Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230.013
Filtrar
1.
Biomaterials ; 313: 122775, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39241549

RESUMEN

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Nanopartículas , Infarto del Miocardio/terapia , Animales , Nanopartículas/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , MicroARNs/genética , Masculino , Recuperación de la Función , Trasplante de Células Madre Mesenquimatosas/métodos , Humanos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones , Microburbujas , Ondas Ultrasónicas
2.
Biomaterials ; 313: 122763, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39180917

RESUMEN

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Asunto(s)
Cobre , Nanomedicina , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Microambiente Tumoral/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Animales , Femenino , Nanomedicina/métodos , Cobre/química , Cobre/farmacología , Línea Celular Tumoral , Ratones , Nanopartículas/química , Ratones Endogámicos BALB C , Terapia Fototérmica/métodos , Humanos , Polímeros/química , Indoles/farmacología
3.
Arch Acad Emerg Med ; 13(1): e2, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39318865

RESUMEN

Introduction: Exosomes function as cell signaling carriers and have drawn much attention to the cell-free treatments of regenerative medicine. This meta-analysis aimed to investigate the efficacy of mesenchymal stem cell-derived (MSC-derived) exosomes in animal models of spinal cord injuries (SCI). Method: A comprehensive search was conducted in Medline, Embase, Scopus, and Web of Science to attain related articles published by January 31, 2023. The eligible keywords were correlated with the spinal cord injury and MSC-derived exosomes. The evaluated outcomes were locomotion, cavity size, cell apoptosis, inflammation, neuro-regeneration, and microglia activation. A standardized mean difference was calculated for each sample and a pooled effect size was reported. Results: 65 papers fully met the inclusion criteria. Treatment with MSC-derived exosomes ultimately improved locomotion and shrunk cavity size (p<0.0001). The administration of MSC-derived exosomes enhanced the expression of beta-tubulin III, NF200, and GAP-43, and increased the number of NeuN-positive and Nissl-positive cells, while reducing the expression of glial fibrillary acidic protein (p<0.0001). The number of apoptotic cells in the treatment group decreased significantly (p<0.0001). Regarding the markers of microglia activation, MSC-derived exosomes increased the number of CD206- and CD68-positive cells (p=0.032 and p<0.0001, respectively). Additionally, MSC-derived exosome administration significantly increased the expression of the anti-inflammatory interleukin (IL)-10 and IL-4 (p<0.001 and p=0.001, respectively) and decreased the expression of the inflammatory IL-1b, IL-6, and TNF-a (p<0.0001). Conclusion: MSC-derived exosome treatment resulted in a significantly improved locomotion of SCI animals through ameliorating neuroinflammation, reducing apoptosis, and inducing neuronal regrowth by facilitating a desirable microenvironment.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124988, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163772

RESUMEN

Two quinoxaline dyes utilized in copper-electrolyte-based dye-sensitized solar cells (Cu-DSSCs) are theoretically investigated to analyze the impact of alkyl chains on dye performance. The investigation shows that ZS4, known for its record efficiency of up to 13.2 %, exhibits higher electron coupling and fewer binding sites for dye-[Cu(tmby)2]2+ interaction compared to ZS5. Contrary to common belief, alkyl chains are found to not only provide shielding but also hinder the interaction between dye and [Cu(tmby)2]2+ by influencing the optimal conformation of dyes, thereby impeding the charge recombination process. It is crucial to consider the influence of alkyl chains on dye conformation when discussing the relationship between dye structure and performance, rather than oversimplifying it as often done traditionally. Building on these findings, eight dyes are strategically designed by adjusting the position of the alkyl chain to further decrease charge recombination compared to ZS4. Theoretical evaluation of these dyes reveals that changing the alkyl chain on the nitrogen atom from 2-ethylhexyl (ZS4) to 1-hexylheptyl (D3-2) not only reduces the charge recombination rate but also enhances light harvesting ability. Therefore, D3-2 shows potential as a candidate for experimental synthesis of high-performance Cu-DSSCs with improved efficiency.

5.
Ophthalmol Sci ; 5(1): 100589, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39328826

RESUMEN

Purpose: To evaluate the feasibility and safety of intravitreal injection of autologous CD34+ stem cells from bone marrow (BMSCs) in eyes with vision loss from retinitis pigmentosa (RP). Design: Phase I prospective, open-label, single-center study. Participants: Seven eyes (7 patients) with RP with best-corrected visual acuity (BCVA) of 20/60 to 20/400 or visual field constriction to within 10°. Methods: A comprehensive examination with ETDRS BCVA, macular OCT, perimetry, and fluorescein angiography was performed at baseline, 1 to 3 months, and 6 months after study treatment. Bone marrow aspiration, isolation of CD34+ BMSCs under good manufacturing practice conditions, and intravitreal cell injection were performed on the same day. The CD34+ cells were isolated from bone marrow using a Ficoll gradient and the Miltenyi CliniMACS system. Isolated CD34+ cells were released for clinical use if viability, sterility, and purity met the release criteria accepted by the United States Food and Drug Administration for this clinical study. Main Outcome Measures: Number of CD34+ cells isolated for injection and adverse events associated with study treatment during follow-up. Secondary outcome measures are changes in BCVA and perimetry. Results: All isolated CD34+ cells passed the release criteria. A mean of 3.26 ± 0.66 million viable CD34+ cells (range 1.6 to 7.05 million) were injected intravitreally per eye. No adverse event was noted during the study follow-up except for 1 participant who was noted with transient cells in the anterior chamber with mild elevation in intraocular pressure at 18 hours after study injection which normalized by 24 hours. Best-corrected visual acuity remained within 2 lines of baseline or improved in all participants at 6 months follow-up. Perimetry was stable or improved in all eyes during study follow-up except 1 eye with transient improvement at 1 month and worsening of both eyes at 6 months. Conclusions: Intravitreal injection of autologous CD34+ BMSCs is feasible and appears to be well tolerated in eyes with vision loss from RP. A larger randomized prospective study would be needed to evaluate further the safety and potential efficacy of this cell therapy for vision loss associated with RP. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

6.
J Environ Sci (China) ; 149: 676-687, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181677

RESUMEN

Epithelial-mesenchymal transition (EMT) plays an irreplaceable role in the development of silicosis. However, molecular mechanisms of EMT induced by silica exposure still remain to be addressed. Herein, metabolic profiles of human alveolar type II epithelial cells (A549 cells) exposed directly to silica were characterized using non-targeted metabolomic approaches. A total of 84 differential metabolites (DMs) were identified in silica-treated A549 cells undergoing EMT, which were mainly enriched in metabolisms of amino acids (e.g., glutamate, alanine, aspartate), purine metabolism, glycolysis, etc. The number of DMs identified in the A549 cells obviously increased with the elevated exposure concentration of silica. Remarkably, glutamine catabolism was significantly promoted in the silica-treated A549 cells, and the levels of related metabolites (e.g., succinate) and enzymes (e.g., α-ketoglutarate (α-KG) dehydrogenase) were substantially up-regulated, with a preference to α-KG pathway. Supplementation of glutamine into the cell culture could substantially enhance the expression levels of both EMT-related markers and Snail (zinc finger transcription factor). Our results suggest that the EMT of human alveolar epithelial cells directly induced by silica can be essential to the development of silicosis.


Asunto(s)
Células Epiteliales Alveolares , Transición Epitelial-Mesenquimal , Dióxido de Silicio , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Dióxido de Silicio/toxicidad , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células A549 , Silicosis/metabolismo , Metaboloma/efectos de los fármacos
7.
Protein Expr Purif ; 225: 106596, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39218246

RESUMEN

Optimizations of the gene expression cassette combined with the selection of an appropriate signal peptide are important factors that must be considered to enhance heterologous protein expression in Chinese Hamster Ovary (CHO) cells. In this study, we investigated the effectiveness of different signal peptides on the production of recombinant human chorionic gonadotropin (r-hCG) in CHO-K1 cells. Four optimized expression constructs containing four promising signal peptides were stably transfected into CHO-K1 cells. The generated CHO-K1 stable pool was then evaluated for r-hCG protein production. Interestingly, human serum albumin and human interleukin-2 signal peptides exhibited relatively greater extracellular secretion of the r-hCG with an average yield of (16.59 ± 0.02 µg/ml) and (14.80 ± 0.13 µg/ml) respectively compared to the native and murine IgGκ light chain signal peptides. The stably transfected CHO pool was further used as the cell substrate to develop an optimized upstream process followed by a downstream phase of the r-hCG. Finally, the biological activity of the purified r-hCG was assessed using in vitro bioassays. The combined data highlight that the choice of signal peptide can be imperative to ensure an optimal secretion of a recombinant protein in CHO cells. In addition, the stable pool technology was a viable approach for the production of biologically active r-hCG at a research scale with acceptable bioprocess performances and consistent product quality.


Asunto(s)
Gonadotropina Coriónica , Cricetulus , Proteínas Recombinantes , Células CHO , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Humanos , Gonadotropina Coriónica/genética , Gonadotropina Coriónica/biosíntesis , Gonadotropina Coriónica/farmacología , Cricetinae , Señales de Clasificación de Proteína/genética , Expresión Génica , Transfección
8.
Food Chem ; 462: 140953, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216374

RESUMEN

The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Peptidil-Dipeptidasa A , Zea mays , Animales , Humanos , Masculino , Ratas , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Antihipertensivos/química , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Células CACO-2 , Digestión/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Glútenes/química , Glútenes/metabolismo , Hidrólisis , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Péptidos/química , Péptidos/farmacología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Ratas Endogámicas SHR , Zea mays/química , Zea mays/metabolismo
9.
Methods Mol Biol ; 2855: 505-519, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39354324

RESUMEN

Cell cultures are widely used in studies to gain mechanistic insights of metabolic processes. The foundation of these studies lies on the quantification of intracellular and extracellular metabolites, and nuclear magnetic resonance (NMR) is one of the key analytical platforms used to this aim. Among the factors influencing the quality of the produced data are the sampling procedures as well as the acquisition and processing of spectroscopic data. Here we provide our workflow for obtaining quantitative metabolic data from adherent mammalian cells using NMR spectroscopy. The described protocol is compatible with other analytical methods like LC- or GC-MS-based lipidomics and untargeted metabolomics from the same sample. We also show how the collected extracellular data can be used to extract exchange flux rates, particularly useful for flux analysis studies and metabolic engineering of human-induced pluripotent stem cells.


Asunto(s)
Metabolismo Energético , Espectroscopía de Resonancia Magnética , Metabolómica , Humanos , Metabolómica/métodos , Espectroscopía de Resonancia Magnética/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Metaboloma , Animales , Lipidómica/métodos
10.
J Colloid Interface Sci ; 677(Pt A): 983-993, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39128292

RESUMEN

Direct lignin fuel cells (DLFC) are one of the important forms of high value-added utilization of lignin. In this study, lignin was studied not only as a fuel but also as a catalyst. Specifically, Kraft lignin was modified with ZnCl2, KOH and THF (Tetrahydrofuran) respectively, and added to the catalyst after activation. The results of scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), Brunauer - Emmett - Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra shown that AL/FePc-NrGO (activated lignin/iron phthalocyanine/nitrogen-doped reduction of graphene oxide) three-dimensional composite catalyst has been synthesized. The results showed that KOH-activated Kraft lignin had the best performance as an oxygen reduction reaction (ORR) catalyst, with a half-wave potential (E1/2) of 0.73 V and a limiting diffusion current density of 4.3 mA cm-1. The THF-modified catalyst showed similar stability and methanol resistance to 20 % Pt/C at ORR. The ORR catalyst applied to the DLFC has the best electrical performance with an open circuit voltage (OCV) was 0.53 V and the maximum power density it could reach 95.29 mW m-2 when the catalyst was modified with THF. It is encouraging that the AL/FePc-NrGO catalyst has better-generated electricity performance than 20 % Pt/C. This work has provided a new idea for developing non-noble metal catalysts and studying direct biomass liquid fuel cells.

11.
Biomaterials ; 313: 122757, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39178558

RESUMEN

Recent progress in stem cell therapy has demonstrated the therapeutic potential of intravenous stem cell infusions for treating the life-threatening lung disease of pulmonary fibrosis (PF). However, it is confronted with limitations, such as a lack of control over cellular function and rapid clearance by the host after implantation. In this study, we developed an innovative PF therapy through tracheal administration of microfluidic-templated stem cell-laden microcapsules, which effectively reversed the progression of inflammation and fibrotic injury. Our findings highlight that hydrogel microencapsulation can enhance the persistence of donor mesenchymal stem cells (MSCs) in the host while driving MSCs to substantially augment their therapeutic functions, including immunoregulation and matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) remodeling. We revealed that microencapsulation activates the MAPK signaling pathway in MSCs to increase MMP expression, thereby degrading overexpressed collagen accumulated in fibrotic lungs. Our research demonstrates the potential of hydrogel microcapsules to enhance the therapeutic efficacy of MSCs through cell-material interactions, presenting a promising yet straightforward strategy for designing advanced stem cell therapies for fibrotic diseases.


Asunto(s)
Matriz Extracelular , Factores Inmunológicos , Fibrosis Pulmonar , Células Madre , Cápsulas/química , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/terapia , Células Cultivadas , Humanos , Matriz Extracelular/química , Microfluídica , Supervivencia Celular/efectos de los fármacos , Hidrogeles/química , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Metaloproteinasas de la Matriz/metabolismo
12.
Methods Mol Biol ; 2857: 45-59, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39348054

RESUMEN

Flow cytometry serves as a crucial tool in immunology, allowing for the detailed analysis of immune cell populations. γδ T cells, a subset of T cells, play pivotal roles in immune surveillance and immune aging. Assessing the phenotype and functional capabilities of γδ T cells isolated from whole blood or tissue within the context of human aging yields invaluable insights into the dynamic changes affecting immune function, tissue homeostasis, susceptibility to infections, and inflammatory responses.


Asunto(s)
Envejecimiento , Citometría de Flujo , Inmunofenotipificación , Receptores de Antígenos de Linfocitos T gamma-delta , Humanos , Inmunofenotipificación/métodos , Envejecimiento/inmunología , Citometría de Flujo/métodos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología
13.
Methods Mol Biol ; 2857: 137-146, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39348062

RESUMEN

Extracellular vesicles (EVs) are lipid-bound particles produced by a wide variety of cells from different biological species. EVs can carry molecules, such as nucleic acids and metabolites, and are involved in cell functioning, communication, and signaling. Recent literature reported that pathogenic or commensal yeast strains can produce EVs targeting the host's immune system and exerting immunomodulatory actions. In humans, yeast EVs can be endocytosed by dendritic cells (DCs), characterized by phagocyting and migrating capabilities with the role of capturing antigens to present to T lymphocytes, triggering the immune response. Physiological or disease-associated immunosenescence impairs both DC functionality and gut microbiota; thus investigating the interaction between commensal microorganisms and the host's immune system would help elucidate the impact of aging on the immune system-microbiota interplay. We hereby present a protocol for the incubation of in vitro-generated human monocyte-derived DCs with EVs purified from different yeast strains isolated from fermented milk. The protocol includes flow cytometry analysis on DC activation markers and endocytosis assay.


Asunto(s)
Células Dendríticas , Vesículas Extracelulares , Monocitos , Humanos , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Monocitos/microbiología , Citometría de Flujo/métodos , Endocitosis , Levaduras/metabolismo , Saccharomyces cerevisiae/metabolismo , Células Cultivadas
14.
Methods Mol Biol ; 2857: 15-31, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39348052

RESUMEN

B cells are crucial components of the immune system, responsible for producing specific antibodies in response to infections and vaccines. Despite their uniform appearance, B cells display diverse surface molecules and functional properties, which are not yet fully understood. Apart from antibody production, B cells also play roles in antigen presentation and cytokine secretion, essential for initiating T-cell immune responses. Their significance as disease biomarkers and therapeutic targets has led to increased research focus. However, the lack of standardized protocols for B-cell identification and the variability in defining B-lymphocyte subpopulations pose some challenges. This paper proposes a B-cell identification panel throughout the evaluation of previous cytometry panels and nomenclature heterogeneity for B-cell subpopulations. Major subpopulations recognized in human peripheral blood include transitional, naive, switched memory, unswitched memory, double negative, and plasmablasts, characterized based on their functional and phenotypic features. We present a standardized flow cytometry protocol utilizing surface phenotypic markers (CD3, CD19, IgD, CD27, CD38, and CD24) to differentiate and analyze B-cell subpopulations. This practical and cost-effective panel can be used in various research and laboratory settings. The challenges of standardizing names and markers for classifying B-lymphocyte subpopulations are discussed, along with protocols utilizing multiple markers and gating strategies, allied with the importance of considering viability markers. In summary, this standardized protocol and panel provide a comprehensive approach to identifying B-cell subpopulations to enhance the reproducibility and comparability of B-cell subpopulation studies.


Asunto(s)
Subgrupos de Linfocitos B , Citometría de Flujo , Inmunofenotipificación , Humanos , Citometría de Flujo/métodos , Inmunofenotipificación/métodos , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Subgrupos de Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/citología , Linfocitos B/metabolismo , Biomarcadores , Fenotipo , Antígenos CD/inmunología , Antígenos CD/metabolismo , Análisis Costo-Beneficio
15.
Artículo en Inglés | MEDLINE | ID: mdl-38694540

RESUMEN

Patients with ulcerative colitis sometimes need a total colectomy with ileal pouch-anal anastomosis due to medically refractory disease or colitis-associated neoplasia. Up to 50% of patients with ulcerative colitis postoperatively develop pouchitis and the rate of chronic inflammatory pouch conditions requiring pouch excision or diverting ileostomy is reported to be 10%. In order to diagnose and monitor pouchitis, pouchoscopy is essential to assess endoscopic inflammatory findings of the J pouch and to survey neoplasia development, particularly in the remnant distal rectum. However, endoscopic protocols for the evaluation of the pouch may not be standardized worldwide and the reliability of existing disease activity indices for pouchitis has been questioned due to the lack of validation. Recently, reliable endoscopic scoring systems based on an observation of the anatomical location of the J pouch were reported and a significant association between the distribution pattern of endoscopic inflammation (i.e., endoscopic phenotype) and pouch outcomes was also uncovered. In this review, we discuss how to survey the J pouch using pouchoscopy, endoscopic indices for pouchitis disease activity, endoscopic phenotypes and classification, and the pathological mechanisms of pouchitis phenotype in patients with ulcerative colitis.

16.
J Environ Sci (China) ; 147: 322-331, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003050

RESUMEN

To investigate the associations between isocarbophos and isofenphos with impaired fasting glucose (IFG) and type 2 diabetes mellitus (T2DM), and to assess the mediation roles of inflammation cells. There were 2701 participants in the case-control study, including 896 patients with T2DM, 900 patients with IFG, 905 subjects with NGT. Plasma isocarbophos and isofenphos concentrations were measured using gas chromatography and triple quadrupole tandem mass spectrometry. Generalized linear models were used to calculate the relationships between plasma isofenphos and isocarbophos levels with inflammatory factor levels and T2DM. Inflammatory cell was used as mediators to estimate the mediating effects on the above associations. Isocarbophos and isofenphos were positively related with T2DM after adjusting for other factors. The odds ratio (95% confidence interval) (OR (95%CI)) for T2DM was 1.041 (1.015, 1.068) and for IFG was 1.066 (1.009, 1.127) per unit rise in ln-isocarbophos. The prevalence of T2DM increased by 6.4% for every 1 unit more of ln-isofenphos (OR (95% CI): 1.064 (1.041, 1.087)). Additionally, a 100% rise in ln-isocarbophos was linked to 3.3% higher ln-HOMA2IR and a 0.029 mmol/L higher glycosylated hemoglobin (HbA1c) (95% CI: 0.007, 0.051). While a 100% rise in ln-isofenphos was linked to increase in ln-HOMA2 and ln-HOMA2IR of 5.8% and 3.4%, respectively. Furthermore, white blood cell (WBC) and neutrophilic (NE) were found to be mediators in the relationship between isocarbophos and T2DM, and the corresponding proportions were 17.12% and 17.67%, respectively. Isofenphos and isocarbophos are associated with IFG and T2DM in the rural Chinese population, WBC and NE have a significant role in this relationship.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Persona de Mediana Edad , Masculino , Femenino , Estudios de Casos y Controles , Insecticidas , Glucemia/análisis , Malatión/análogos & derivados , Compuestos Organotiofosforados , China , Adulto , Inflamación
17.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003048

RESUMEN

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Asunto(s)
Disruptores Endocrinos , Células Madre , Disruptores Endocrinos/toxicidad , Humanos , Células Madre/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Exposición a Riesgos Ambientales
18.
Methods Mol Biol ; 2848: 187-196, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240524

RESUMEN

In several ocular diseases, degeneration of retinal neurons can lead to permanent blindness. Transplantation of stem cell (SC)-derived RGCs has been proposed as a potential therapy for RGC loss. Although there are reports of successful cases of SC-derived RGC transplantation, achieving long-distance regeneration and functional connectivity remains a challenge. To address these hurdles, retinal organoids are being used to study the regulatory mechanism of stem cell transplantation. Here we present a modified protocol for differentiating human embryonic stem cells (ESCs) into retinal organoids and transplanting organoid-derived RGCs into the murine eyes.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas , Células Ganglionares de la Retina , Humanos , Animales , Ratones , Células Madre Embrionarias Humanas/citología , Células Ganglionares de la Retina/citología , Trasplante de Células Madre/métodos , Organoides/citología , Organoides/trasplante , Técnicas de Cultivo de Célula/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Retina/citología , Células Madre Embrionarias/citología
19.
Methods Mol Biol ; 2848: 3-23, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240513

RESUMEN

The challenge of treating corneal scarring through keratoplasties lies in the limited availability of donor tissue. Various studies have shown the therapeutic use of cultivated corneal stromal stem cells (CSSCs) to mitigate tissue inflammation and suppress fibrosis and scar tissue formation in preclinical corneal wound models. To develop CSSC therapy for clinical trials on patients with corneal scarring, it is necessary to generate clinical-grade CSSCs in compliant to Good Manufacturing Practice (GMP) regulations. This chapter elucidates human CSSC isolation, culture, and cryopreservation under GMP-compliant conditions. It underscores quality assessment encompassing morphological traits, expression of stemness markers, anti-inflammatory activity, and keratocyte differentiation potency.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Sustancia Propia , Humanos , Técnicas de Cultivo de Célula/métodos , Sustancia Propia/citología , Separación Celular/métodos , Criopreservación/métodos , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Biomarcadores , Células del Estroma/citología
20.
Methods Mol Biol ; 2848: 59-71, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240516

RESUMEN

Glaucoma is one of the leading causes of irreversible blindness. Stem cell therapy has shown promise in the treatment of primary open-angle glaucoma in animal models. Stem cell-free therapy using stem cell-derived trophic factors might be in demand in patients with high-risk conditions or religious restrictions. In this chapter, we describe methods for trabecular meshwork stem cell (TMSC) cultivation, secretome harvesting, and protein isolation, as well as assays to ensure the health of TMSC post-secretome harvesting and for secretome periocular injection into mice for therapeutic purposes.


Asunto(s)
Células Madre , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/citología , Animales , Ratones , Humanos , Células Madre/citología , Células Madre/metabolismo , Regeneración , Glaucoma/terapia , Trasplante de Células Madre/métodos , Secretoma , Modelos Animales de Enfermedad , Glaucoma de Ángulo Abierto/terapia , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Técnicas de Cultivo de Célula/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA