Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Radiol Prot ; 44(2)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38834035

RESUMEN

Nuclear medicine (NM) professionals are potentially exposed to high doses of ionising radiation, particularly in the skin of the hands. Ring dosimeters are used by the workers to ensure extremity doses are kept below the legal limits. However, ring dosimeters are often susceptible to large uncertainties, so it is difficult to ensure a correct measurement using the traditional occupational monitoring methods. An alternative solution is to calculate the absorbed dose by using Monte Carlo simulations. This method could reduce the uncertainty in dose calculation if the exact positions of the worker and the radiation source are represented in these simulations. In this study we present a set of computer vision and artificial intelligence algorithms that allow us to track the exact position of unshielded syringes and the hands of NM workers. We showcase a possible hardware configuration to acquire the necessary input data for the algorithms. And finally, we assess the tracking confidence of our software. The tracking accuracy achieved for the syringe detection was 57% and for the hand detection 98%.


Asunto(s)
Algoritmos , Medicina Nuclear , Exposición Profesional , Humanos , Exposición Profesional/análisis , Mano/efectos de la radiación , Método de Montecarlo , Inteligencia Artificial , Radiometría/métodos , Jeringas
2.
Artículo en Inglés | MEDLINE | ID: mdl-37206985

RESUMEN

We developed a simulation method for modeling the light fluence delivery in intracavity Photodynamic Therapy (icav-PDT) for pleural lung cancer using a moving light source. Due to the large surface area of the pleural lung cavity, the light source needs to be moved to deliver a uniform dose around the entire cavity. While multiple fixed detectors are used for dosimetry at a few locations, an accurate simulation of light fluence and fluence rate is still needed for the rest of the cavity. We extended an existing Monte Carlo (MC) based light propagation solver to support moving light sources by densely sampling the continuous light source trajectory and assigning the proper number of photon packages launched along the way. The performance of Simphotek GPU CUDA-based implementation of the method - PEDSy-MC - has been demonstrated on a life-size lung-shaped phantom, custom printed for testing icav-PDT navigation system at the Perlman School of Medicine (PSM) - calculations completed under a minute (for some cases) and within minutes have been achieved. We demonstrate results within a 5% error of the analytic solution for multiple detectors in the phantom. PEDSy-MC is accompanied by a dose-cavity visualization tool that allows real-time inspection of dose values of the treated cavity in 2D and 3D, which will be expanded to ongoing clinical trials at PSM. PSM has developed a technology to measure 8-detectors in a pleural cavity phantom using Photofrin-mediated PDT that has been used during validation.

3.
Med Phys ; 50(2): 1105-1120, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36334024

RESUMEN

BACKGROUND: In a recent study, we reported beam quality correction factors, fQ , in carbon ion beams using Monte Carlo (MC) methods for a cylindrical and a parallel-plate ionization chamber (IC). A non-negligible perturbation effect was observed; however, the magnitude of the perturbation correction due to the specific IC subcomponents was not included. Furthermore, the stopping power data presented in the International Commission on Radiation Units and Measurements (ICRU) report 73 were used, whereas the latest stopping power data have been reported in the ICRU report 90. PURPOSE: The aim of this study was to extend our previous work by computing fQ correction factors using the ICRU 90 stopping power data and by reporting IC-specific perturbation correction factors. Possible energy or linear energy transfer (LET) dependence of the fQ correction factor was investigated by simulating both pristine beams and spread-out Bragg peaks (SOBPs). METHODS: The TOol for PArticle Simulation (TOPAS)/GEANT4 MC code was used in this study. A 30 × 30 × 50 cm3 water phantom was simulated with a uniform 10 × 10 cm2 parallel beam incident on the surface. A Farmer-type cylindrical IC (Exradin A12) and two parallel-plate ICs (Exradin P11 and A11) were simulated in TOPAS using the manufacturer-provided geometrical drawings. The fQ correction factor was calculated in pristine carbon ion beams in the 150-450 MeV/u energy range at 2 cm depth and in the middle of the flat region of four SOBPs. The kQ correction factor was calculated by simulating the fQo correction factor in a 60 Co beam at 5 cm depth. The perturbation correction factors due to the presence of the individual IC subcomponents, such as the displacement effect in the air cavity, collecting electrode, chamber wall, and chamber stem, were calculated at 2 cm depth for monoenergetic beams only. Additionally, the mean dose-averaged and track-averaged LET was calculated at the depths at which the fQ was calculated. RESULTS: The ICRU 90 fQ correction factors were reported. The pdis correction factor was found to be significant for the cylindrical IC with magnitudes up to 1.70%. The individual perturbation corrections for the parallel-plate ICs were <1.0% except for the A11 pcel correction at the lowest energy. The fQ correction for the P11 IC exhibited an energy dependence of >1.00% and displayed differences up to 0.87% between pristine beams and SOBPs. Conversely, the fQ for A11 and A12 displayed a minimal energy dependence of <0.50%. The energy dependence was found to manifest in the LET dependence for the P11 IC. A statistically significant LET dependence was found only for the P11 IC in pristine beams only with a magnitude of <1.10%. CONCLUSIONS: The perturbation and kQ correction factor should be calculated for the specific IC to be used in carbon ion beam reference dosimetry as a function of beam quality.


Asunto(s)
Transferencia Lineal de Energía , Radiometría , Radiometría/métodos , Efectividad Biológica Relativa , Carbono/uso terapéutico , Método de Montecarlo
4.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499256

RESUMEN

Boron neutron capture therapy (BNCT) is a re-emerging technique for selectively killing tumor cells. Briefly, the mechanism can be described as follows: after the uptake of boron into cells, the thermal neutrons trigger the fission of the boron atoms, releasing the α-particles and recoiling lithium particles and high-energy photons that damage the cells. We performed a detailed study of the reactor dosimetry, cellular dose assessment, and radiobiological effects induced by BNCT in glioblastoma (GBM) cells. At maximum reactor power, neutron fluence rates were ϕ0 = 6.6 × 107 cm−2 s−1 (thermal) and θ = 2.4 × 104 cm−2 s−1 with a photon dose rate of 150 mGy·h−1. These values agreed with simulations to within 85% (thermal neutrons), 78% (epithermal neutrons), and 95% (photons), thereby validating the MCNPX model. The GEANT4 simulations, based on a realistic cell model and measured boron concentrations, showed that >95% of the dose in cells was due to the BNC reaction. Carboranylmethylbenzo[b]acridone (CMBA) is among the different proposed boron delivery agents that has shown promising properties due to its lower toxicity and important cellular uptake in U87 glioblastoma cells. In particular, the results obtained for CBMA reinforce radiobiological effects demonstrating that damage is mostly induced by the incorporated boron with negligible contribution from the culture medium and adjacent cells, evidencing extranuclear cell radiosensitivity.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Glioblastoma , Humanos , Terapia por Captura de Neutrón de Boro/métodos , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Glioblastoma/patología , Neutrones , Boro , Fotones
5.
J Neural Eng ; 19(5)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36240729

RESUMEN

Objective. Transcranial electrical stimulation (tES) is a promising method for modulating brain activity and excitability with variable results to date. To minimize electric (E-)field strength variability, we introduce the 2-sample prospective E-field dosing (2-SPED) approach, which uses E-field strengths induced by tES in a first population to individualize stimulation intensity in a second population.Approach. We performed E-field modeling of three common tES montages in 300 healthy younger adults. First, permutation analyses identified the sample size required to obtain a stable group average E-field in the primary motor cortex (M1), with stability being defined as the number of participants where all group-average E-field strengths ± standard deviation did not leave the population's 5-95 percentile range. Second, this stable group average was used to individualize tES intensity in a second independent population (n = 100). The impact of individualized versus fixed intensity tES on E-field strength variability was analyzed.Main results. In the first population, stable group average E-field strengths (V/m) in M1 were achieved at 74-85 participants, depending on the tES montage. Individualizing the stimulation intensity (mA) in the second population resulted in uniform M1 E-field strength (all p < 0.001) and significantly diminished peak cortical E-field strength variability (all p < 0.01), across all montages.Significance. 2-SPED is a feasible way to prospectively induce more uniform E-field strengths in a region of interest. Future studies might apply 2-SPED to investigate whether decreased E-field strength variability also results in decreased physiological and behavioral variability in response to tES.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología
6.
J Appl Clin Med Phys ; 23(6): e13625, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35522240

RESUMEN

PURPOSE: Computational dosimetry software is routinely used to evaluate the organ and effective doses from computed tomography (CT) examinations. Studies have shown a significant variation in dose estimates between software in adult cohorts, and few studies have evaluated software for pediatric dose estimates. This study aims to compare the primary organ and effective doses estimated by four commercially available CT dosimetry software to thermoluminescent dosimeter (TLD) measurements in a 1-year-old phantom. METHODS: One hundred fifteen calibrated LiF (Mg, Cu, P)-TLD 100-H chips were embedded within an anthropomorphic phantom representing a 1-year-old child at positions that matched the approximate location of organs within an infant. The phantom was scanned under three protocols, each with whole-body coverage. The mean absorbed doses from 25 radiosensitive organs and skeletal tissues were determined from the TLD readings. Effective doses for each of the protocols were subsequently calculated using ICRP 103 formalism. Dose estimates by the four Monte Carlo-based dose calculation systems were determined and compared to the directly measured doses. RESULTS: Most organ doses determined by computation dosimetry software aligned to phantom measurements within 20%. Additionally, comparisons between effective doses are calculated using computational and direct measurement methods aligned within 20% across the three protocols. Significant variances were found in bone surface dose estimations among dosimetry methods, likely caused by differences in bone tissue modeling. CONCLUSION: All four-dosimetry software evaluated in this study provide adequate primary organ and effective dose estimations. Users should be aware, however, of the possible estimated uncertainty associated with each of the programs.


Asunto(s)
Radiometría , Tomografía Computarizada por Rayos X , Adulto , Niño , Humanos , Lactante , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Radiometría/métodos , Programas Informáticos , Tomografía Computarizada por Rayos X/métodos
7.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616701

RESUMEN

(1) Background: This work aims to assess human exposure to EMF due to two different wearable antennas tuned to two 5G bands. (2) Methods: The first one was centered in the lower 5G band, around f = 3.5 GHz, whereas the second one was tuned to the upper 5G band, at 26.5 GHz. Both antennas were positioned on the trunk of four simulated human models. The exposure assessment was performed by electromagnetic numerical simulations. Exposure levels were assessed by quantifying the specific absorption rate averaged on 10 g of tissue (SAR10g) and the absorbed power density (Sab), depending on the frequency of the wearable antenna. (3) Results: the higher exposure values that resulted were always mainly concentrated in a superficial area just below the antenna itself. In addition, these resulting distributions were narrowed around their peak values and tended to flatten toward lower values in farther anatomical body regions. All the exposure levels complied with ICNIRP guidelines when considering realistic input power. (4) Conclusions: This work highlights the importance of performing an exposure assessment when the antenna is placed on the human wearer, considering the growth of wearable technology and its wide variety of application, particularly regarding future 5G networks.


Asunto(s)
Campos Electromagnéticos , Dispositivos Electrónicos Vestibles , Humanos , Ondas de Radio
8.
Phys Med ; 89: 282-292, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474326

RESUMEN

PURPOSE: Boron Neutron Capture Therapy (BNCT) is a form of hadrontherapy based on the selective damage caused by the products of neutron capture in 10B to tumour cells. BNCT dosimetry strongly depends on the parameters of the dose calculation models derived from radiobiological experiments. This works aims at determining an adequate dosimetry for in-vitro experiments involving irradiation of monolayer-cultured cells with photons and BNCT and assessing its impact on clinical settings. M&M: Dose calculations for rat osteosarcoma UMR-106 and human metastatic melanoma Mel-J cell survival experiments were performed using MCNP, transporting uncharged particles for KERMA determinations, and secondary particles (electrons, protons, 14C, 4He and 7Li) to compute absorbed dose in cultures. Dose-survival curves were modified according to the dose correction factors determined from computational studies. New radiobiological parameters of the photon isoeffective dose models for osteosarcoma and metastatic melanoma tumours were obtained. Dosimetry implications considering cutaneous melanoma patients treated in Argentina with BNCT were assessed and discussed. RESULTS: KERMA values for the monolayer-cultured cells overestimate absorbed doses of radiation components of interest in BNCT. Detailed dose calculations for the osteosarcoma irradiation increased the relative biological effectiveness factor RBE1% of the neutron component in more than 30%. The analysis based on melanoma cases reveals that the use of survival curves based on KERMA leads to an underestimation of the tumour doses delivered to patients. CONCLUSIONS: Considering detailed dose calculation for in-vitro experiments significantly impact on the prediction of the tumor control in patients. Therefore, proposed methods are clinically relevant.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Melanoma , Neoplasias Cutáneas , Animales , Humanos , Masculino , Melanoma/radioterapia , Radiometría , Ratas , Efectividad Biológica Relativa
9.
J Neural Eng ; 18(4)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33836508

RESUMEN

Objective. Low-intensity transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation (NIBS) technique. TUS can reach deeper areas and target smaller regions in the brain than other NIBS techniques, but its application in humans is hampered by the lack of a straightforward and reliable procedure to predict the induced ultrasound exposure. Here, we examined how skull modeling affects computer simulations of TUS.Approach. We characterized the ultrasonic beam after transmission through a sheep skull with a hydrophone and performed computed tomography (CT) image-based simulations of the experimental setup. To study the skull model's impact, we varied: CT acquisition parameters (tube voltage, dose, filter sharpness), image interpolation, segmentation parameters, acoustic property maps (speed-of-sound, density, attenuation), and transducer-position mismatches. We compared the impact of modeling parameter changes on model predictions and on measurement agreement. Spatial-peak intensity and location, total power, and the Gamma metric (a measure for distribution differences) were used as quantitative criteria. Modeling-based sensitivity analysis was also performed for two human head models.Main results. Sheep skull attenuation assignment and transducer positioning had the most important impact on spatial peak intensity (overestimation up to 300%, respectively 30%), followed by filter sharpness and tube voltage (up to 20%), requiring calibration of the mapping functions. Positioning and skull-heterogeneity-structure strongly affected the intensity distribution (gamma tolerances exceeded in>80%, respectively>150%, of the focus-volume in water), necessitating image-based personalized modeling. Simulation results in human models consistently demonstrate a high sensitivity to the skull-heterogeneity model, attenuation tuning, and transducer shifts, the magnitude of which depends on the underlying skull structure complexity.Significance. Our study reveals the importance of properly modeling the skull-heterogeneity and its structure and of accurately reproducing the transducer position. The results raise red flags when translating modeling approaches among clinical sites without proper standardization and/or recalibration of the imaging and modeling parameters.


Asunto(s)
Cráneo , Tomografía Computarizada por Rayos X , Animales , Encéfalo , Simulación por Computador , Ovinos , Cráneo/diagnóstico por imagen , Transductores
10.
J Radiol Prot ; 41(2)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33784644

RESUMEN

The PODIUM project aims to provide real-time assessments of occupationally exposed workers by tracking their motion and combining this with a simulation of the radiation field. The present work describes the approach that would be taken in mixed neutron-gamma fields, and details the methods for generating and applying an effective dose rate map; the required fluence to effective dose conversion coefficients at intercardinal angles are also presented. A proof-of-concept of the approach is demonstrated using a simple simulated workplace field within a calibration laboratory, with corroborative comparisons made against survey instrument measurements generally confirming good agreement. Simulated tracking of an individual within the facility was performed, recording a 1.25µSv total effective dose and accounting for dose rates as low as 0.5 nSv h-1, which is much lower than anything that could be accurately measured by physical neutron dosemeters in such a field.


Asunto(s)
Exposición Profesional , Monitoreo de Radiación , Protección Radiológica , Calibración , Humanos , Neutrones , Exposición Profesional/análisis , Dosis de Radiación
11.
Front Public Health ; 9: 794564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186873

RESUMEN

BACKGROUND: The use of electromagnetic (EM) technologies for military applications is gaining increasing interest to satisfy different operational needs, such as improving battlefield communications or jamming counterpart's signals. This is achieved by the use of high-power EM waves in several frequency bands (e.g., HF, VHF, and UHF). When considering military vehicles, several antennas are present in close proximity to the crew personnel, which are thus potentially exposed to high EM fields. METHODS: A typical exposure scenario was reproduced numerically to evaluate the EM exposure of the human body in the presence of an HF vehicular antenna (2-30 MHz). The antenna was modeled as a monopole connected to a 3D polygonal structure representing the vehicle. Both the EM field levels in the absence and in the presence of the human body and also the specific absorption rate (SAR) values were calculated. The presence of the operator, partially standing outside the vehicle, was simulated with the virtual human body model Duke (Virtual Population, V.3). Several exposure scenarios were considered. The presence of a protective helmet was modeled as well. RESULTS: In the area usually occupied by the personnel, E-field intensity radiated by the antenna can reach values above the limits settled by international safety guidelines. Nevertheless, local SAR values induced inside the human body reached a maximum value of 14 mW/kg, leading to whole-body averaged and 10-g averaged SAR values well below the corresponding limits. CONCLUSION: A complex and realistic near-field exposure scenario of the crew of a military vehicle was simulated. The obtained E-field values radiated in the free space by a HF vehicular antenna may reach values above the safety guidelines reference levels. Such values are not necessarily meaningful for the exposed subject. Indeed, SAR and E-field values induced inside the body remain well below safety limits.


Asunto(s)
Cuerpo Humano , Personal Militar , Campos Electromagnéticos , Humanos
12.
Probl Radiac Med Radiobiol ; 25: 148-176, 2020 Dec.
Artículo en Inglés, Ucraniano | MEDLINE | ID: mdl-33361833

RESUMEN

In the dosimetry of ionizing radiation, the phantoms of the human body, which are used as a replacement for thehuman body in physical measurements and calculations, play an important, but sometimes underestimated, role.There are physical phantoms used directly for measurements, and mathematical phantoms for computationaldosimetry. Their complexity varies from simple geometry applied for calibration purposes up to very complex, whichsimulates in detail the shapes of organs and tissues of the human body. The use of physical anthropomorphic phantoms makes it possible to effectively optimize radiation doses by adjusting the parameters of CT-scanning (computed tomography) in accordance with the characteristics of the patient without compromising image quality. The useof phantoms is an indispensable approach to estimate the actual doses to the organs or to determine the effectivedose of workers - values that are regulated, but cannot be directly measured.The article contains an overview of types, designs and the fields of application of anthropomorphic heterogeneousphysical phantoms of a human with special emphasis on their use for validation of models and methods of computational dosimetry.


Asunto(s)
Fantasmas de Imagen , Traumatismos por Radiación/prevención & control , Radiometría/estadística & datos numéricos , Relación Dosis-Respuesta en la Radiación , Humanos , Maniquíes , Método de Montecarlo , Neoplasias/patología , Neoplasias/radioterapia , Dosis de Radiación , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Radiación Ionizante , Radiometría/métodos , Factores de Tiempo , Tomografía Computarizada por Rayos X/métodos
13.
Phys Med ; 45: 35-43, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29472088

RESUMEN

In this study we evaluated the occupational exposures during an abdominal fluoroscopically guided interventional radiology procedure. We investigated the relation between the Body Mass Index (BMI), of the patient, and the conversion coefficient values (CC) for a set of dosimetric quantities, used to assess the exposure risks of medical radiation workers. The study was performed using a set of male and female virtual anthropomorphic phantoms, of different body weights and sizes. In addition to these phantoms, a female and a male phantom, named FASH3 and MASH3 (reference virtual anthropomorphic phantoms), were also used to represent the medical radiation workers. The CC values, obtained as a function of the dose area product, were calculated for 87 exposure scenarios. In each exposure scenario, three phantoms, implemented in the MCNPX 2.7.0 code, were simultaneously used. These phantoms were utilized to represent a patient and medical radiation workers. The results showed that increasing the BMI of the patient, adjusted for each patient protocol, the CC values for medical radiation workers decrease. It is important to note that these results were obtained with fixed exposure parameters.


Asunto(s)
Abdomen/diagnóstico por imagen , Fluoroscopía/efectos adversos , Personal de Salud , Exposición Profesional , Dosis de Radiación , Índice de Masa Corporal , Peso Corporal , Simulación por Computador , Femenino , Fluoroscopía/instrumentación , Humanos , Masculino , Modelos Anatómicos , Método de Montecarlo , Fantasmas de Imagen , Interfaz Usuario-Computador
14.
Biomed Eng Online ; 17(1): 1, 2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29310661

RESUMEN

BACKGROUND: Two international guidelines/standards for human protection from electromagnetic fields define the specific absorption rate (SAR) averaged over 10 g of tissue as a metric for protection against localized radio frequency field exposure due to portable devices operating below 3-10 GHz. Temperature elevation is suggested to be a dominant effect for exposure at frequencies higher than 100 kHz. No previous studies have evaluated temperature elevation in the human head for local exposure considering thermoregulation. This study aims to discuss the temperature elevation in a human head model considering vasodilation, to discuss the conservativeness of the current limit. METHODS: This study computes the temperature elevations in an anatomical human head model exposed to radiation from a dipole antenna and truncated plane waves at 300 MHz-10GHz. The SARs in the human model are first computed using a finite-difference time-domain method. The temperature elevation is calculated by solving the bioheat transfer equation by considering the thermoregulation that simulates the vasodilation. RESULTS: The maximum temperature elevation in the brain appeared around its periphery. At exposures with higher intensity, the temperature elevation became larger and reached around 40 °C at the peak SAR of 100 W/kg, and became lower at higher frequencies. The temperature elevation in the brain at the current limit of 10 W/kg is at most 0.93 °C. The effect of vasodilation became notable for tissue temperature elevations higher than 1-2 °C and for an SAR of 10 W/kg. The temperature at the periphery was below the basal brain temperature (37 °C). CONCLUSIONS: The temperature elevation under the current guideline for occupational exposure is within the ranges of brain temperature variability for environmental changes in daily life. The effect of vasodilation is significant, especially at higher frequencies where skin temperature elevation is dominant.


Asunto(s)
Regulación de la Temperatura Corporal/efectos de la radiación , Temperatura Corporal/fisiología , Temperatura Corporal/efectos de la radiación , Encéfalo/efectos de la radiación , Exposición a la Radiación/efectos adversos , Ondas de Radio/efectos adversos , Piel/efectos de la radiación , Adulto , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Humanos , Masculino , Modelos Biológicos , Flujo Sanguíneo Regional/efectos de la radiación , Piel/irrigación sanguínea , Fenómenos Fisiológicos de la Piel/efectos de la radiación
15.
Appl Radiat Isot ; 106: 111-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26361835

RESUMEN

Various verifications were performed to apply JENDL-4.0 as nuclear data for a newly developed treatment planning system with a homogeneous or precise human-like phantom. The nitrogen dose calculated by JENDL-4.0 differed slightly from that calculated by ENDF/B-VII.0. However, the total weighted dose-based dose volume histogram in the boron neutron capture therapy (BNCT) treatment for brain tumors calculated by JENDL-4.0 was in good agreement with the results of the ENDF/B-VII.0 calculation. Therefore, calculation with JENDL-4.0 can be applied to the BNCT dose calculation.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica
16.
Phys Med ; 31(8): 929-933, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26160701

RESUMEN

In this work we investigated the way in which conversion coefficients from air kerma-area product for effective doses (CCE) and entrance skin doses (CCESD) in interventional radiology (IR) are affected by variations in the filtration, projection angle of the X-ray beam, lead curtain attached to the surgical table, and suspended shield lead glass in regular conditions of medical practice. Computer simulations were used to model an exposure scenario similar to a real IR room. The patient and the physician were represented by MASH virtual anthropomorphic phantoms, inserted in the MCNPX 2.7.0 radiation transport code. In all cases, the addition of copper filtration also increased the CCE and CCESD values. The highest CCE values were obtained for lateral, cranial and caudal projections. In these projections, the X-ray tube was located above the table, and more scattered radiation reached the middle and upper portions of the physician trunk, where most of the radiosensitive organs are located. Another important result of this study was to show that the physician's protection is 358% higher when the lead curtain and suspended shield lead glasses are used. The values of CCE and CCESD, presented in this study, are an important resource for calculation of effective doses and entrance skin doses in clinical practice.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Método de Montecarlo , Fantasmas de Imagen , Radiología Intervencionista/instrumentación , Humanos , Médicos , Piel/efectos de la radiación
17.
Appl Radiat Isot ; 88: 50-4, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24447934

RESUMEN

A model of multiple lung metastases in BDIX rats is under study at CNEA (Argentina) to evaluate the feasibility of BNCT for multiple, non-surgically resectable lung metastases. A practical shielding device that comfortably houses a rat, allowing delivery of a therapeutic, uniform dose in lungs while protecting the body from the neutron beam is presented. Based on the final design obtained by numerical simulations, the shield was constructed, experimentally characterized and recently used in the first in vivo experiment at RA-3.


Asunto(s)
Terapia por Captura de Neutrón de Boro/instrumentación , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/secundario , Protección Radiológica/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Animales , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA