Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Int J Legal Med ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39394478

RESUMEN

A proper sampling strategy is important to obtain sufficient DNA for successful identification of aged skeletal remains. The petrous bone is the highest DNA-yielding bone in the human body. Because DNA extraction from the petrous bone is very destructive, the demand for other DNA sources is significant. When investigating aged skeletal remains, teeth are usually preserved, and recent studies have shown that DNA in teeth can be best preserved in the dental cementum that surrounds the surface of the tooth root. To extract DNA from the surface of the tooth root, a nondestructive method without grinding was used. Petrous bones and teeth from 60 archaeological adult skeletons were analyzed. The DNA yield, degree of DNA degradation, and STR typing success were compared, and the results showed higher DNA yield and higher amplification success in petrous bones, despite higher degradation of petrous bones' DNA. The greater success of petrous bones is associated with poorly preserved DNA in a quarter of the teeth analyzed. When teeth with badly preserved DNA were excluded from the statistical analysis, no differences in the success of STR loci amplification were observed even if DNA yield was higher in petrous bones, which can be explained by greater degradation of petrous bones' DNA. When teeth are well preserved, they can be used for genetically analyzing aged skeletal remains instead of petrous bones, and a rapid nondestructive extraction method can be applied to shorten the identification process and to physically preserve the biological specimen.

2.
Tissue Cell ; 90: 102525, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178577

RESUMEN

MicroRNAs represent a class of small RNAs that act to silence genes post-transcriptionally by inhibiting the translation of target messenger RNAs, and this study aimed to understand how miRNAs influence the set-up of periodontal disease. Periodontitis was induced by inserting a ligature into the left first mandibular molar in a rat model, which was kept for the entire 56 days-time of experiment. After 56 days post-periodontitis induction, the histopathological analysis showed an apical extension of the junctional epithelium, with areas of hyperplasia, exocytosis, and a mixed inflammatory infiltrate with a predominance of neutrophils, lymphocytes, and eventual plasma cells in the deeper layers. The cement surface showed areas of irregularity, covered by cementoblasts and irregular surfaces, confirming the set-up of periodontitis. In the sequencing analysis, 26,404 genes were identified, with 132 reaching statistical significance. Among genes with a statistical difference, 18 were found to encode for microRNAs. The identified microRNAs are primarily involved in bone remodeling by acting on fibroblast growth factors, and collagen production. These outcomes demonstrate a signaling role in bone resorption, which is consistent with the histopathological observations that show the installation of inflammation with epithelial migration and the beginning of the repair process, with cementum resorption. The disclosure of how miRNAs may influence the maintaining of periodontal disease will help the development of new dental materials for the prophylaxis and treatment of alveolar bone resorption.


Asunto(s)
Modelos Animales de Enfermedad , MicroARNs , Animales , MicroARNs/metabolismo , MicroARNs/genética , Ratas , Enfermedades Periodontales/patología , Enfermedades Periodontales/genética , Enfermedades Periodontales/metabolismo , Masculino , Regulación de la Expresión Génica , Periodontitis/patología , Periodontitis/genética , Periodontitis/metabolismo
3.
Calcif Tissue Int ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177752

RESUMEN

Cementum is the least studied of all mineralized tissues and little is known about mechanisms regulating its formation. Therefore, the goal of this study was to provide new insights into the transcriptional regulation of cementum formation by determining the consequences of the deficiency of the Trps1 transcription factor in cementoblasts. We used Trps1Col1a1 cKO (2.3Co1a1-CreERT2;Trps1fl/fl) mice, in which Trps1 is deleted in cementoblasts. Micro-computed tomography analyses of molars of 4-week-old males and females demonstrated significantly shorter roots with thinner mineralized tissues (root dentin and cementum) in Trps1Col1a1 cKO compared to WT mice. Semi-quantitative histological analyses revealed a significantly reduced area of cellular cementum and localized deficiencies of acellular cementum in Trps1Col1a1 cKO mice. Immunohistochemical analyses revealed clustering of cementoblasts at the apex of roots, and intermittent absence of cementoblasts on Trps1Col1a1 cKO cementum surfaces. Fewer Osterix-positive cells adjacent to cellular cementum were also detected in Trps1Col1a1 cKO compared to WT mice. Decreased levels of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme required for proper cementogenesis, were apparent in cementum, periodontal ligament, and alveolar bone of Trps1Col1a1 cKO. There were no apparent differences in levels of bone sialoprotein (Bsp) in cementum. Quantitative analyses of picrosirius red-stained periodontal ligament revealed shorter and disorganized collagen fibers in Trps1Col1a1 cKO mice demonstrating impaired periodontal structure. In conclusion, this study has identified Trps1 transcription factor as one of the important regulators of cellular and acellular cementum formation. Furthermore, this study suggests that Trps1 supports the function of cementoblasts by upregulating expression of the major proteins required for cementogenesis, such as Osterix and TNAP.

4.
Clin Exp Dent Res ; 10(4): e941, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104124

RESUMEN

OBJECTIVES: This study aimed to evaluate and compare the impact of cigarette smoking (CS) and heated tobacco (HT) on the alteration of color and ultrastructural characteristics of human enamel and cementum. BACKGROUND: According to tobacco companies, a less harmful substitute for CS is HT products. Nevertheless, comprehensive research on the effects of HT on tooth structures has been lacking. This study aimed to evaluate and compare the impact of CS and HT on the alteration of color and ultrastructural characteristics of human enamel and cementum. MATERIALS AND METHODS: Thirty intact and noncarious human maxillary premolars extracted for orthodontic treatment purposes, previously disinfected, were used in the study. The specimens were randomly separated into six groups (n = 10), as follows: Group 1: enamel without smoking exposure; Group 2: enamel exposed to CS; Group 3: enamel exposed to HT; Group 4: cementum without smoking exposure; Group 5: cementum exposed to CS; and Group 6: cementum exposed to HT. The measurement of color change was conducted using a spectrophotometer. The surface alterations and mineral composition of enamel and cementum were evaluated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. ANOVA test followed by Tukey's post hoc test was used to determine significant differences between groups. RESULTS: Results showed that CS had a more pronounced effect on enamel and cementum color changes than HT. The impact of CS and HT on color changes was more evident in cementum than in enamel. Surface morphology of enamel and cementum showed alterations in histology following exposure to both smoking types. Moreover, the mineral content experienced a significant reduction after using CS and HT. The reduction in calcium content after CS and HT exposure was similar. However, HT led to a significant decrease in the phosphorus content of enamel when compared with CS. At the same time, CS exposure in cementum resulted in a more significant reduction in Ca/P ratio than HT. CONCLUSIONS: Although HT may appear to present a lower danger to hard dental tissues than CS, it is not entirely harmless. CS results in more color changes on the enamel and cementum of teeth. Both smoking methods affected the mineral content of teeth, with CS having a significant effect on the roots, while HT significantly affected the crowns' mineral composition.


Asunto(s)
Fumar Cigarrillos , Colorimetría , Cemento Dental , Esmalte Dental , Microscopía Electrónica de Rastreo , Productos de Tabaco , Humanos , Cemento Dental/patología , Cemento Dental/química , Esmalte Dental/química , Esmalte Dental/efectos de los fármacos , Productos de Tabaco/efectos adversos , Colorimetría/métodos , Fumar Cigarrillos/efectos adversos , Calor/efectos adversos , Espectrometría por Rayos X , Diente Premolar , Color
5.
Bone ; 187: 117199, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992453

RESUMEN

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Cemento Dental , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Cemento Dental/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones , Proteína C-Reactiva/metabolismo , Integrina beta1/metabolismo , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Ratones Endogámicos C57BL , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Cementogénesis
6.
Lasers Med Sci ; 39(1): 174, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969931

RESUMEN

PURPOSE: Laser irradiation activates a range of cellular processes in the periodontal components and promotes tissue repair. However, its effect on osteogenic differentiation of human cementoblast lineage cells remains unclear. This study aimed to examine the effects of high-frequency semiconductor laser irradiation on the osteogenic differentiation of human cementoblast lineage (HCEM) cells. METHODS: HCEM cells were cultured to reach 80% confluence and irradiated with a gallium-aluminum-arsenide (Ga-Al-As) semiconductor laser with a pulse width of 200 ns and wavelength of 910 at a dose of 0-2.0 J/cm2. The outcomes were assessed by analyzing the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and type I collagen (COLL1) using real-time polymerase chain reaction (PCR) analysis 24 h after laser irradiation. Cell mineralization was evaluated using ALP activity, calcium deposition, and Alizarin Red staining. RESULTS: The laser-irradiated HCEM cells showed significantly enhanced gene expression levels of ALP, RUNX2, and COLL1 as well as ALP activity and calcium concentration in the culture medium compared with the non-irradiated cells. In addition, enhanced calcification deposits were confirmed in the laser-irradiated group compared with the non-irradiated group at 21 and 28 days after the induction of osteogenic differentiation. CONCLUSION: High-frequency semiconductor laser irradiation enhances the osteogenic differentiation potential of cultured HCEM cells, underscoring its potential utility for periodontal tissue regeneration.


Asunto(s)
Diferenciación Celular , Cemento Dental , Láseres de Semiconductores , Osteogénesis , Humanos , Láseres de Semiconductores/uso terapéutico , Diferenciación Celular/efectos de la radiación , Osteogénesis/efectos de la radiación , Cemento Dental/efectos de la radiación , Cemento Dental/citología , Fosfatasa Alcalina/metabolismo , Células Cultivadas , Terapia por Luz de Baja Intensidad/métodos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo
7.
Am J Biol Anthropol ; 185(1): e24985, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38864098

RESUMEN

OBJECTIVES: Age at death estimation is a key element to many research questions in biological anthropology, archeology, and forensic science. Dental cementum is a tissue of choice for the estimation of age at death in adult individuals as it continues deposition for the entirety of an individual's life. Previous works have devised regression formulas correlating cementum thickness to age at death. However, interpopulation variances are unknown, and it is therefore not clear whether regressions based on a single population are applicable to individuals with different ancestries. MATERIALS AND METHODS: Here, we use a sample (n = 52) of teeth from individuals with known age at tooth extraction/death of European, African, and East Asian ancestry to assess whether there are interpopulations differences in cementum growth rate. We measured growth rate in four different areas (2nd and 5th decile of both the lingual and buccal aspect of the root) of each tooth and used nonparametric tests to evaluate population differences in growth rate between homologous regions of the teeth. RESULTS: The results of the analyses show that, even after controlling for tooth size, individuals of European ancestry have significantly lower growth rates than those of both African and East Asian ancestry across all four tooth areas. DISCUSSION: These results call into question the applicability of the regression formulas derived from European ancestry individuals to individuals of other ancestries.


Asunto(s)
Determinación de la Edad por los Dientes , Cemento Dental , Humanos , Determinación de la Edad por los Dientes/métodos , Cemento Dental/anatomía & histología , Masculino , Adulto , Femenino , Persona de Mediana Edad , Anciano , Adulto Joven , Anciano de 80 o más Años , Antropología Física , Adolescente
8.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917837

RESUMEN

Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Proliferación Celular , Mucosa Bucal , Osteogénesis , Células Madre , Titanio , Titanio/química , Humanos , Osteogénesis/efectos de los fármacos , Mucosa Bucal/citología , Mucosa Bucal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Propiedades de Superficie , Células Cultivadas , Osteoblastos/citología , Osteoblastos/metabolismo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Supervivencia Celular , Oseointegración/efectos de los fármacos , Materiales Biocompatibles/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-38725427

RESUMEN

PURPOSE: A combination of activin and bone morphogenetic protein-2 (BMP-2), termed AB204, has been shown to improve osteogenic potential with fewer side effects than BMP-2 alone. This study was performed to evaluate the effect of AB204 on periodontal tissue regeneration in a dog buccal dehiscence model. METHODS: Buccal dehiscence defects were created on the maxillary premolars (P1, P2, and P3) of 6 mongrel dogs. After 5 weeks, the dogs were randomly assigned to 1 of 3 groups: the control, collagen matrix (CM), and CM/AB204 groups. Grafting procedures were then performed. The dogs were sacrificed 8 weeks after the grafting procedure, and volumetric and histological analyses were conducted. RESULTS: The thickness of the buccal gingiva in the CM/AB204 group was greater than those in the other groups at 2 weeks (P<0.05). The ridge width in the AB204/CM group exceeded the width in the other groups at 4 and 8 weeks; however, the difference was not statistically significant. Histological analysis revealed that the CM/AB204 group demonstrated the formation of new bone surrounded by newly formed periodontal ligament and cementum (P=0.035). CONCLUSIONS: The combined application of CM and AB204 shows promise in facilitating the regeneration of periodontal attachment, including the formation of new bone, cementum, and periodontal ligament.

10.
Cell Biochem Funct ; 42(4): e4058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783647

RESUMEN

We aimed to evaluate the materials based on 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane (Super-bond [SB]) and nano hydroxyapatite (naHAp) for the repair of perforation at pulp chamber floor (PPF) in vitro and in vivo models. SB and naHAp were mixed in the mass ratio of 10% or 30% to produce naHAp/SB. Human periodontal ligament stem cells (HPDLSCs) were cultured on resin discs of SB or naHAp/SB to analyze the effects of naHAp/SB on cell adhesion, proliferation, and cementoblastic differentiation. A rat PPF model was treated with SB or naHAp/SB to examine the effects of naHAp/SB on the healing of defected cementum and periodontal ligament (PDL) at the site of PPF. HPDLSCs were spindle-shaped and adhered to all resin discs. Changing the resin from SB to naHAp/SB did not significantly alter cell proliferation. Both 10% and 30% naHAp/SB were more effective than SB in promoting cementoblastic differentiation of HPDLSCs. In the rat PPF model, 30% naHAp/SB was more effective than SB in promoting the formation Sharpey's fiber-like structures with expression of the PDL-related marker and cementum-like structures with expression of cementum-related markers. In conclusion, 30% naHAp/SB can be the new restorative material for PPF because it exhibited the abilities of adhering to dentin and healing of defected periodontal tissue.


Asunto(s)
Compuestos de Boro , Durapatita , Metacrilatos , Ligamento Periodontal , Animales , Ratas , Humanos , Durapatita/química , Durapatita/farmacología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Compuestos de Boro/farmacología , Compuestos de Boro/química , Metacrilatos/química , Metacrilatos/farmacología , Diferenciación Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Masculino , Proliferación Celular/efectos de los fármacos , Cavidad Pulpar/metabolismo , Cavidad Pulpar/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Ratas Sprague-Dawley , Metilmetacrilatos/química , Metilmetacrilatos/farmacología , Adhesión Celular/efectos de los fármacos
11.
Cureus ; 16(3): e56998, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38681342

RESUMEN

Short tandem repeat (STR) typing is widely used not only for blood relationship identification but also for the personal identification of unidentified bodies. However, DNA is susceptible to the effects of environmental factors, consequently leading to reduced DNA yields. Therefore, to maximize the DNA yield required for identification, teeth are generally completely pulverized during DNA extraction. However, this renders subsequent testing after DNA profiling impossible. In this study, we investigated the utility of DNA profiling using only the cementum from teeth that had been left outdoors for long postmortem intervals. We analyzed 90 molars (fresh teeth) that were extracted within six months at a dental clinic and 90 molars (stale teeth) exposed outdoors for over 70 years, and following cementum extraction, the accuracy of STR profiling, optimal site for cementum collection, and minimum amount of cementum required for STR profiling were determined. The results demonstrated that the profiling accuracy of DNA extracted from cementum was comparable to that of DNA from dental pulp and dentin. Furthermore, the collection of cementum from either near the cervical line or from the root apex areas did not show significant differences in DNA profiling accuracy, indicating that securing at least 5 mg of cementum was sufficient to ensure precise DNA profiling. These findings suggest that DNA profiling using only cementum is viable even in teeth that have been subjected to a long postmortem interval.

12.
Cureus ; 16(2): e55063, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38550404

RESUMEN

Benign osseous tumors of mesodermal origin that are included within the group of fibro-osseous lesions include cemento-ossifying fibromas (COFs). The fibrocellular component of these diseases originates from the periodontal ligament, which deposits bone and cementum encased in fibrous tissue. It typically appears in the mandible and presents as a solitary, nonaggressive, slowly developing, asymptomatic, expansile lesion, rarely occurring in the maxilla. The only intervention that proved to be successful in producing excellent outcomes and that may be regarded as a final therapeutic option is the complete surgical removal of COFs. Presenting herein is a case report describing a painless and expansile mass in the left mandibular region, histopathologically diagnosed as COF.

13.
J Struct Biol ; 216(2): 108084, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479547

RESUMEN

In humans, the growth pattern of the acellular extrinsic fibre cementum (AEFC) has been useful to estimate the age-at-death. However, the structural organization behind such a pattern remains poorly understood. In this study tooth cementum from seven individuals from a Mexican modern skeletal series were analyzed with the aim of unveiling the AEFC collagenous and mineral structure using multimodal imaging approaches. The organization of collagen fibres was first determined using: light microscopy, transmission electron microscopy (TEM), electron tomography, and plasma FIB scanning electron microscopy (PFIB-SEM) tomography. The mineral properties were then investigated using: synchrotron small-angle X-ray scattering (SAXS) for T-parameter (correlation length between mineral particles); synchrotron X-ray diffraction (XRD) for L-parameter (mineral crystalline domain size estimation), alignment parameter (crystals preferred orientation) and lattice parameters a and c; as well as synchrotron X-ray fluorescence for spatial distribution of calcium, phosphorus and zinc. Results show that Sharpey's fibres branched out fibres that cover and uncover other collagen bundles forming aligned arched structures that are joined by these same fibres but in a parallel fashion. The parallel fibres are not set as a continuum on the same plane and when they are superimposed project the AEFC incremental lines due to the collagen birefringence. The orientation of the apatite crystallites is subject to the arrangement of the collagen fibres, and the obtained parameter values along with the elemental distribution maps, revealed this mineral tissue as relatively homogeneous. Therefore, no intrinsic characteristics of the mineral phase could be associated with the alternating AEFC incremental pattern.


Asunto(s)
Cemento Dental , Minerales , Difracción de Rayos X , Humanos , Cemento Dental/ultraestructura , Cemento Dental/química , Cemento Dental/metabolismo , Difracción de Rayos X/métodos , Minerales/metabolismo , Minerales/química , Colágeno/química , Colágeno/metabolismo , Microscopía Electrónica de Transmisión/métodos , Dispersión del Ángulo Pequeño , Microscopía Electrónica de Rastreo/métodos , Tomografía con Microscopio Electrónico/métodos , Femenino , Adulto , Masculino , Persona de Mediana Edad
15.
J Biomed Mater Res A ; 112(9): 1399-1411, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38284510

RESUMEN

Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO2 surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO2 surfaces were synthesized by magnetron sputtering technique. The CAP-p15 peptide was physically attached to aTiO2 surfaces and characterized by atomic force microscopy, fluorescence microscopy, and water contact angle measurement. We performed in vitro calcium phosphate nucleation assays using an artificial saliva solution (pH 7.4) to simulate the oral environment. morphological and chemical characterization of the deposits were evaluated by scanning electronic microscopy (SEM) and spectroscopy molecular techniques (Raman Spectroscopy, ATR-FTIR). The aTiO2 surfaces biofunctionalized with CAP-p15 were also analyzed for hPDLCs attachment, proliferation, and in vitro scratch-healing assay. The results let us see that the homogeneous amorphous titanium oxide coating was 70 nanometers thick. The CAP-p15 (1 µg/mL) displayed the ability to adsorb onto the aTiO2 surface, increasing the roughness and maintaining the hydrophilicity of the aTiO2 surfaces. The physical adsorption of CAP-p15 onto the aTiO2 surfaces promoted the precipitation of a uniform layer of crystals with a flake-like morphology and a Ca/P ratio of 1.79. According to spectroscopy molecular analysis, these crystalline deposits correspond to carbonated hydroxyapatite. Regarding cell behavior, the biofunctionalized aTiO2 surfaces improved the adhesion of hPDLCs after 24 h of cell culture, achieving 3.4-fold when compared to pristine surfaces. Moreover, there was an increase in cell proliferation and cell migration processes. Physical adsorption of CAP-p15 onto aTiO2 surfaces enhanced the formation of carbonate hydroxyapatite crystals and promoted the proliferation and migration of human periodontal ligament-derived cells in in vitro studies. This experimental model using the novel bioactive peptide CAP-p15 could be used as an alternative to increasing the osseointegration process of implants.


Asunto(s)
Fosfatos de Calcio , Adhesión Celular , Ligamento Periodontal , Propiedades de Superficie , Titanio , Titanio/química , Humanos , Fosfatos de Calcio/química , Ligamento Periodontal/citología , Proliferación Celular , Materiales Biocompatibles Revestidos/química , Adsorción , Células Cultivadas , Colágeno , Fragmentos de Péptidos
16.
J Histochem Cytochem ; 72(2): 109-120, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38288702

RESUMEN

The cementum is a highly mineralized tissue that covers the tooth root. The regional differences among the types of cementum, especially in the extrinsic fibers that contribute to tooth support, remain controversial. Therefore, this study used second harmonic generation imaging in conjunction with automated collagen extraction and image analysis algorithms to facilitate the quantitative examination of the fiber characteristics and the changes occurring in these fibers over time. Acellular extrinsic fiber cementum (AEFC) was invariably observed in the superficial layer of the apical cementum in mouse molars, indicating that this region of the cementum plays a crucial role in supporting the tooth. The apical AEFC exhibited continuity and fiber characteristics comparable with the cervical AEFC, suggesting a common cellular origin for their formation. The cellular intrinsic fiber cementum present in the inner layer of the apical cementum showed consistent growth in the apical direction without layering. This study highlights the dynamic nature of the cementum in mouse molars and underscores the requirement for re-examining its structure and roles. The findings of the present study elucidate the morphophysiological features of cementum and have broader implications for the maintenance of periodontal tissue health.


Asunto(s)
Colágeno , Cemento Dental , Ratones , Animales , Cemento Dental/química , Colágeno/análisis , Raíz del Diente/química , Diente Molar , Procesamiento de Imagen Asistido por Computador , Ligamento Periodontal/química
17.
Regen Ther ; 25: 186-193, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38230307

RESUMEN

Introduction: The periodontium is a connective tissue which consists of periodontal ligament, alveolar bone, cementum and gingiva. Periodontal ligament (PDL) is a specialized connective tissue that connects the cementum - coating the surface of the tooth - to the alveolar bone. Mohawk homeobox (Mkx) is a transcription factor that is expressed in PDL, that is known to play a vital role in the development and homeostasis of PDL. A detailed functional analysis of Mkx in the periodontal ligament for alveolar bone and cementum metabolism has not yet been conducted. Materials and methods: Alveolar bone height, bone mineral density (BMD) and bone volume fractions (Bone volume/Total volume: BV/TV) were measured and analyzed using micro-computed tomography (Micro-CT) and 3DBon on 7-week-old male wild-type (WT) (Mkx+/+) (n = 10) and Mkx-knockout (Mkx-/-) (n = 6) rats. Hematoxylin and Eosin (H&E), tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP) and Masson Trichrome staining were performed on 5, 6, and 7-week-old Mkx+/+ and Mkx-/- rats. Cementum surface area and the number of TRAP-positive osteoclasts/mm were quantified, measured, and compared for 5,6 and 7-week-old Mkx+/+ and Mkx-/- rats (n = 3 each). Results: The level of alveolar bone height was significantly higher in Mkx-/- rats than in Mkx+/+ rats. On the other hand, there was significantly less BMD in Mkx-/- alveolar bone. A significant increase in cellular cementum could be observed as early as 5 weeks in Mkx-/- rats when compared with Mkx+/+ rats of the same age. More TRAP-positive osteoclasts were observed in Mkx-/- rats. Conclusion: Our findings further reveal the essential roles of Mkx in the homeostasis of the periodontal tissue. Mkx was found to contribute to bone and cementum metabolism and may be essential to the prevention of diseases such as periodontitis, and could show potential in regenerative treatments.

18.
Arch Oral Biol ; 158: 105870, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091768

RESUMEN

OBJECTIVES: This study aimed to shed new light on the potential detrimental effects on cementum and adjacent alveolar bone after chronic exposure to amoxicillin. METHODS: Six pregnant adult Albino rats were equally divided into two groups. Saline solution and amoxicillin (100 mg/Kg) were given to rats of control and amoxicillin group, respectively from the 13th to the 21st day of pregnancy. The same treatment was given to the pups till the 42nd day. The cementum of the first molar teeth and the surrounding alveolar bone were examined qualitatively by histopathological and scanning electron microscope, and quantitatively by energy dispersive X-ray spectroscopy and cone beam computed tomography. RESULTS: Amoxicillin group depicted cemental and alveolar bone defects along with resorption lacunae. Statistically significant decreases in calcium and calcium/phosphorus ratio in cementum and in calcium only in alveolar bone were evident (p ≤ 0.05). Overall cementum and alveolar bone densities also showed statistically significant decreases (p ≤ 0.05). CONCLUSION: Chronic amoxicillin administration displayed destructive effects on cementum and the surrounding alveolar bone which may disturb tooth attachment integrity. Therefore, it is recommended to minimize its haphazard usage during pregnancy and early childhood.


Asunto(s)
Cemento Dental , Diente , Preescolar , Humanos , Adulto , Ratas , Animales , Cemento Dental/diagnóstico por imagen , Proceso Alveolar , Calcio/farmacología , Diente Molar/patología
19.
J Periodontal Res ; 59(1): 151-161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882070

RESUMEN

BACKGROUND AND OBJECTIVE: Haploinsufficiency of Runx2 (Runx2+/- ) causes dental anomalies. However, little is known about the involvement of Runx2 in the maintenance of dentin, cementum, and the periodontal ligament (PDL) during adulthood. This study aimed to observe the effects of Runx2+/- on homeostasis of the periodontal complex. MATERIALS AND METHODS: A total of 14 three-month-old Runx2+/- mice and their wild-type littermates were examined using micro-computed tomography, histology, and immunohistochemistry. Phenotypic alterations in the dentin, cementum, and PDL were characterized and quantified. RESULTS: Haploinsufficiency of Runx2 caused cellular changes in the PDL space including reduction of cell proliferation and apoptosis, and irregular attachment of the collagen fibers in the PDL space into the cementum. Absence of continuous thickness of cementum was also observed in Runx2+/- mice. CONCLUSION: Runx2 is critical for cementum integrity and attachment of periodontal fibers. Because of its importance to cementum homeostasis, Runx2 is essential for homeostasis of periodontal complex.


Asunto(s)
Cemento Dental , Ligamento Periodontal , Ratones , Animales , Microtomografía por Rayos X , Inmunohistoquímica , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética
20.
J Periodontal Res ; 59(2): 408-419, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38126232

RESUMEN

OBJECTIVE: The aim of this study was to investigate the thickness of acellular extrinsic fibre cementum (AEFC) at four root positions of anterior and posterior teeth with special focus on functional aspects. Furthermore, the correlations between cementum thickness and chronological age and sex are investigated. BACKGROUND: While numerous studies confirm continuous cementum apposition with age, masticatory forces as well as physiological and orthodontically induced tooth movements also have the potential to affect tooth cementum thickness. MATERIALS AND METHODS: Undecalcified teeth were embedded in resin and transverse-sectioned in the cervical third of the root. Two sections per root were selected, and digital images at four positions were obtained (mesial, distal, oral, and vestibular) using light microscopy. The AEFC thickness of 99 teeth (anterior = 66, posterior = 33, male = 54, female = 45) were measured in both sections. The differences in mean values between root positions and the association of root position variation with tooth type, age, sex, and subject as well as the overall effects of age and sex were analysed using a mixed model. RESULTS: First incisors and canines showed the greatest mean AFEC thickness, in contrast to premolars which had the lowest values. Differences were found across the four root positions, with a pattern varying considerably between anterior and posterior teeth and between maxilla and mandible in the anterior teeth. An interaction between root position and subject pointed to the existence of an individual component in the variation of AEFC thickness across the four root positions. There was an age trend with an almost linear increase in cementum thickness of 1 µm per year. Overall, females tended to exhibit a significantly lesser AEFC thickness compared to males. CONCLUSIONS: Distinct differences in the pattern of thickness values across the four root positions in anterior and posterior teeth support the assumption that the AEFC is strongly affected by functional processes. In addition to sex-specific differences and age-related trends, the root position variation of AEFC thickness varies from individual to individual.


Asunto(s)
Cemento Dental , Raíz del Diente , Humanos , Masculino , Femenino , Cemento Dental/diagnóstico por imagen , Cemento Dental/fisiología , Raíz del Diente/diagnóstico por imagen , Diente Premolar , Incisivo , Maxilar/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA