RESUMEN
How pulsed contractile dynamics drive the remodeling of cell and tissue topologies in epithelial sheets has been a key question in development and disease. Due to constraints in imaging and analysis technologies, studies that have described the in vivo mechanisms underlying changes in cell and neighbor relationships have largely been confined to analyses of planar apical regions. Thus, how the volumetric nature of epithelial cells affects force propagation and remodeling of the cell surface in three dimensions, including especially the apical-basal axis, is unclear. Here, we perform lattice light sheet microscopy (LLSM)-based analysis to determine how far and fast forces propagate across different apical-basal layers, as well as where topological changes initiate from in a columnar epithelium. These datasets are highly time- and depth-resolved and reveal that topology-changing forces are spatially entangled, with contractile force generation occurring across the observed apical-basal axis in a pulsed fashion, while the conservation of cell volumes constrains instantaneous cell deformations. Leading layer behaviors occur opportunistically in response to favorable phasic conditions, with lagging layers "zippering" to catch up as new contractile pulses propel further changes in cell topologies. These results argue against specific zones of topological initiation and demonstrate the importance of systematic 4D-based analysis in understanding how forces and deformations in cell dimensions propagate in a three-dimensional environment.
Asunto(s)
Drosophila melanogaster , Animales , Drosophila melanogaster/fisiología , Epitelio/fisiología , Células Epiteliales/fisiología , Microscopía/métodos , Embrión no Mamífero/fisiología , Fenómenos BiomecánicosRESUMEN
Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of â¼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.
Asunto(s)
Actomiosina , Cadherinas , Drosophila melanogaster , Morfogénesis , Animales , Actomiosina/metabolismo , Fenómenos Biomecánicos , Cadherinas/metabolismo , Adhesión Celular/fisiología , Drosophila melanogaster/fisiología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/fisiología , Embrión no Mamífero/metabolismoRESUMEN
Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.
Asunto(s)
Pez Cebra , Animales , MorfogénesisRESUMEN
Anteroposterior (AP) elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of AP axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
RESUMEN
Mediolateral cell intercalation is a morphogenetic strategy used throughout animal development to reshape tissues. Dorsal intercalation in the Caenorhabditis elegans embryo involves the mediolateral intercalation of two rows of dorsal epidermal cells to create a single row that straddles the dorsal midline, and thus is a simple model to study cell intercalation. Polarized protrusive activity during dorsal intercalation requires the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, but how these GTPases are regulated during intercalation has not been thoroughly investigated. In this study, we characterized the role of the Rac-specific guanine nucleotide exchange factor (GEF) TIAM-1 in regulating actin-based protrusive dynamics during dorsal intercalation. We found that TIAM-1 can promote formation of the main medial lamellipodial protrusion extended by intercalating cells through its canonical GEF function, whereas its N-terminal domains function to negatively regulate the generation of ectopic filiform protrusions around the periphery of intercalating cells. We also show that the guidance receptor UNC-5 inhibits these ectopic filiform protrusions in dorsal epidermal cells and that this effect is in part mediated via TIAM-1. These results expand the network of proteins that regulate basolateral protrusive activity during directed rearrangement of epithelial cells in animal embryos.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Animales , Actinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Receptores de Superficie Celular , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismoRESUMEN
Convergent extension (CE) requires the coordinated action of the planar cell polarity (PCP) proteins1,2 and the actin cytoskeleton,3,4,5,6 but this relationship remains incompletely understood. For example, PCP signaling orients actomyosin contractions, yet actomyosin is also required for the polarized localization of PCP proteins.7,8 Moreover, the actin-regulating Septins play key roles in actin organization9 and are implicated in PCP and CE in frogs, mice, and fish5,6,10,11,12 but execute only a subset of PCP-dependent cell behaviors. Septin loss recapitulates the severe tissue-level CE defects seen after core PCP disruption yet leaves overt cell polarity intact.5 Together, these results highlight the general fact that cell movement requires coordinated action by distinct but integrated actin populations, such as lamella and lamellipodia in migrating cells13 or medial and junctional actin populations in cells engaged in apical constriction.14,15 In the context of Xenopus mesoderm CE, three such actin populations are important, a superficial meshwork known as the "node-and-cable" system,4,16,17,18 a contractile network at deep cell-cell junctions,6,19 and mediolaterally oriented actin-rich protrusions, which are present both superficially and deeply.4,19,20,21 Here, we exploited the amenability of the uniquely "two-dimensional" node and cable system to probe the relationship between PCP proteins, Septins, and the polarization of this actin network. We find that the PCP proteins Vangl2 and Prickle2 and Septins co-localize at nodes, and that the node and cable system displays a cryptic, PCP- and Septin-dependent anteroposterior (AP) polarity in its organization and dynamics.
Asunto(s)
Actinas , Septinas , Ratones , Animales , Septinas/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Proteínas de la Membrana/metabolismo , Proteínas con Dominio LIM/metabolismoRESUMEN
BACKGROUND: Noncanonical Wnts are morphogens that can elevate intracellular Ca2+, activate the Ca2+/calmodulin-dependent protein kinase, CaMKII, and promote cell movements during vertebrate gastrulation. RESULTS: Zebrafish express seven CaMKII genes during embryogenesis; two of these, camk2b1 and camk2g1, are necessary for convergent extension (CE) cell movements. CaMKII morphant phenotypes were observed as early as epiboly. At the 1-3 somite stage, neuroectoderm and paraxial cells remained unconverged in both morphants. Later, somites lacked their stereotypical shape and were wider, more closely spaced, and body gap angles increased. At 24hpf, somite compression and notochord undulation coincided with a shorter and broader body axis. A camk2b1 crispant was generated which phenocopied the camk2b1 morphant. The levels of cell proliferation, apoptosis and paraxial and neuroectodermal markers were unchanged in morphants. Hyperactivation of CaMKII during gastrulation by transient pharmacological intervention (thapsigargin) also caused CE defects. Mosaically expressed dominant-negative CaMKII recapitulated these phenotypes and showed significant midline bifurcation. Finally, the introduction of CaMKII partially rescued Wnt11 morphant phenotypes. CONCLUSIONS: Overall, these data support a model whereby cyclically activated CaMKII encoded from two genes enables cell migration during the process of CE.
Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Gastrulación/fisiología , Movimiento Celular/fisiologíaRESUMEN
Shape changes of epithelia during animal development, such as convergent extension, are achieved through concerted mechanical activity of individual cells. While much is known about the corresponding large scale tissue flow and its genetic drivers, key open questions regard the cell-scale mechanics, e.g. internal vs external driving forces, and coordination, e.g. bottom-up self-organization vs top-down genetic instruction. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained timelapse imaging data of gastrulating Drosophila embryos. This analysis provides a systematic decomposition of cell shape changes and T1-rearrangements into internally driven, active, and externally driven, passive, contributions. Specifically, we find evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from controlled transformation of internal force balance geometry which we quantify with a novel quantification tool for local tension configurations.
RESUMEN
Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.
Asunto(s)
Defectos del Tubo Neural , Ratones , Animales , Defectos del Tubo Neural/metabolismo , Tubo Neural/metabolismo , Neurulación , Estratos Germinativos/metabolismo , Polaridad Celular/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismoRESUMEN
Planar polarity is a commonly observed phenomenon in which proteins display a consistent asymmetry in their subcellular localization or activity across the plane of a tissue. During animal development, planar polarity is a fundamental mechanism for coordinating the behaviors of groups of cells to achieve anisotropic tissue remodeling, growth, and organization. Therefore, a primary focus of developmental biology research has been to understand the molecular mechanisms underlying planar polarity in a variety of systems to identify conserved principles of tissue organization. In the early Drosophila embryo, the germband neuroectoderm epithelium rapidly doubles in length along the anterior-posterior axis through a process known as convergent extension (CE); it also becomes subdivided into tandem tissue compartments through the formation of compartment boundaries (CBs). Both processes are dependent on the planar polarity of proteins involved in cellular tension and adhesion. The enrichment of actomyosin-based tension and adherens junction-based adhesion at specific cell-cell contacts is required for coordinated cell intercalation, which drives CE, and the creation of highly stable cell-cell contacts at CBs. Recent studies have revealed a system for rapid cellular polarization triggered by the expression of leucine-rich-repeat (LRR) cell-surface proteins in striped patterns. In particular, the non-uniform expression of Toll-2, Toll-6, Toll-8, and Tartan generates local cellular asymmetries that allow cells to distinguish between cell-cell contacts oriented parallel or perpendicular to the anterior-posterior axis. In this review, we discuss (1) the biomechanical underpinnings of CE and CB formation, (2) how the initial symmetry-breaking events of anterior-posterior patterning culminate in planar polarity, and (3) recent advances in understanding the molecular mechanisms downstream of LRR receptors that lead to planar polarized tension and junctional adhesion.
RESUMEN
Compartmental boundaries physically separate developing tissues into distinct regions, which is fundamental for the organisation of the body plan in both insects and vertebrates. In many examples, this physical segregation is caused by a regulated increase in contractility of the actomyosin cortex at boundary cell-cell interfaces, a property important in developmental morphogenesis beyond compartmental boundary formation. We performed an unbiased screening approach to identify cell surface receptors required for actomyosin enrichment and polarisation at parasegmental boundaries (PSBs) in early Drosophila embryos, from the start of germband extension at gastrulation and throughout the germband extended stages (stages 6 to 11). First, we find that Tartan is required during germband extension for actomyosin enrichment at PSBs, confirming an earlier report. Next, by following in real time the dynamics of loss of boundary straightness in tartan mutant embryos compared with wild-type and ftz mutant embryos, we show that Tartan is required during germband extension but not beyond. We identify candidate genes that could take over from Tartan at PSBs and confirm that at germband extended stages, actomyosin enrichment at PSBs requires Wingless signalling.
Asunto(s)
Actomiosina , Proteínas de Drosophila , Animales , Actomiosina/metabolismo , Drosophila/metabolismo , Morfogénesis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismoRESUMEN
BACKGROUND: Cadherin-associated protein p120 catenin regulates cell adhesion and migration in cell cultures and is required for axial elongation in embryos. Its roles in adhesion and cell migration are regulated by phosphorylation. We determined the effects of phosphorylation of six serine and three threonine residues in p120 catenin during zebrafish (Danio rerio) embryogenesis. RESULTS: We knocked down endogenous p120 catenin-δ1 with an antisense RNA-splice-site morpholino (Sp-MO) causing defects in axis elongation. These defects were rescued by co-injections of mRNAs for wildtype mouse p120 catenin-δ1-3A or various mutated forms. Several mRNAs containing serine or threonine codons singly or doubly mutated to phosphomimetic glutamic acid rescued, and some nonphosphorylatable mutants did not. CONCLUSIONS: We discovered that phosphorylation of serine residue S252 or S879 is required for convergent extension of zebrafish embryos, since rescue occurred only when these residues were mutated to glutamic acid. In addition, the phosphorylation of either S268 or S269 is required, not both, consistent with the presence of only a single one of these residues in two isoforms of zebrafish and Xenopus laevis. In summary, phosphorylation of multiple serine and threonine residues of p120 catenin activates migration of presomitic mesoderm of zebrafish embryos facilitating elongation of the dorsal axis.
Asunto(s)
Serina , Pez Cebra , Ratones , Animales , Fosforilación , Pez Cebra/metabolismo , Serina/metabolismo , Ácido Glutámico/metabolismo , Cateninas/genética , Cateninas/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Mesodermo/metabolismo , Treonina/metabolismoRESUMEN
The neocortex expands explosively during embryonic development. The earliest populations of neural stem cells (NSCs) form a thin pseudostratified epithelium whose contour determines that of the adult neocortex. Neocortical complexity is accompanied by disproportional expansion of the NSC layer in its tangential dimension to increase tissue surface area. How such disproportional expansion is controlled remains unknown. We demonstrate that a phosphatidylinositol transfer protein (PITP)/non-canonical Wnt planar cell polarity (ncPCP) signaling axis promotes tangential expansion of developing neocortex. PITP signaling supports trafficking of specific ncPCP receptors from the NSC Golgi system to potentiate actomyosin activity important for cell-cycle-dependent interkinetic nuclear migration (IKNM). In turn, IKNM promotes lateral dispersion of newborn NSCs and tangential growth of the cerebral wall. These findings clarify functional roles for IKNM in NSC biology and identify tissue dysmorphogenesis resulting from impaired IKNM as a factor in autism risk, developmental brain disabilities, and neural tube birth defects.
Asunto(s)
Polaridad Celular , Neocórtex , Humanos , Recién Nacido , Morfogénesis , Proteínas de Transferencia de Fosfolípidos/metabolismo , Vía de Señalización WntRESUMEN
Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis.
Asunto(s)
Tubo Neural , Neurulación , Animales , Morfogénesis/fisiología , Placa Neural , Neurulación/fisiología , Xenopus laevisRESUMEN
The design of an animal's body plan is encoded in the genome, and the execution of this program is a mechanical progression involving coordinated movement of proteins, cells, and whole tissues. Thus, a challenge to understanding morphogenesis is connecting events that occur across various length scales. Here, we describe how a poorly characterized adhesion effector, Arvcf catenin, controls Xenopus head-to-tail axis extension. We find that Arvcf is required for axis extension within the intact organism but not within isolated tissues. We show that the organism-scale phenotype results from a defect in tissue-scale force production. Finally, we determine that the force defect results from the dampening of the pulsatile recruitment of cell adhesion and cytoskeletal proteins to membranes. These results provide a comprehensive understanding of Arvcf function during axis extension and produce an insight into how a cellular-scale defect in adhesion results in an organism-scale failure of development.
Asunto(s)
Proteínas del Dominio Armadillo , Cateninas , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Morfogénesis , Fosfoproteínas/metabolismo , Xenopus laevis/metabolismoRESUMEN
Convergent extension (CE) is an evolutionarily conserved collective cell movement that elongates several organ systems during development. Studies have revealed two distinct cellular mechanisms, one based on cell crawling and the other on junction contraction. Whether these two behaviors collaborate is unclear. Here, using live-cell imaging, we show that crawling and contraction act both independently and jointly but that CE is more effective when they are integrated via mechano-reciprocity. We thus developed a computational model considering both crawling and contraction. This model recapitulates the biomechanical efficacy of integrating the two modes and further clarifies how the two modes and their integration are influenced by cell adhesion. Finally, we use these insights to understand the function of an understudied catenin, Arvcf, during CE. These data are significant for providing interesting biomechanical and cell biological insights into a fundamental morphogenetic process that is implicated in human neural tube defects and skeletal dysplasias.
Asunto(s)
Moléculas de Adhesión Celular , Defectos del Tubo Neural , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Humanos , MorfogénesisRESUMEN
The Caenorhabditis elegans embryo is well suited for analysis of directed cell rearrangement via modern microscopy, due to its simple organization, short generation time, transparency, invariant lineage, and the ability to generate engineered embryos expressing various fluorescent proteins. This chapter provides an overview of routine microscopy techniques for imaging dorsal intercalation, a convergent extension-like morphogenetic movement in the embryonic epidermis of C. elegans, including making agar mounts, low-cost four-dimensional (4D) Nomarski microscopy, laser microsurgery, and 4D fluorescence microscopy using actin and junctional fusion proteins, as well as tissue-specific promoters useful for studying dorsal intercalation.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Microscopía Fluorescente , MorfogénesisRESUMEN
Vertebrate Delta/Notch signaling involves multiple ligands, receptors and transcription factors. Delta endocytosis - a critical event for Notch activation - is however essentially controlled by the E3 Ubiquitin ligase Mindbomb1 (Mib1). Mib1 inactivation is therefore often used to inhibit Notch signaling. However, recent findings indicate that Mib1 function extends beyond the Notch pathway. We report a novel Notch-independent role of Mib1 in zebrafish gastrulation. mib1 null mutants and morphants display impaired Convergence Extension (CE) movements. Comparison of different mib1 mutants and functional rescue experiments indicate that Mib1 controls CE independently of Notch. Mib1-dependent CE defects can be rescued using the Planar Cell Polarity (PCP) downstream mediator RhoA, or enhanced through knock-down of the PCP ligand Wnt5b. Mib1 regulates CE through its RING Finger domains that have been implicated in substrate ubiquitination, suggesting that Mib1 may control PCP protein trafficking. Accordingly, we show that Mib1 controls the endocytosis of the PCP component Ryk and that Ryk internalization is required for CE. Numerous morphogenetic processes involve both Notch and PCP signaling. Our observation that during zebrafish gastrulation Mib1 exerts a Notch-independent control of PCP-dependent CE movements suggest that Mib1 loss-of-function phenotypes should be cautiously interpreted depending on the biological context.
Animal embryonic development involves producing an entire animal from a single starting cell, the zygote. To do this, the zygote must divide to make new cells, and these cells have to arrange themselves into the correct body shape. This requires a lot of cells to move in a coordinated fashion. One of these movements is called 'convergent extension', in which a typically round group of cells rearranges into a long, thin shape, for example, to increase the distance between the head and the tail of the animal. In order to coordinate this movement, cells need to communicate with each other. One of the signaling pathways cells use to guide them to the right positions is the planar cell polarity (PCP) pathway. Zebrafish are used to study PCP in convergent extension because they are transparent, making it easy to track their cell movements under the microscope. Interestingly, when a protein called Mindbomb1 (Mib1) is inactivated in zebrafish embryos, convergent extension is reduced. Mib1 helps control the activity of other proteins by attaching a chemical marker called ubiquitin to them, which tags these proteins to be relocated from the cell surface to small vesicles within the cell. The protein is known to be involved in the formation of neurons the cells that make up the brain and nerves but its links to cell movement and the PCP pathway had not been explored. Saraswathy et al. used a technique called Crispr/Cas9 mutagenesis to genetically modify zebrafish and then used observations under the microscope to determine the role of Mib1 in PCP and convergent extension. Their experiments show that Mib1 helps internalize a protein called Ryk from the cell surface into the cell. This internalization of Ryk is required to relay signals through the PCP pathway. When Mib1 is missing, Ryk stays on the surface of the cell, instead of moving to the inside, blocking PCP signaling between cells and therefore blocking convergent extension. Understanding the role of Mib1 in PCP signaling sheds light on how cell movements are coordinated during the embryonic development of zebrafish. Future research will involve determining whether Mib1 plays the same role in other animals, offering further insights into embryonic development. Additionally, PCP is known to have a role in disease, including the spread of cancer. It will be important to determine whether Mib1 is involved in this process as well.
Asunto(s)
Gastrulación , Pez Cebra , Animales , Movimiento Celular/genética , Polaridad Celular/fisiología , Gastrulación/fisiología , Ubiquitina-Proteína Ligasas/genética , Proteínas Wnt/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. Although regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, we report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial Madin-Darby canine kidney cells, upon confluence, doxycycline-induced expression of PRL upregulated apoptosis, reducing cell density. This could be circumvented by artificially reducing cell density via stretching the cell-seeded silicon chamber. Moreover, small interfering RNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating the TGF-ß pathway. Morpholino-mediated inhibition of PRL expression in zebrafish embryos caused developmental defects, with reduced apoptosis and increased epithelial cell density during convergent extension. Overall, this study revealed a novel role for PRL in regulating density-dependent apoptosis in vertebrate epithelia. This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Proteínas Tirosina Fosfatasas , Pez Cebra , Animales , Apoptosis/genética , Recuento de Células , Perros , Humanos , Hígado , Células de Riñón Canino Madin Darby , Proteínas de Neoplasias , Proteínas Tirosina Fosfatasas/genética , Pez Cebra/genéticaRESUMEN
We describe a method of generating three-notochord explants to analyze the cell movements of convergent extension (CE) during Xenopus laevis gastrulation and neurulation. This method uses standard microsurgical techniques under a fluorescence stereomicroscope to combine notochordal sectors of gastrulae, side by side (lateral surfaces apposed) into a single explant. Three-notochord explants cultured on bovine serum albumin (BSA)-coated glass converged mediolaterally and extended in the anterior-posterior direction. The individual notochordal cells showed the mediolaterally oriented, bipolar tractional motility and the resulting mediolaterally oriented cell intercalation characteristic of CE, thereby reproducing both the in vivo tissue and the cell movements in an explant. Image analysis of three-notochord explants reveals the effects of overexpressions or knockdowns of genes, of manipulation of the extracellular matrix, and of exposure to chemical reagents on morphogenesis during gastrulation and neurulation, compared with control explants. Moreover, since three-notochord explants provide two zones of cell intercalation between notochords, individual cell behaviors between notochords of different characteristics and experimental treatments can be observed at the same time.