2-specific disease mechanism in the developmental of TAA, which suggests a possible target of therapy that warrants further investigation.


Asunto(s)
Aneurisma de la Aorta Torácica , Janus Quinasa 2 , Humanos , Janus Quinasa 2/genética , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/epidemiología , Aneurisma de la Aorta Torácica/patología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Secuenciación del Exoma , Mutación
4.
JACC Case Rep ; 29(13): 102379, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38827265

RESUMEN

RASopathies cause nonsarcomeric hypertrophic cardiomyopathy via dysregulated signaling through RAS and upregulated mitogen-activated protein kinase activity. We provide the first report of the successful treatment of an adult with RAF1-associated hypertrophic cardiomyopathy using trametinib, a MEK inhibitor.

5.
Genes (Basel) ; 15(4)2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674439

RESUMEN

Extracardiac anomalies (ECAs) are strong predictors of genetic disorders in infants with congenital heart disease (CHD), but there are no prior studies assessing performance of ECA status as a screen for genetic diagnoses in CHD patients. This retrospective cohort study assessed this in our comprehensive inpatient CHD genetics service focusing on neonates and infants admitted to the intensive care unit (ICU). The performance and diagnostic utility of using ECA status to screen for genetic disorders was assessed using decision curve analysis, a statistical tool to assess clinical utility, determining the threshold of phenotypic screening by ECA versus a Test-All approach. Over 24% of infants had genetic diagnoses identified (n = 244/1013), and ECA-positive status indicated a 4-fold increased risk of having a genetic disorder. However, ECA status had low-moderate screening performance based on predictive summary index, a compositive measure of positive and negative predictive values. For those with genetic diagnoses, nearly one-third (32%, 78/244) were ECA-negative but had cytogenetic and/or monogenic disorders identified by genetic testing. Thus, if the presence of multiple congenital anomalies is the phenotypic driver to initiate genetic testing, 13.4% (78/580) of infants with isolated CHD with identifiable genetic causes will be missed. Given the prevalence of genetic disorders and limited screening performance of ECA status, this analysis supports genetic testing in all CHD infants in intensive care settings rather than screening based on ECA.


Asunto(s)
Pruebas Genéticas , Cardiopatías Congénitas , Humanos , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/diagnóstico , Pruebas Genéticas/métodos , Recién Nacido , Femenino , Masculino , Estudios Retrospectivos , Lactante , Unidades de Cuidados Intensivos , Toma de Decisiones Clínicas
6.
Nat Mach Intell ; 6(3): 291-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523678

RESUMEN

Recent genome-wide association studies have successfully identified associations between genetic variants and simple cardiac morphological parameters derived from cardiac magnetic resonance images. However, the emergence of large databases, including genetic data linked to cardiac magnetic resonance facilitates the investigation of more nuanced patterns of cardiac shape variability than those studied so far. Here we propose a framework for gene discovery coined unsupervised phenotype ensembles. The unsupervised phenotype ensemble builds a redundant yet highly expressive representation by pooling a set of phenotypes learnt in an unsupervised manner, using deep learning models trained with different hyperparameters. These phenotypes are then analysed via genome-wide association studies, retaining only highly confident and stable associations across the ensemble. We applied our approach to the UK Biobank database to extract geometric features of the left ventricle from image-derived three-dimensional meshes. We demonstrate that our approach greatly improves the discoverability of genes that influence left ventricle shape, identifying 49 loci with study-wide significance and 25 with suggestive significance. We argue that our approach would enable more extensive discovery of gene associations with image-derived phenotypes for other organs or image modalities.

7.
Methodist Debakey Cardiovasc J ; 20(2): 51-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495666

RESUMEN

Thoracic aortic disease (TAD) poses substantial risks during pregnancy, particularly for women with genetic conditions such as Marfan syndrome, Loeys-Dietz syndrome, and vascular Ehlers-Danlos syndrome. This review examines the epidemiology, risk assessment, and management of TAD in pregnancy. Preconception counseling is vital considering the hereditary nature of TAD and potential pregnancy-related complications. Genetic testing and imaging surveillance aid in risk assessment. Medical management, including beta-blockade and strict blood pressure control, is essential throughout pregnancy. Surgical interventions may be necessary in certain cases. A multidisciplinary approach involving cardiologists, obstetricians, cardiac surgeons, anesthesiologists, and other specialists with expertise in cardio-obstetrics is essential for optimal outcomes. Patient education and shared decision-making play vital roles in navigating the complexities of TAD in pregnancy and improving maternal and neonatal outcomes.


Asunto(s)
Enfermedades de la Aorta , Síndrome de Loeys-Dietz , Síndrome de Marfan , Embarazo , Recién Nacido , Humanos , Femenino , Aorta , Síndrome de Loeys-Dietz/complicaciones , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/epidemiología , Síndrome de Marfan/terapia , Medición de Riesgo
8.
medRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370698

RESUMEN

Bicuspid Aortic Valve (BAV) is the most common adult congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that early onset complications of BAV (EBAV) are driven by specific impactful genetic variants. We analyzed whole exome sequences (WES) to identify rare coding variants that contribute to BAV disease in 215 EBAV families. Predicted pathogenic variants of causal genes were present in 111 EBAV families (51% of total), including genes that cause BAV (8%) or heritable thoracic aortic disease (HTAD, 17%). After appropriate filtration, we also identified 93 variants in 26 novel genes that are associated with autosomal dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants contribute to early onset complications of BAV disease.

9.
Curr Cardiol Rep ; 26(3): 135-146, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38277082

RESUMEN

PURPOSE OF REVIEW: Pathogenic DNA variants underlie many cardiovascular disease phenotypes. The most well-recognized of these include familial dyslipidemias, cardiomyopathies, arrhythmias, and aortopathies. The clinical presentations of monogenic forms of cardiovascular disease are often indistinguishable from those with complex genetic and non-genetic etiologies, making genetic testing an essential aid to precision diagnosis. RECENT FINDINGS: Precision diagnosis enables efficient management, appropriate use of emerging targeted therapies, and follow-up of at-risk family members. Genetic testing for these conditions is widely available but under-utilized. In this review, we summarize the potential benefits of genetic testing, highlighting the specific cardiovascular disease phenotypes in which genetic testing should be considered, and how clinicians can integrate guideline-directed genetic testing into their practice.


Asunto(s)
Cardiología , Cardiomiopatías , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Pruebas Genéticas , Cardiomiopatías/genética , Fenotipo
10.
Struct Heart ; 7(5): 100200, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37745678

RESUMEN

Dilated cardiomyopathy (DCM) is a common cause of heart failure and is the primary indication for heart transplantation. A genetic etiology can be found in 20-35% of patients with DCM, especially in those with a family history of cardiomyopathy or sudden cardiac death at an early age. With advancements in genome sequencing, the understanding of genotype-phenotype relationships in DCM has expanded with over 60 genes implicated in the disease. Subsequently, these findings have increased adoption of genetic testing in the management of DCM, which has allowed for improved risk stratification and identification of at risk family members. In this review, we discuss the genetic evaluation of DCM with a focus on practical genetic testing considerations, genotype-phenotype associations, and insights into upcoming personalized therapies.

13.
J Pediatr ; 260: 113495, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37211210

RESUMEN

OBJECTIVE: To evaluate genetic evaluation practices in newborns with the most common birth defect, congenital heart defects (CHD), we determined the prevalence and the yield of genetic evaluation across time and across patient subtypes, before and after implementation of institutional genetic testing guidelines. STUDY DESIGN: This was a retrospective, cross-sectional study of 664 hospitalized newborns with CHD using multivariate analyses of genetic evaluation practices across time and patient subtypes. RESULTS: Genetic testing guidelines for hospitalized newborns with CHD were implemented in 2014, and subsequently genetic testing increased (40% in 2013 and 75% in 2018, OR 5.02, 95% CI 2.84-8.88, P < .001) as did medical geneticists' involvement (24% in 2013 and 64% in 2018, P < .001). In 2018, there was an increased use of chromosomal microarray (P < .001), gene panels (P = .016), and exome sequencing (P = .001). The testing yield was high (42%) and consistent across years and patient subtypes analyzed. Increased testing prevalence (P < .001) concomitant with consistent testing yield (P = .139) added an estimated 10 additional genetic diagnoses per year, reflecting a 29% increase. CONCLUSIONS: In patients with CHD, yield of genetic testing was high. After implementing guidelines, genetic testing increased significantly and shifted to newer sequence-based methods. Increased use of genetic testing identified more patients with clinically important results with potential to impact patient care.


Asunto(s)
Pruebas Genéticas , Cardiopatías Congénitas , Humanos , Recién Nacido , Estudios Retrospectivos , Estudios Transversales , Pruebas Genéticas/métodos , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/epidemiología , Análisis por Micromatrices
14.
Cureus ; 15(4): e37998, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37252476

RESUMEN

In this case report, we investigated the potential link between SMAD3/transforming growth factor ß (TGF-ß) pathway dysregulation and aortic valvular disease. We report a middle-aged female, heterozygous for the R18W novel variant of the SMAD3 gene, with a history of an aortic valve disorder and three aortic valve replacements in a span of 15 years. The patient neither has a history of congenital connective tissue disorders nor any known congenital valvular defects. The patient had genetic testing for thoracic aortic aneurysm and dissection (TAAD)/Marfan syndrome/related disorders. She was found to be heterozygous for the p.Arg18Trp (R18W) protein variant of the SMAD3 gene (chromosome position 15:67430416), coding DNA c.52 C>T. Members of the transforming growth factor ß (TGF-ß) family and their downstream signaling proteins, including SMAD, are important for establishing proper embryogenic development and maintaining adult tissue homeostasis. Investigating the disturbances within the TGF-ß signaling pathways may provide insightful knowledge of how genetic factors can cause structural and functional valvular defects.

15.
Acta Cardiol ; 78(1): 124-134, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36189773

RESUMEN

BACKGROUND AND AIMS: Assessment of cardiovascular risk using established risk scores such as ESC SCORE2 or PROCAM insufficiently emphasise the role of genetic factors. We hypothesise that commercially available genetic assays may provide additional information on hereditary cardiovascular risk in a timely and cost-efficient manner. METHODS: In a cohort of 51 patients treated for coronary artery disease (CAD) at University Hospital Heidelberg, Germany, a subgroup of patients with "unstable" CAD (i.e. recurrent acute coronary syndrome) was identified and compared to patients with "stable" disease (i.e. chronic coronary syndrome). Gene array analysis using a commercial assay for 15 potentially pathogenic polymorphisms revealed our cohort's genetic risk profile regarding atherosclerotic/thromboembolic events. Improvement of cardiovascular risk assessment based on established risk scores was analysed using net reclassification, logistic regression and receiver operating characteristic (ROC) analysis. RESULTS: Discriminatory capacity of traditional risk scores such as SCORE2 or PROCAM with regard to stable and unstable CAD groups was poor (ROC AUC <0.5). Patients with "unstable" CAD exhibited a significantly increased frequency of pathogenic eNOS 894 T and MTHFR 1298 C polymorphisms compared to "stable" CAD patients, and information on these polymorphisms individually as well as combinations with additional polymorphisms included in the assay such as ACE D/D or PAI-1 5 G variants markedly improved risk prediction compared to SCORE2/PROCAM alone (ROC AUC ≥0.75). CONCLUSION: Commercially available assays for genetic polymorphisms may provide valuable information on individual genetic cardiovascular risk, potentially guiding future primary and/or secondary preventative therapies for coronary artery disease.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Proyectos Piloto , Factores de Riesgo , Medición de Riesgo , Polimorfismo Genético , Factores de Riesgo de Enfermedad Cardiaca
16.
Nat Cardiovasc Res ; 2(12): 1291-1309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665938

RESUMEN

Timothy syndrome 1 (TS1) is a multi-organ form of long QT syndrome associated with life-threatening cardiac arrhythmias, the organ-level dynamics of which remain unclear. In this study, we developed and characterized a novel porcine model of TS1 carrying the causative p.Gly406Arg mutation in CACNA1C, known to impair CaV1.2 channel inactivation. Our model fully recapitulated the human disease with prolonged QT interval and arrhythmic mortality. Electroanatomical mapping revealed the presence of a functional substrate vulnerable to reentry, stemming from an unforeseen constitutional slowing of cardiac activation. This signature substrate of TS1 was reliably identified using the reentry vulnerability index, which, we further demonstrate, can be used as a benchmark for assessing treatment efficacy, as shown by testing of multiple clinical and preclinical anti-arrhythmic compounds. Notably, in vitro experiments showed that TS1 cardiomyocytes display Ca2+ overload and decreased peak INa current, providing a rationale for the arrhythmogenic slowing of impulse propagation in vivo.

17.
Nat Cardiovasc Res ; 2(11): 1078-1094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38666070

RESUMEN

Discrete categorization of Mendelian disease genes into dominant and recessive models often oversimplifies their underlying genetic architecture. Cardiomyopathies (CMs) are genetic diseases with complex etiologies for which an increasing number of recessive associations have recently been proposed. Here, we comprehensively analyze all published evidence pertaining to biallelic variation associated with CM phenotypes to identify high-confidence recessive genes and explore the spectrum of monoallelic and biallelic variant effects in established recessive and dominant disease genes. We classify 18 genes with robust recessive association with CMs, largely characterized by dilated phenotypes, early disease onset and severe outcomes. Several of these genes have monoallelic association with disease outcomes and cardiac traits in the UK Biobank, including LMOD2 and ALPK3 with dilated and hypertrophic CM, respectively. Our data provide insights into the complex spectrum of dominance and recessiveness in genetic heart disease and demonstrate how such approaches enable the discovery of unexplored genetic associations.

18.
Camb Prism Precis Med ; 1: e34, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38550947

RESUMEN

Precision medicine for cardiomyopathies holds great promise to improve patient outcomes costs by shifting the focus to patient-specific treatment decisions, maximising the use of therapies most likely to lead to benefit and minimising unnecessary intervention. Dilated cardiomyopathy (DCM), characterised by left ventricular dilatation and impairment, is a major cause of heart failure globally. Advances in genomic medicine have increased our understanding of the genetic architecture of DCM. Understanding the functional implications of genetic variation to reveal genotype-specific disease mechanisms is the subject of intense investigation, with advanced cardiac imaging and mutliomics approaches playing important roles. This may lead to increasing use of novel, targeted therapy. Individualised treatment and risk stratification is however made more complex by the modifying effects of common genetic variation and acquired environmental factors that help explain the variable expressivity of rare genetic variants and gene elusive disease. The next frontier must be expanding work into early disease to understand the mechanisms that drive disease expression, so that the focus can be placed on disease prevention rather than management of later symptomatic disease. Overcoming these challenges holds the key to enabling a paradigm shift in care from the management of symptomatic heart failure to prevention of disease.

19.
Front Cardiovasc Med ; 9: 966707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277767

RESUMEN

Background: The use of cannabis has increased globally due to more regions decriminalizing marijuana use for therapeutic and recreational aims. Several observational studies have revealed that cannabis use is associated with an increased risk of adverse cardiovascular pathologies and diseases. Nevertheless, the causal associations between cannabis use and cardiovascular diseases remain unclear. Hence, we performed single-variable and multivariable Mendelian randomization (MR) to evaluate the association between cannabis use disorder and various cardiovascular diseases. Materials and methods: Summary statistics were collected from the largest-to-date genome-wide association studies (GWAS) of cannabis use disorder. The 12 SNPs for cannabis use disorder were used as instrumental variables in this study. MR estimates were pooled using a random-effects inverse-variance weighted (IVW) method. Simple median and weighted median methods were conducted as sensitivity analyses. Results: The genetic liability to cannabis use disorder was associated with an augmented risk of coronary artery disease, myocardial infarction, atrial fibrillation, heart failure, deep venous thrombosis, pulmonary embolism, and stroke. Except for stroke, the results were inconsistent in the sensitivity analyses. The overall patterns for the associations of cannabis use disorder with atrial fibrillation, heart failure, pulmonary embolism and stroke remained in multivariable MR analyses adjusting for potential mediators, including smoking, alcohol, body mass index, blood lipid, type 2 diabetes, hypertension, and depression. However, the association with coronary artery disease, myocardial infarction, and deep venous thrombosis did not persist in multivariable MR analyses. Mediation analysis demonstrated that smoking, body mass index, low-density lipoprotein, hypertension, and depression have more significant mediation effects, which suggests that these factors partly mediate the link from cannabis use disorder to coronary artery disease, myocardial infarction, and deep venous thrombosis. Conclusion: The genetic liability to cannabis use disorder was associated with a higher risk of atrial fibrillation, heart failure, pulmonary embolism, and stroke. The evidence for the association between cannabis use disorder, coronary artery disease, myocardial infarction, and deep venous thrombosis was weak. Hence, future use of cannabis for therapeutic and recreational aims should consider its potential impact on cardiovascular diseases.

20.
Commun Med (Lond) ; 2: 108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034645

RESUMEN

Background: The genetic basis for coronary artery disease (CAD) risk is highly complex. Genome-wide polygenic risk scores (PRS) can help to quantify that risk, but the broader impacts of polygenic risk for CAD are not well characterized. Methods: We measured polygenic risk for CAD using the meta genomic risk score, a previously validated genome-wide PRS, in a subset of genotyped participants from the Women's Health Initiative and applied a phenome-wide association study framework to assess associations between the PRS and a broad range of blood biomarkers, clinical measurements, and health outcomes. Results: Polygenic risk for CAD is associated with a variety of biomarkers, clinical measurements, behaviors, and diagnoses related to traditional risk factors, as well as risk-enhancing factors. Analysis of adjudicated outcomes shows a graded association between atherosclerosis related outcomes, with the highest odds ratios being observed for the most severe manifestations of CAD. We find associations between increased polygenic risk for CAD and decreased risk for incident breast and lung cancer, with replication of the breast cancer finding in an external cohort. Genetic correlation and two-sample Mendelian randomization suggest that breast cancer association is likely due to horizontal pleiotropy, while the association with lung cancer may be causal. Conclusion: Polygenic risk for CAD has broad clinical manifestations, reflected in biomarkers, clinical measurements, behaviors, and diagnoses. Some of these associations may represent direct pathways between genetic risk and CAD while others may reflect pleiotropic effects independent of CAD risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA