Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Sci Rep ; 14(1): 25335, 2024 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455680

RESUMEN

Many studies have shown that it is important to use bone grafts that are easy to mold, bioabsorbable, and stable over time. We focused on Type H blood vessels, which were discovered by Kusumbe et al. in 2014 to be responsible for the interaction between angiogenesis and osteogenesis. The aim of this study was to assess the effect of octacalcium phosphate collagen (OCP/Col), on the healing processes of the extraction socket and the alveolar bone surrounding the extraction socket. Ridge preservation of rat lower first molars was conducted using OCP/Col, and a series of experiments involving micro-CT scanning, observations of new bone, bone morphometry measurements, histological and immunohistochemical analyses, and second harmonic generation imaging were conducted to analyze bone mass, bone quality, angiogenesis, and mechanical properties. The results demonstrate that the calcification level was not very high when using OCP/Col for RP. Moreover, the newly formed bone is rich in vascular components and collagen fibers that are essential for bone tissue remodeling. These characteristics of OCP/Col in RP could contribute significantly to the construction of a rich vascular network around dental implants immediately after implant placement and the subsequent acquisition of osseointegration and reconstruction of the surrounding tissue.


Asunto(s)
Fosfatos de Calcio , Colágeno , Microtomografía por Rayos X , Animales , Fosfatos de Calcio/farmacología , Ratas , Colágeno/farmacología , Colágeno/metabolismo , Masculino , Osteogénesis/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Alveolo Dental/efectos de los fármacos , Alveolo Dental/diagnóstico por imagen , Alveolo Dental/cirugía , Diente Molar/cirugía , Ratas Wistar , Proceso Alveolar/efectos de los fármacos , Proceso Alveolar/diagnóstico por imagen , Proceso Alveolar/cirugía
2.
In Vivo ; 38(6): 2752-2760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39477411

RESUMEN

BACKGROUND/AIM: The dynamic interplay between cancer cells and the microenvironment involves a wide range of intricate relationships that evolve during different stages of tumor progression. Recent attention has focused on high endothelial venules (HEVs), specialized endothelial cells in tumors with a unique cuboidal shape similar to those in lymph nodes. Previous animal studies have shown that normalization of tumor angiogenesis through anti-VEGFR2 therapy promotes HEV formation. However, few reports exist regarding the relationship between HEVs and preexisting blood vessels or interstitial fibers. In this study, we histologically examined whether tumor vascular structure correlates with HEV neogenesis. PATIENTS AND METHODS: A total of 109 patients with pathological stage I lung adenocarcinoma who had undergone curative lung resection at our Institute between 2012 and 2016 were included. HEVs were identified by anti-peripheral node addressin (PNAd) staining. Immunostaining and Elastica-Masson-Goldner staining were performed on tumor sections and quantified. RESULTS: PNAd-positive cells were identified in 102 (93.6%) patients. Nearly all PNAd-positive cells were located within or near immune cell clusters. We investigated the correlation between microvessel structures or interstitial fibers and the number/density of PNAd-positive vessels, but no significant correlation was found. Since PNAd-positive cells were concentrated in immune cell aggregates, we focused our analysis specifically on these regions. Immune cell aggregates with abundant PNAd-positive vessels had a greater microvessel density along with by rich collagen fiber production, and displayed a more mature morphological phenotype of HEVs. CONCLUSION: The generation of PNAd-positive cells in tumors is governed by an angiogenetic mechanism distinct from that of broader tumor microenvironment. Furthermore, the accumulation of immune cells is associated with increased HEV maturation.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Neovascularización Patológica , Microambiente Tumoral , Humanos , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/irrigación sanguínea , Femenino , Masculino , Anciano , Persona de Mediana Edad , Neovascularización Patológica/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/irrigación sanguínea , Vénulas/patología , Células Endoteliales/patología , Anciano de 80 o más Años , Adulto , Inmunohistoquímica , Estadificación de Neoplasias
3.
Int J Urol ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39439078

RESUMEN

OBJECTIVES: The advancement of laparoscopic surgery has allowed surgeons to see finer anatomical structures during surgery. As a result, several issues have arisen regarding Gerota fascia that cannot be explained by previous interpretations, such as its various forms observed during surgery. To address these issues, we histologically examined the structure of Gerota fascia. METHODS: Specimens for study were prepared from kidneys with Gerota fascia from four cadavers, and the structure was studied histologically. Its thickness and collagen fiber area ratios were measured using ImageJ and compared to those of the epimysium of the rectus abdominis muscle. RESULTS: Connective tissue that appeared to be Gerota fascia was observed in 26 specimens. Histologically, the basic structure of Gerota fascia was a sandwich-like structure with a thin layer of thick, long collagen fibers in the central layer, and small granular collagen fibers scattered at the edges. However, not all areas observed had a similar structure; eight specimens were composed only of small granular collagen fibers. The average thickness of the Gerota fascia was 466 µm, and the area ratio of collagen was 27.1%. In contrast, the epimysium was much thicker than Gerota fascia, and its collagen fibers were much thicker and denser. CONCLUSIONS: Gerota fascia, unlike the epimysium, was a very thin and fragile layer of collagen fibers, and its structure was diverse. This explains why Gerota fascia was observed in various states during surgery. It is important for surgeons to understand the properties of Gerota fascia and to treat it appropriately.

4.
J Exp Biol ; 227(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39045755

RESUMEN

Many bones experience bending, placing one side in net compression and the other in net tension. Because bone mechanical properties are relatively reduced in tension compared with compression, adaptations are needed to reduce fracture risk. Several toughening mechanisms exist in bone, yet little is known of the influences of secondary osteon collagen/lamellar 'morphotypes' and potential interplay with intermolecular collagen cross-links (CCLs) in prevalent/predominant tension- and compression-loaded regions. Paired third metacarpals (MC3s) from 10 adult horses were prepared for mechanical testing. From one MC3/pair, 5 mm cubes were tested in compression at several mid-shaft locations. From contralateral bones, dumbbell-shaped specimens were tested in tension. Hence, habitual/natural tension- and compression-loaded regions were tested in both modes. Data included: elastic modulus, yield and ultimate strength, and energy absorption (toughness). Fragments of tested specimens were examined for predominant collagen fiber orientation (CFO; representing osteonal and non-osteonal bone), osteon morphotype score (MTS, representing osteonal CFO), mineralization, porosity and other histological characteristics. As a consequence of insufficient material from tension-tested specimens, CCLs were only examined in compression-tested specimens (HP, hydroxylysylpyridinoline; LP, lysylpyridinoline; PE, pentosidine). Among CCLs, only LP and HP/LP correlated significantly with mechanical parameters: LP with energy absorption, HP/LP with elastic modulus (both r=0.4). HP/LP showed a trend with energy absorption (r=-0.3, P=0.08). HP/LP more strongly correlated with osteon density and mineralization than CFO or MTS. Predominant CFO more strongly correlated with energy absorption than MTS in both testing modes. In general, CFO was found to be relatively prominent in affecting regional toughness in these equine MC3s in compression and tension.


Asunto(s)
Colágeno , Osteón , Huesos del Metacarpo , Animales , Caballos/fisiología , Colágeno/química , Colágeno/metabolismo , Huesos del Metacarpo/fisiología , Huesos del Metacarpo/anatomía & histología , Huesos del Metacarpo/química , Osteón/fisiología , Fenómenos Biomecánicos , Fuerza Compresiva , Estrés Mecánico , Módulo de Elasticidad
5.
Cureus ; 16(5): e60374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38882981

RESUMEN

Scleredema diabeticorum (SD) is a rare metabolic connective tissue manifestation of diabetes mellitus (DM). SD commonly manifests in male patients with poorly controlled prolonged DM with obesity. In SD, the skin gets stiffened, thickened, and leathery in texture with a peau d'orange appearance commonly involving the posterior aspect of the neck and chest wall. Extensive chest wall skin involvement restricts lung movement, causing external restrictive lung disease and hypoventilation. In this case report, we present a 50-year-old male patient with poorly controlled type 2 DM for 10 years, complicated with established diabetic microvascular complications and extensive involvement of SD over the back of the neck and chest with external restrictive lung disease.

6.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891809

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), characterized by hypovascularity, hypoxia, and desmoplastic stroma is one of the deadliest malignancies in humans, with a 5-year survival rate of only 7%. The anatomical location of the pancreas and lack of symptoms in patients with early onset of disease accounts for late diagnosis. Consequently, 85% of patients present with non-resectable, locally advanced, or advanced metastatic disease at diagnosis and rely on alternative therapies such as chemotherapy, immunotherapy, and others. The response to these therapies highly depends on the stage of disease at the start of therapy. It is, therefore, vital to consider the stages of PDAC models in preclinical studies when testing new therapeutics and treatment modalities. We report a standardized induction of cell-based orthotopic pancreatic cancer models in mice and the identification of vital features of their progression by ultrasound imaging and histological analysis of the level of pancreatic stellate cells, mature fibroblasts, and collagen. The results highlight that early-stage primary tumors are secluded in the pancreas and advance towards infiltrating the omentum at week 5-7 post implantation of the BxPC-3 and Panc-1 models investigated. Late stages show extensive growth, the infiltration of the omentum and/or stomach wall, metastases, augmented fibroblasts, and collagen levels. The findings can serve as suggestions for defining growth parameter-based stages of orthotopic pancreatic cancer models for the preclinical testing of drug efficacy in the future.


Asunto(s)
Carcinoma Ductal Pancreático , Modelos Animales de Enfermedad , Neoplasias Pancreáticas , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Ratones , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Humanos , Línea Celular Tumoral
7.
Food Chem ; 455: 139943, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850993

RESUMEN

The extraction of collagen for packaging films typically requires a time-consuming process and the use of substantial chemicals. Herein, we present a full life cycle green preparation method for rapidly producing collagen-based food packaging films using Halocynthia roretzi (HR), a collagen-rich marine organism, as raw material. We first prepared the micro/nano-sized collagen fibers from HR tissue by utilizing urea and sonication as effective hydrogen-bond breakers. Subsequently, the collagen fiber was rapidly fabricated into a film through vacuum filtration. The resulting collagen fiber film (CFF) exhibited a uniform and dense surface, along with good tensile properties, water resistance, and biodegradability. In addition, the deposition of chitosan (CS) on the surface of CFF resulted in a remarkable preservation effect for both strawberries and pork. This full life cycle preparation method for collagen-based films provides a promising and innovative approach to the sustainable preparation of food packaging films.


Asunto(s)
Colágeno , Embalaje de Alimentos , Embalaje de Alimentos/instrumentación , Colágeno/química , Animales , Tecnología Química Verde , Porcinos , Urocordados/química , Resistencia a la Tracción , Fragaria/química , Fragaria/crecimiento & desarrollo , Quitosano/química , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación
8.
J Morphol ; 285(6): e21743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825877

RESUMEN

The aim of this study was to describe the morphology of the tongue of the okapi, and to compare the results with other ruminants including browsers, intermediates and grazers. The material was collected post-mortem from two animals from a Zoological Garden. The structure of the okapi tongue, focusing of the shape of the tongue, lingual surface, its papillae and lingual glands, was examined using gross morphology, light and polarized microscopy, and by scanning electron microscopy. The okapi tongue was characterized by dark pigmentation on the lingual dorsum (except lingual torus) and on the whole ventral surface. Two types of filiform papillae were observed, with additional, even 6-8 projections at their base. The round fungiform papillae were present at a higher density, up to 16/cm2, on the ventro-lateral area of the lingual apex. Round and elongate vallate papillae were arranged in two parallel lines between the body and root of the tongue. Numerous taste buds were detected within the epithelium of their vallum, while fungiform papillae had sparse taste buds. A lack of foliate papillae was noted. Very small conical papillae, some lenticular in shape, were present on the lingual torus. Thick collagen type I fibers were dominant over collagen type III fibers in the connective tissue of the lingual papillae. The mucous acini units were dominant among lingual glands, indicating that the secretion of okapi lingual glands was mostly mucous. In many aspects, the tongue of okapi resembles the tongue of other ruminants. The specific lingual shape and lingual surface, together with the lingual glands, support the processing of plant food, such as young and soft leaves. Although okapi tongue is characterized by smaller conical papillae compared to other ruminants, its high number of vallate papillae is similar that found in other browsers, intermediate and grazers. Thus the number of gustatory papillae rather indicates that this feature is not related to the type of feeding.


Asunto(s)
Papilas Gustativas , Lengua , Animales , Lengua/ultraestructura , Lengua/anatomía & histología , Papilas Gustativas/ultraestructura , Papilas Gustativas/anatomía & histología , Microscopía Electrónica de Rastreo , Jirafas/anatomía & histología , Artiodáctilos/anatomía & histología , Adaptación Fisiológica
9.
Int J Biol Macromol ; 269(Pt 1): 132040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702003

RESUMEN

Decellularized vascular tissue has high potential as a tissue-engineered vascular graft because of its similarity to native vessels in terms of mechanical strength. However, exposed collagen on the tissue induces blood coagulation, and low hemocompatibility is a major obstacle to its vascular application. Here we report that freeze-drying and ethanol treatment effectively modify collagen fiber structure and drastically reduce blood coagulation on the graft surface without exogenous chemical modification. Decellularized carotid artery of ostrich was treated with freeze-drying and ethanol solution at concentrations ranging between 5 and 99.5 %. Collagen fiber distance in the graft was narrowed by freeze-drying, and the non-helical region increased by ethanol treatment. Although in vitro blood coagulation pattern was similar on the grafts, platelet adhesion on the grafts was largely suppressed by freeze-drying and ethanol treatments. Ex vivo blood circulation tests also indicated that the adsorption of platelets and Von Willebrand Factor was largely reduced to approximately 80 % by ethanol treatment. These results indicate that structural modification of collagen fibers in decellularized tissue reduces blood coagulation on the surface by inhibiting platelet adhesion.


Asunto(s)
Coagulación Sanguínea , Colágeno , Adhesividad Plaquetaria , Animales , Adhesividad Plaquetaria/efectos de los fármacos , Coagulación Sanguínea/efectos de los fármacos , Colágeno/química , Ingeniería de Tejidos/métodos , Ensayo de Materiales , Liofilización , Prótesis Vascular , Andamios del Tejido/química , Plaquetas/metabolismo , Plaquetas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Arterias Carótidas/efectos de los fármacos , Humanos , Etanol/química
10.
Biomed Mater ; 19(4)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38815596

RESUMEN

As the structural basis of connective and load-bearing tissues, collagen fibers with orientation play an important role in the mechanical properties and physiological and biochemical functions of the tissues, but viable methods for preparing scaffolds with highly oriented collagenous structure still need to be further studied. In this study, pure collagen was used as printing ink to 3D printing. Harnessing oriented collagen fiber structure by 3D printing for promoting mechanical and osteogenic properties of scaffolds. The scaffolds with different printed angles and thicknesses were prepared to fit the bone defect site and realize personalized customization. The orientation assembly of collagen fibers was promoted by shear force action of 3D printing, the regular arrangement of collagen fibers and stabilization of fiber structure were promoted by pH adjustment and glutaraldehyde cross-linking, and the collagen fibers were mineralized by cyclic mineralization method. The microscopic morphology of fiber arrangement in the scaffolds were investigated by scanning electron microscopy. Results demonstrated that collagen fibers were changed from non-oriented to oriented after 3D printing. And the tensile modulus of the scaffolds with oriented collagen fibers was nine times higher than that of the scaffolds with non-oriented fibers. Moreover, the effects of oriented collagen fibers on the proliferation, differentiation and mineralization of MC3T3-E1 cells were studied by CCK-8 assay, live/dead cell staining, alkaline phosphatase activity test, and Alizarin red staining. The results indicated that cell proliferation, differentiation and mineralization were significantly promoted by oriented collagen fibers, and the cells proliferated directionally in the direction of the fibers. Taken together, mineralized collagen fiber scaffolds with oriented collagen fibers have great potential in bone tissue engineering applications.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Colágeno , Osteoblastos , Osteogénesis , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ratones , Animales , Colágeno/química , Ingeniería de Tejidos/métodos , Osteoblastos/citología , Ensayo de Materiales , Resistencia a la Tracción , Materiales Biocompatibles/química , Línea Celular , Microscopía Electrónica de Rastreo , Calcificación Fisiológica , Células 3T3 , Estrés Mecánico
11.
Int J Implant Dent ; 10(1): 24, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722448

RESUMEN

PURPOSE: The objective of the present study was to ascertain the effect of immediate occlusal loading after implant placement on osseointegration and the micro/nanostructure of the surrounding bone. METHODS: After extraction of a rat maxillary right second molar, an implant was placed immediately with initial fixation (2 N< ). The implants were placed to avoid occlusal loading due to mastication, and in the loaded group, a superstructure was fabricated and subjected to occlusal loading. Bone morphometry, collagen fiber anisotropy, and biological apatite (BAp) crystallite alignment were quantitatively evaluated in both groups after extraction and fixation of the jaw bone at Days 7 and 21 after surgery. RESULTS: Osseointegration was observed in both groups. Bone morphometry showed significant differences in bone volume, trabecular number, trabecular thickness and bone mineral density (BMD) at Days 21 postoperatively (P < 0.05). A significant difference was also found in the trabecular separation at Days 7 postoperatively (P < 0.05). In the evaluation of collagen fiber anisotropy, collagen fiber bundles running differently from the existing bone were observed in both groups. In terms of BAp crystallite alignment, a specific structure was observed in the reconstructed new bone after implantation, and preferential orientation of BAp crystallite alignment was observed in the longitudinal direction of the implants in the Day 21 postoperative loaded group. CONCLUSION: When sufficient initial fixation is achieved at the time of dental implant placement, then the applied masticatory load may contribute to rapidly achieving not only bone volume, but also adequate bone quality after implant placement.


Asunto(s)
Carga Inmediata del Implante Dental , Oseointegración , Animales , Ratas , Oseointegración/efectos de los fármacos , Masculino , Densidad Ósea/fisiología , Implantes Dentales , Ratas Wistar , Maxilar/cirugía , Colágeno/metabolismo , Microtomografía por Rayos X
12.
Adv Funct Mater ; 34(13)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38706986

RESUMEN

Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short-range gradients in fiber alignment that result from cell-induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub-millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that HUVECs exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA-MB-231 aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user-friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix, with broad applicability in healthy and diseased tissue environments.

13.
Micron ; 183: 103648, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723296

RESUMEN

The mallard webbed foot represents an exemplary model of biomechanical efficiency in avian locomotion. This study delves into the intricate material assembly and tendon morphology of the mallard webbed foot, employing both macroscopic and microscopic analyses. Through histological slices and scanning electron microscopy (SEM), we scrutinized the coupling assembly of rigid and flexible materials such as skin, tendon, and bone, while elucidating the biomechanical functions of tendons across various segments of the tarsometatarsophalangeal joint (TMTPJ). The histological examination unveiled a complex structural hierarchy extending from the external integument to the skeletal framework. Notably, the bone architecture, characterized by compact bone and honeycombed trabeculae, showcases a harmonious blend of strength and lightweight design. Tendons, traversing the phalangeal periphery, surrounded by elastic fibers, collagen fibers, and fat tissue. Fat chambers beneath the phalanx, filled with adipocytes, provide effective buffering, enabling the phalanx to withstand gravity, provide support, and facilitate locomotion. Furthermore, SEM analysis provided insights into the intricate morphology and arrangement of collagen fiber bundles within tendons. Flexor tendons in proximal and middle TMTPJ segments adopt a wavy-type, facilitating energy storage and release during weight-bearing activities. In contrast, distal TMTPJ flexor tendons assume a linear-type, emphasizing force transmission across phalangeal interfaces. Similarly, extensor tendons demonstrate segment-specific arrangements tailored to their respective biomechanical roles, with wavy-type in proximal and distal segments for energy modulation and linear-type in middle segments for enhanced force transmission and tear resistance. Overall, our findings offer a comprehensive understanding of the mallard webbed foot's biomechanical prowess, underscoring the symbiotic relationship between material composition, tendon morphology, and locomotor functionality. This study not only enriches our knowledge of avian biomechanics but also provides valuable insights for biomimetic design and tissue engineering endeavors.


Asunto(s)
Pie , Microscopía Electrónica de Rastreo , Tendones , Animales , Tendones/fisiología , Tendones/ultraestructura , Tendones/anatomía & histología , Fenómenos Biomecánicos , Pie/fisiología , Pie/anatomía & histología , Locomoción/fisiología
14.
Crit Care ; 28(1): 165, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750543

RESUMEN

BACKGROUND: Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT: Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS: This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.


Asunto(s)
Matriz Extracelular , Pulmón , Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Matriz Extracelular/metabolismo , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Pulmón/fisiopatología , Pulmón/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Metaloproteinasas de la Matriz/metabolismo , Animales
15.
Forensic Sci Med Pathol ; 20(3): 920-932, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38634992

RESUMEN

The study investigated the relationship between the histological compositions of the tricuspid, pulmonary, mitral, and aortic valves, and age. All 85 fresh human hearts were obtained with an age range between 20 and 90 years. The central area of the valves was conducted to analyze the density of collagen and elastic fibers by using an image analysis program. Neural network function in MATLAB was used for classification data and accuracy test of the age predictive model. Overall, a gradual increase in the density of collagen and elastic fibers was demonstrated with age in all valve types. The pulmonary valve cusps had the least density of collagen and elastic contents, whereas the most dense of collagen was found in the mitral leaflets. A similarity was noted for the elastic fibers in the tricuspid, mitral, and aortic valves. The highest correlation between the collagen (r = 0.629) and elastic fibers (r = 0.713) and age was found in the noncoronary cusp of the aortic valve. The established predictive equations using collagen and elastic fibers in the noncoronary cusp provided the standard error of ± 14.0 and 12.5 years, respectively. A 60.9% of accuracy was found in all age groups using collagen, while accuracy in elastic fibers showed 70.0% in the classification process using the neural networks. The current study provided additional data regarding age-associated changes of collagen and elastic fibers in the human heart valves in Thais and the benefits and application in age forensic identification.


Asunto(s)
Colágeno , Tejido Elástico , Válvulas Cardíacas , Redes Neurales de la Computación , Humanos , Anciano , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Adulto Joven , Masculino , Femenino , Válvulas Cardíacas/anatomía & histología , Colágeno/análisis , Procesamiento de Imagen Asistido por Computador , Envejecimiento , Patologia Forense
16.
Int J Biol Macromol ; 265(Pt 1): 130942, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493813

RESUMEN

Leather shavings are generated as solid waste in the leather industry and may cause environmental pollution if not disposed judiciously. These solid wastes, primarily composed of collagen fibers (CFs), can be recycled as biomass composites. However, CFs are incompatible with natural rubber (NR) due to its hydrophilicity. Conventionally, the compatibility has been improved by utilizing silane coupling agents (SCAs) along with a large number of organic solvents, which further contribute to environmental pollution. In this study, we developed a novel complex coupling agent (CCA) to enhance the compatibility between CF and NR. The CCA was synthesized through a coordination reaction between Cr(III) and α-methacrylic acid (MAA). Cr(III) in the coupling agent coordinates with the active groups in CFs, while the unsaturated double bonds in MAA facilitate covalent crosslinking between the CCA and NR, improving compatibility. The coordination bonding between CF and NR exhibits strong interfacial interaction, endowing the composites with desirable mechanical properties. Moreover, the proposed method is an economical and green approach that can be used to synthesize CF-based composites without requiring organic solvents. Herein, a strategy promoted sustainable development in the leather industry has been established.


Asunto(s)
Residuos Industriales , Goma , Goma/química , Residuos Sólidos , Colágeno , Solventes
17.
J Mech Behav Biomed Mater ; 153: 106494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507995

RESUMEN

Collagen fiber arrangement is decisive for constitutive description of anisotropic mechanical response of arterial wall. In this study, their orientation in human common carotid artery was investigated using polarized light microscopy and an automated algorithm giving more than 4·106 fiber angles per slice. In total 113 slices acquired from 18 arteries taken from 14 cadavers were used for fiber orientation in the circumferential-axial plane. All histograms were approximated with unimodal von Mises distribution to evaluate dominant direction of fibers and their concentration parameter. 10 specimens were analyzed also in circumferential-radial and axial-radial planes (2-4 slices per specimen in each plane); the portion of radially oriented fibers was found insignificant. In the circumferential-axial plane, most specimens showed a pronounced unimodal distribution with angle to circumferential direction µ = 0.7° ± 9.4° and concentration parameter b = 3.4 ± 1.9. Suitability of the unimodal fit was confirmed by high values of coefficient of determination (mean R2 = 0.97, median R2 = 0.99). Differences between media and adventitia layers were not found statistically significant. The results are directly applicable as structural parameters in the GOH constitutive model of arterial wall if the postulated two fiber families are unified into one with circumferential orientation.


Asunto(s)
Arterias Carótidas , Matriz Extracelular , Humanos , Arterias Carótidas/fisiología , Adventicia , Algoritmos , Estrés Mecánico , Fenómenos Biomecánicos , Colágeno/química
18.
Tohoku J Exp Med ; 263(2): 141-150, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38522897

RESUMEN

Warming Yang promoting blood circulation and diuresis (WYPBD) has been proven effective in treating some diseases. This study aimed to evaluate therapeutic effect of WYPBD in treating chronic heart failure (CHF). CHF rats were established by intraperitoneally injecting doxorubicin (DOX). Therapeutic effects of WYPBD on cardiac function and hemodynamic parameters of myocardial tissues were analyzed. Collagen fiber production and myocardial fibrosis were evaluated. Transcriptions of COL1A1 gene, COL3A1 gene, and TGFB1 gene were evaluated with RT-PCR. Expression of BNP, AVP, PARP, caspase-3, and Bcl-2 in myocardial tissues were evaluated. TUNEL assay was used to identify apoptosis of cardiomyocytes. WYPBD alleviated degree of myocardial hypertrophy in CHF rats compared to the rats in CHF model group (P < 0.05). WYPBD significantly improved cardiac hemodynamics (increased LVEF and LVSF) of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD protected myocardial structure and inhibited collagen fiber production in myocardial tissues of CHF rats. WYPBD markedly decreased myocardial fibrosis mediators (Col1α, Col3α, TGF-ß1) transcription in myocardial tissues of CHF rats compared to rats in CHF model group (P < 0.05). WYPBD significantly reduced BNP and AVP expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD markedly reduced the expression of PRAP and caspase-3, and increased Bcl-2 expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). In conclusion, WYPBD alleviated CHF myocardial damage by inhibiting collagen fiber and myocardial fibrosis, attenuating apoptosis associated with the mitochondria signaling pathway of cardiomyocytes.


Asunto(s)
Apoptosis , Diuresis , Fibrosis , Insuficiencia Cardíaca , Hemodinámica , Miocardio , Ratas Sprague-Dawley , Transducción de Señal , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Miocardio/patología , Miocardio/metabolismo , Hemodinámica/efectos de los fármacos , Diuresis/efectos de los fármacos , Colágeno/metabolismo , Enfermedad Crónica , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/sangre , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Ratas
19.
Small ; 20(32): e2311456, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38497893

RESUMEN

Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.


Asunto(s)
Colágeno , Mecanotransducción Celular , Células-Madre Neurales , Proteínas Proto-Oncogénicas c-akt , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Animales , Porosidad , Células-Madre Neurales/metabolismo , Colágeno/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Nicho de Células Madre , Biomimética , Diferenciación Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Andamios del Tejido/química , Materiales Biomiméticos/química , Proteínas Señalizadoras YAP
20.
Regen Med ; 19(2): 93-102, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415316

RESUMEN

Objective: This study aimed to explore the efficacy and optimal delivery time of human umbilical cord mesenchymal stem cells (hUC-MSCs) in treating collagenase-induced Achilles tendinopathy. Methods: Achilles tendinopathy in rats at early or advanced stages was induced by injecting collagenase I into bilateral Achilles tendons. A total of 28 injured rats were injected with a hUC-MSC solution or normal saline into bilateral tendons twice and sampled after 4 weeks for histological staining, gene expression analysis, transmission electron microscope assay and biomechanical testing analysis. Results: The results revealed better histological performance and a larger collagen fiber diameter in the MSC group. mRNA expression of TNF-α, IL-1ß and MMP-3 was lower after MSC transplantation. Early MSC delivery promoted collagen I and TIMP-3 synthesis, and strengthened tendon toughness. Conclusion: hUC-MSCs demonstrated a therapeutic effect in treating collagenase-induced Achilles tendinopathy, particularly in the early stage of tendinopathy.


Asunto(s)
Tendón Calcáneo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Tendinopatía , Humanos , Ratas , Animales , Tendinopatía/terapia , Tendón Calcáneo/metabolismo , Tendón Calcáneo/patología , Colagenasas/efectos adversos , Colagenasas/metabolismo , Colágeno Tipo I/efectos adversos , Colágeno Tipo I/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA