Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.058
Filtrar
1.
J Psychiatr Res ; 177: 403-411, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39089118

RESUMEN

BACKGROUND: Home-based transcranial direct current stimulation (Hb-tDCS) is a non-invasive brain stimulation technique that utilizes low-intensity electric currents delivered via scalp electrodes to modulate brain activity. It holds significant promise for addressing inattention in adults with attention-deficit/hyperactivity disorder (ADHD). However, its effectiveness varies among individuals, and predicting outcomes remains uncertain, partially due to the influence of individual differences in ADHD-related brain anatomy. METHODS: We analyzed data from a subsample, composed by twenty-nine adult patients with ADHD, of the Treatment of Inattention Symptoms in Adult Patients with ADHD (TUNED) trial. Fourteen patients underwent active anodal right cathodal left dorsolateral prefrontal cortex (DLPFC) Hb-tDCS for 4 weeks and fifteen received sham-related tDCS intervention. Inattention outcome was evaluated at both baseline and endpoint (4th week). Baseline structural measures of the DLPFC, anterior cingulate cortex (ACC) and subcortical structures, previously associated with ADHD, were quantified. Several linear mixed models, with a three-way interaction between the fixed predictors brain volume or thickness, time, and treatment were calculated. Multiple comparison corrections were applied using the Benjamini-Hochberg method. RESULTS: Baseline volume of the left DLPFC regions middle frontal gyrus (t (25) = 3.33, p-adjusted = 0.045, Cohen's d = 1.33, 95% CI = [0.45, 2.19]), inferior frontal gyrus (orbital part) (t (25) = 3.10, p-adjusted = 0.045, Cohen's d = 1.24, 95% CI = [0.37, 2.08]), and of the left ACC supragenual (t (25) = 3.15, p-adjusted = 0.045, Cohen's d = 1.26, 95% CI = [0.39, 2.11]) presented significant association with the inattentive score improvement only in the active tDCS group. More specifically, the smaller these regions were, the more the symptoms improved following anodal right cathodal left DLPFC Hb-tDCS. CONCLUSION: Hb-tDCS was associated with greater improvement in brain areas related to attention regulation. Brain MRI can be potentially used to predict clinical response to tDCS in ADHD adults.

2.
Am J Cancer Res ; 14(7): 3652-3664, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113873

RESUMEN

Androgen deprivation therapy (ADT) has been associated with adverse effects on the brain. ADT leads to altered testosterone levels that may affect brain morphology as well as cognition. Considering the reliability of cortical thickness (CT) as a marker of cognitive and brain changes, e.g., in Alzheimer's disease, we assessed the impacts of ADT on CT and working memory. Thirty men with non-metastatic prostate cancer receiving ADT and 32 patients not receiving ADT (controls or CON), matched in age and years of education, participated in N-back task and quality-of-life (QoL) assessments as well as brain imaging at baseline and prospectively at 6 months. Imaging data were processed with published routines to estimate CT and the results of a group by time flexible factorial analysis were evaluated at a corrected threshold. ADT and CON did not differ in N-back performance or QoL across time points. Relative to CON, patients receiving ADT showed significantly higher frontopolar cortex (FPC) CT at 6-month follow-up vs. baseline. Follow-up vs. baseline FPC CT change correlated negatively with changes in 2-back correct response rate and in testosterone levels across all participants. In mediation analysis, FPC CT change mediated the association between testosterone level change and 2-back accuracy rate change. Increases in FPC CT following 6 months of ADT may reflect early neurodegenerative changes in response to androgen deprivation. While no significant impact on working memory or QoL was observed over 6 months, further research of longer duration of treatment is warranted to unravel the full spectrum of cognitive and neural consequences of ADT in prostate cancer patients.

3.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39102518

RESUMEN

A large range of sophisticated brain image analysis tools have been developed by the neuroscience community, greatly advancing the field of human brain mapping. Here we introduce the Computational Anatomy Toolbox (CAT)-a powerful suite of tools for brain morphometric analyses with an intuitive graphical user interface but also usable as a shell script. CAT is suitable for beginners, casual users, experts, and developers alike, providing a comprehensive set of analysis options, workflows, and integrated pipelines. The available analysis streams-illustrated on an example dataset-allow for voxel-based, surface-based, and region-based morphometric analyses. Notably, CAT incorporates multiple quality control options and covers the entire analysis workflow, including the preprocessing of cross-sectional and longitudinal data, statistical analysis, and the visualization of results. The overarching aim of this article is to provide a complete description and evaluation of CAT while offering a citable standard for the neuroscience community.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Programas Informáticos , Imagen por Resonancia Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Biología Computacional/métodos , Neuroimagen/métodos
4.
Bipolar Disord ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138611

RESUMEN

BACKGROUND: People with bipolar disorder (BD) tend to show widespread cognitive impairment compared to healthy controls. Impairments in processing speed (PS), attention and executive function (EF) may represent 'core' impairments that have a role in wider cognitive dysfunction. Cognitive impairments appear to relate to structural brain abnormalities in BD, but whether core deficits are related to particular brain regions is unclear and much of the research on brain-cognition associations is limited by univariate analysis and small samples. METHODS: Euthymic BD patients (n = 56) and matched healthy controls (n = 26) underwent T1-weighted MRI scans and completed neuropsychological tests of PS, attention and EF. We utilised public datasets to develop normative models of cortical thickness (n = 5977) to generate robust estimations of cortical abnormalities in patients. Canonical correlation analysis was used to assess multivariate brain-cognition associations in BD, controlling for age, sex and premorbid IQ. RESULTS: BD showed impairments on tests of PS, attention and EF, and abnormal cortical thickness in several brain regions compared to healthy controls. Impairments in tests of PS and EF were most strongly associated with cortical thickness in the left inferior temporal, right entorhinal and right temporal pole areas. CONCLUSION: Impairments in PS, attention and EF can be observed in euthymic BD and may be related to abnormal cortical thickness in temporal regions. Future research should continue to leverage normative modelling and multivariate methods to examine complex brain-cognition associations in BD. Future research may benefit from exploring covariance between traditional brain structural morphological metrics such as cortical thickness, cortical volume and surface area.

5.
Mil Med Res ; 11(1): 51, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098930

RESUMEN

BACKGROUND: Poor sleep quality has been associated with changes in brain volume among veterans, particularly those who have experienced mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). This study sought to investigate (1) whether poor sleep quality is associated with decreased cortical thickness in Iraq and Afghanistan war veterans, and (2) whether these associations differ topographically depending on the presence or absence of mTBI and PTSD. METHODS: A sample of 440 post-9/11 era U.S. veterans enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders study at VA Boston, MA from 2010 to 2022 was included in the study. We examined the relationship between sleep quality, as measured by the Pittsburgh Sleep Quality Index (PSQI), and cortical thickness in veterans with mTBI (n = 57), PTSD (n = 110), comorbid mTBI and PTSD (n = 129), and neither PTSD nor mTBI (n = 144). To determine the topographical relationship between subjective sleep quality and cortical thickness in each diagnostic group, we employed a General Linear Model (GLM) at each vertex on the cortical mantle. The extent of topographical overlap between the resulting statistical maps was assessed using Dice coefficients. RESULTS: There were no significant associations between PSQI and cortical thickness in the group without PTSD or mTBI (n = 144) or in the PTSD-only group (n = 110). In the mTBI-only group (n = 57), lower sleep quality was significantly associated with reduced thickness bilaterally in frontal, cingulate, and precuneus regions, as well as in the right parietal and temporal regions (ß = -0.0137, P < 0.0005). In the comorbid mTBI and PTSD group (n = 129), significant associations were observed bilaterally in frontal, precentral, and precuneus regions, in the left cingulate and the right parietal regions (ß = -0.0094, P < 0.0005). Interaction analysis revealed that there was a stronger relationship between poor sleep quality and decreased cortical thickness in individuals with mTBI (n = 186) compared to those without mTBI (n = 254) specifically in the frontal and cingulate regions (ß = -0.0077, P < 0.0005). CONCLUSIONS: This study demonstrates a significant relationship between poor sleep quality and lower cortical thickness primarily within frontal regions among individuals with both isolated mTBI or comorbid diagnoses of mTBI and PTSD. Thus, if directionality is established in longitudinal and interventional studies, it may be crucial to consider addressing sleep in the treatment of veterans who have sustained mTBI.


Asunto(s)
Conmoción Encefálica , Trastornos por Estrés Postraumático , Veteranos , Humanos , Trastornos por Estrés Postraumático/fisiopatología , Masculino , Veteranos/estadística & datos numéricos , Veteranos/psicología , Adulto , Femenino , Persona de Mediana Edad , Conmoción Encefálica/complicaciones , Conmoción Encefálica/fisiopatología , Campaña Afgana 2001- , Guerra de Irak 2003-2011 , Trastornos del Sueño-Vigilia/fisiopatología , Trastornos del Sueño-Vigilia/etiología , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
Ophthalmol Sci ; 4(6): 100465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149712

RESUMEN

Purpose: To reveal the causality between retinal vascular density (VD), fractal dimension (FD), and brain cortex structure using Mendelian randomization (MR). Design: Cross-sectional study. Participants: Genome-wide association studies of VD and FD involving 54 813 participants from the United Kingdom Biobank were used. The brain cortical features, including the cortical thickness (TH) and surface area (SA), were extracted from 51 665 patients across 60 cohorts. Surface area and TH were measured globally and in 34 functional regions using magnetic resonance imaging. Methods: Bidirectional univariable MR (UVMR) was used to detect the causality between FD, VD, and brain cortex structure. Multivariable MR (MVMR) was used to adjust for confounding factors, including body mass index and blood pressure. Main Outcome Measures: The global and regional measurements of brain cortical SA and TH. Results: At the global level, higher VD is related to decreased TH (ß = -0.0140 mm, 95% confidence interval: -0.0269 mm to -0.0011 mm, P = 0.0339). At the functional level, retinal FD is related to the TH of banks of the superior temporal sulcus and transverse temporal region without global weighted, as well as the SA of the posterior cingulate after adjustment. Vascular density is correlated with the SA of subregions of the frontal lobe and temporal lobe, in addition to the TH of the inferior temporal, entorhinal, and pars opercularis regions in both UVMR and MVMR. Bidirectional MR studies showed a causation between the SA of the parahippocampal and cauda middle frontal gyrus and retinal VD. No pleiotropy was detected. Conclusions: Fractal dimension and VD causally influence the cortical structure and vice versa, indicating that the retinal microvasculature may serve as a biomarker for cortex structural changes. Our study provides insights into utilizing noninvasive fundus images to predict cortical structural deteriorations and neuropsychiatric disorders. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

7.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39152673

RESUMEN

Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.


Asunto(s)
Ceguera , Frecuencia Cardíaca , Lóbulo Occipital , Humanos , Masculino , Femenino , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiología , Adulto , Frecuencia Cardíaca/fisiología , Ceguera/fisiopatología , Persona de Mediana Edad , Imagen por Resonancia Magnética , Adulto Joven , Interocepción/fisiología
8.
Appl Neuropsychol Adult ; : 1-8, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140183

RESUMEN

INTRODUCTION: Memory deficits are the primary symptom in amnestic Mild Cognitive Impairment (aMCI); however, executive function (EF) deficits are common. The current study examined EF in aMCI based upon amyloid status (A+/A-) and regional atrophy in signature areas of Alzheimer's disease (AD). METHOD: Participants included 110 individuals with aMCI (A+ = 66; A- = 44) and 33 cognitively healthy participants (HP). EF was assessed using four neuropsychological assessment measures. The cortical thickness of the AD signature areas was calculated using structural MRI data. RESULTS: A + had greater EF deficits and cortical atrophy relative to A - in the supramarginal gyrus and superior parietal lobule. A - had greater EF deficits relative to HP, but no difference in signature area cortical thickness. DISCUSSION: The current study found that the degree of EF deficits in aMCI are a function of amyloid status and cortical thinning in the parietal cortex.

9.
Front Dement ; 3: 1418037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081608

RESUMEN

Introduction: Type 2 diabetes (T2D) has been linked to cognitive impairment and dementia, but its impact on brain cortical structures in individuals prior to or without cognitive impairment remains unclear. Methods: We conducted a systematic review of 2,331 entries investigating cerebral cortical thickness changes in T2D individuals without cognitive impairment, 55 of which met our inclusion criteria. Results: Most studies (45/55) reported cortical brain atrophy and reduced thickness in the anterior cingulate, temporal, and frontal lobes between T2D and otherwise cognitively healthy controls. However, the balance of studies (10/55) reported no significant differences in either cortical or total brain volumes. A few reports also noticed changes in the occipital cortex and its gyri. As part of the reports, less than half of studies (18/55) described a correlation between T2D and hippocampal atrophy. Variability in sample characteristics, imaging methods, and software could affect findings on T2D and cortical atrophy. Discussion: In conclusion, T2D appears linked to reduced cortical thickness, possibly impacting cognition and dementia risk. Microvascular disease and inflammation in T2D may also contribute to this risk. Further research is needed to understand the underlying mechanisms and brain health implications.

10.
Yonsei Med J ; 65(8): 434-447, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048319

RESUMEN

PURPOSE: Alzheimer's disease (AD) dementia may not be a single disease entity. Early-onset AD (EOAD) and late-onset AD (LOAD) have been united under the same eponym of AD until now, but disentangling the heterogeneity according to the age of sonset has been a major tenet in the field of AD research. MATERIALS AND METHODS: Ninety-nine patients with AD (EOAD, n=54; LOAD, n=45) and 66 cognitively normal controls completed both [18F]THK5351 and [18F]flutemetamol (FLUTE) positron emission tomography scans along with structural magnetic resonance imaging and detailed neuropsychological tests. RESULTS: EOAD patients had higher THK retention in the precuneus, parietal, and frontal lobe, while LOAD patients had higher THK retention in the medial temporal lobe. Intravoxel correlation analyses revealed that EOAD presented narrower territory of local FLUTE-THK correlation, while LOAD presented broader territory of correlation extending to overall parieto-occipito-temporal regions. EOAD patients had broader brain areas which showed significant negative correlations between cortical thickness and THK retention, whereas in LOAD, only limited brain areas showed significant correlation with THK retention. In EOAD, most of the cognitive test results were correlated with THK retention. However, a few cognitive test results were correlated with THK retention in LOAD. CONCLUSION: LOAD seemed to show gradual increase in tau and amyloid, and those two pathologies have association to each other. On the other hand, in EOAD, tau and amyloid may develop more abruptly and independently. These findings suggest LOAD and EOAD may have different courses of pathomechanism.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Encéfalo , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Proteínas tau/metabolismo , Anciano , Atrofia/patología , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Pruebas Neuropsicológicas , Compuestos de Anilina , Edad de Inicio , Amiloide/metabolismo , Anciano de 80 o más Años , Benzotiazoles , Aminopiridinas , Quinolinas
11.
Artículo en Inglés | MEDLINE | ID: mdl-39019399

RESUMEN

BACKGROUND: According to person-by-environment models, individual differences in traits may moderate the association between stressors and the development of psychopathology; however, findings in the literature have been inconsistent and little literature has examined adolescent brain structure as a moderator of the effects of stress on adolescent internalizing symptoms. The COVID-19 pandemic presented a unique opportunity to examine the associations between stress, brain structure, and psychopathology. Given links of cortical morphology with adolescent depression and anxiety, the present study investigated whether cortical morphology moderates the relationship between stress from the COVID-19 pandemic on the development of internalizing symptoms in familial high-risk adolescents. METHODS: Prior to the COVID-19 pandemic, 72 adolescents (27M) completed a measure of depressive and anxiety symptoms and underwent magnetic resonance imaging. T1-weighted images were acquired to assess cortical thickness and surface area. Approximately 6-8 months after COVID-19 was declared a global pandemic, adolescents reported their depressive and anxiety symptoms and pandemic-related stress. RESULTS: Adjusting for pre-pandemic depressive and anxiety symptoms and stress, increased pandemic-related stress was associated with increased depressive but not anxiety symptoms. This relationship was moderated by cortical thickness and surface area in the anterior cingulate and cortical thickness in the medial orbitofrontal cortex such that increased stress was only associated with increased depressive and anxiety symptoms among adolescents with lower cortical surface area and higher cortical thickness in these regions. CONCLUSIONS: Results further our understanding of neural vulnerabilities to the associations between stress and internalizing symptoms in general, and during the COVID-19 pandemic in particular.

12.
Hum Brain Mapp ; 45(11): e26785, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39031470

RESUMEN

Cyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T1-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume. Across the whole brain, 17ß-estradiol and luteinizing hormone (LH) concentrations were directly proportional to diffusion anisotropy (µFA; 17ß-estradiol: ß1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: ß1 = 0.111, HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly proportional to CT (ß1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions, FSH and progesterone demonstrated opposing relationships with mean diffusivity (Diso) and CT. These regions mainly reside within the temporal and occipital lobes, with functional implications for the limbic and visual systems. Finally, progesterone was associated with increased tissue (ß1 = 0.66, HDI = [0.607, 15.845]) and decreased cerebrospinal fluid (CSF; ß1 = -0.749, HDI = [-11.604, -0.903]) volumes, with total brain volume remaining unchanged. These results are the first to report simultaneous brain-wide changes in human WM microstructure and CT coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in both classically known HPG-axis receptor-dense regions (medial temporal lobe, prefrontal cortex) and in other regions located across frontal, occipital, temporal, and parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have significant structural impacts across the entire brain.


Asunto(s)
Encéfalo , Estradiol , Sustancia Gris , Hormona Luteinizante , Ciclo Menstrual , Sustancia Blanca , Humanos , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Adulto , Ciclo Menstrual/fisiología , Estradiol/sangre , Adulto Joven , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Hormona Luteinizante/sangre , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Hormona Folículo Estimulante/sangre , Progesterona/sangre , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética
13.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39077916

RESUMEN

The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.


Asunto(s)
Atletas , Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/anatomía & histología , Estudios Transversales , Persona de Mediana Edad , Traumatismos en Atletas/patología , Traumatismos en Atletas/diagnóstico por imagen , Anciano , Conmoción Encefálica/patología , Conmoción Encefálica/diagnóstico por imagen , Cognición/fisiología
14.
Eat Weight Disord ; 29(1): 47, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028377

RESUMEN

PURPOSE: This study investigated the association between childhood eating behaviors and cortical morphology, in relation to sex and age, in a community sample. METHODS: Neuroimaging data of 71 children (mean age = 9.9 ± 1.4 years; 39 boys/32 girls) were obtained from the Nathan Kline Institute-Rockland Sample. Emotional overeating, food fussiness, and emotional undereating were assessed using the Children's Eating Behavior Questionnaire. Cortical thickness was obtained at 81,924 vertices covering the entire cortex. Generalized Linear Mixed Models were used for statistical analysis. RESULTS: There was a significant effect of sex in the association between cortical thickness and emotional overeating (localized at the right postcentral and bilateral superior parietal gyri). Boys with more emotional overeating presented cortical thickening, whereas the opposite was observed in girls (p < 0.05). Different patterns of association were identified between food fussiness and cortical thickness (p < 0.05). The left rostral middle frontal gyrus displayed a positive correlation with food fussiness from 6 to 8 years, but a negative correlation from 12 to 14 years. Emotional undereating was associated with cortical thickening at the left precuneus, left middle temporal gyrus, and left insula (p < 0.05) with no effect of sex or age. CONCLUSIONS: Leveraging on a community sample, findings support distinct patterns of associations between eating behaviors and cortical thickness, depending on sex and age.


Asunto(s)
Corteza Cerebral , Conducta Alimentaria , Trastornos de Alimentación y de la Ingestión de Alimentos , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Niño , Conducta Alimentaria/psicología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Adolescente , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Factores de Edad , Factores Sexuales , Emociones/fisiología , Conducta Infantil/psicología
15.
Front Aging Neurosci ; 16: 1395911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974904

RESUMEN

Background: Patients with carotid atherosclerotic stenosis (CAS) often have varying degrees of cognitive decline. However, there is little evidence regarding how brain morphological and functional abnormalities impact the cognitive decline in CAS patients. This study aimed to determine how the brain morphological and functional changes affected the cognitive decline in patients with CAS. Methods: The brain morphological differences were analyzed using surface and voxel-based morphometry, and the seed-based whole-brain functional connectivity (FC) abnormalities were analyzed using resting-state functional magnetic resonance imaging. Further, mediation analyses were performed to determine whether and how morphological and FC changes affect cognition in CAS patients. Results: The CAS-MCI (CAS patients with mild cognitive impairment) group performed worse in working memory, verbal fluency, and executive time. Cortical thickness (CT) of the left postcentral and superiorparietal were significantly reduced in CAS-MCI patients. The gray matter volume (GMV) of the right olfactory, left temporal pole (superior temporal gyrus) (TPOsup.L), left middle temporal gyrus (MTG.L), and left insula (INS.L) were decreased in the CAS-MCI group. Besides, decreased seed-based FC between TPOsup.L and left precuneus, between MTG.L and TPOsup.L, and between INS.L and MTG.L, left middle frontal gyrus, as well as Superior frontal gyrus, were found in CAS-MCI patients. Mediation analyses demonstrated that morphological and functional abnormalities fully mediated the association between the maximum degree of carotid stenosis and cognitive function. Conclusion: Multiple brain regions have decreased GMV and CT in CAS-MCI patients, along with disrupted seed-based FC. These morphological and functional changes play a crucial role in the cognitive impairment in CAS patients.

16.
Schizophr Bull ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970378

RESUMEN

BACKGROUND: Clinical forecasting models have potential to optimize treatment and improve outcomes in psychosis, but predicting long-term outcomes is challenging and long-term follow-up data are scarce. In this 10-year longitudinal study, we aimed to characterize the temporal evolution of cortical correlates of psychosis and their associations with symptoms. DESIGN: Structural magnetic resonance imaging (MRI) from people with first-episode psychosis and controls (n = 79 and 218) were obtained at enrollment, after 12 months (n = 67 and 197), and 10 years (n = 23 and 77), within the Thematically Organized Psychosis (TOP) study. Normative models for cortical thickness estimated on public MRI datasets (n = 42 983) were applied to TOP data to obtain deviation scores for each region and timepoint. Positive and Negative Syndrome Scale (PANSS) scores were acquired at each timepoint along with registry data. Linear mixed effects models assessed effects of diagnosis, time, and their interactions on cortical deviations plus associations with symptoms. RESULTS: LMEs revealed conditional main effects of diagnosis and time × diagnosis interactions in a distributed cortical network, where negative deviations in patients attenuate over time. In patients, symptoms also attenuate over time. LMEs revealed effects of anterior cingulate on PANSS total, and insular and orbitofrontal regions on PANSS negative scores. CONCLUSIONS: This long-term longitudinal study revealed a distributed pattern of cortical differences which attenuated over time together with a reduction in symptoms. These findings are not in line with a simple neurodegenerative account of schizophrenia, and deviations from normative models offer a promising avenue to develop biomarkers to track clinical trajectories over time.

17.
Netw Neurosci ; 8(2): 576-596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952810

RESUMEN

Canonical correlation analysis (CCA) and partial least squares correlation (PLS) detect linear associations between two data matrices by computing latent variables (LVs) having maximal correlation (CCA) or covariance (PLS). This study compared the similarity and generalizability of CCA- and PLS-derived brain-behavior relationships. Data were accessed from the baseline Adolescent Brain Cognitive Development (ABCD) dataset (N > 9,000, 9-11 years). The brain matrix consisted of cortical thickness estimates from the Desikan-Killiany atlas. Two phenotypic scales were examined separately as the behavioral matrix; the Child Behavioral Checklist (CBCL) subscale scores and NIH Toolbox performance scores. Resampling methods were used to assess significance and generalizability of LVs. LV1 for the CBCL brain relationships was found to be significant, yet not consistently stable or reproducible, across CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 for the NIH brain relationships showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). The current study suggests that stability and reproducibility of brain-behavior relationships identified by CCA and PLS are influenced by the statistical characteristics of the phenotypic measure used when applied to a large population-based pediatric sample.


Clinical neuroscience research is going through a translational crisis largely due to the challenges of producing meaningful and generalizable results. Two critical limitations within clinical neuroscience research are the use of univariate statistics and between-study methodological variation. Univariate statistics may not be sensitive enough to detect complex relationships between several variables, and methodological variation poses challenges to the generalizability of the results. We compared two widely used multivariate statistical approaches, canonical correlations analysis (CCA) and partial least squares correlation (PLS), to determine the generalizability and stability of their solutions. We show that the properties of the measures inputted into the analysis likely play a more substantial role in the generalizability and stability of results compared to the specific approach applied (i.e., CCA or PLS).

18.
Hum Brain Mapp ; 45(11): e26754, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39046031

RESUMEN

Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Caracteres Sexuales , Humanos , Adolescente , Masculino , Niño , Femenino , Preescolar , Lactante , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/anatomía & histología , Factores de Edad , Desarrollo Infantil/fisiología , Lateralidad Funcional/fisiología , Desarrollo del Adolescente/fisiología
19.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39051658

RESUMEN

Behavioral addiction (BA) is a conceptually new addictive phenotype characterized by compulsive reward-seeking behaviors despite adverse consequences. Currently, its underlying neurogenetic mechanism remains unclear. Here, this study aimed to investigate the association between cortical thickness (CTh) and genetic phenotypes in BA. We conducted a systematic search in five databases and extracted gene expression data from the Allen Human Brain Atlas. Meta-analysis of 10 studies (343 addicted individuals and 355 controls) revealed that the BA group showed thinner CTh in the precuneus, postcentral gyrus, orbital-frontal cortex, and dorsolateral prefrontal cortex (P < 0.005). Meta-regression showed that the CTh in the precuneus and postcentral gyrus were negatively associated with the addiction severity (P < 0.0005). More importantly, the CTh phenotype of BA was spatially correlated with the expression of 12 genes (false discovery rate [FDR] < 0.05), and the dopamine D2 receptor had the highest correlation (rho = 0.55). Gene enrichment analysis further revealed that the 12 genes were involved in the biological processes of behavior regulation and response to stimulus (FDR < 0.05). In conclusion, our findings demonstrated the thinner CTh in cognitive control-related brain areas in BA, which could be associated with the expression of genes involving dopamine metabolism and behavior regulation.


Asunto(s)
Conducta Adictiva , Corteza Cerebral , Humanos , Conducta Adictiva/genética , Conducta Adictiva/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Masculino , Adulto , Femenino , Grosor de la Corteza Cerebral , Receptores de Dopamina D2/genética , Imagen por Resonancia Magnética
20.
J Headache Pain ; 25(1): 97, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858629

RESUMEN

BACKGROUND: Mindfulness practice has gained interest in the management of Chronic Migraine associated with Medication Overuse Headache (CM-MOH). Mindfulness is characterized by present-moment self-awareness and relies on attention control and emotion regulation, improving headache-related pain management. Mindfulness modulates the Default Mode Network (DMN), Salience Network (SN), and Fronto-Parietal Network (FPN) functional connectivity. However, the neural mechanisms underlying headache-related pain management with mindfulness are still unclear. In this study, we tested neurofunctional changes after mindfulness practice added to pharmacological treatment as usual in CM-MOH patients. METHODS: The present study is a longitudinal phase-III single-blind Randomized Controlled Trial (MIND-CM study; NCT03671681). Patients had a diagnosis of CM-MOH, no history of neurological and severe psychiatric comorbidities, and were attending our specialty headache centre. Patients were divided in Treatment as Usual (TaU) and mindfulness added to TaU (TaU + MIND) groups. Patients underwent a neuroimaging and clinical assessment before the treatment and after one year. Longitudinal comparisons of DMN, SN, and FPN connectivity were performed between groups and correlated with clinical changes. Vertex-wise analysis was performed to assess cortical thickness changes. RESULTS: 177 CM-MOH patients were randomized to either TaU group or TaU + MIND group. Thirty-four patients, divided in 17 TaU and 17 TaU + MIND, completed the neuroimaging follow-up. At the follow-up, both groups showed an improvement in most clinical variables, whereas only TaU + MIND patients showed a significant headache frequency reduction (p = 0.028). After one year, TaU + MIND patients showed greater SN functional connectivity with the left posterior insula (p-FWE = 0.007) and sensorimotor cortex (p-FWE = 0.026). In TaU + MIND patients only, greater SN-insular connectivity was associated with improved depression scores (r = -0.51, p = 0.038). A longitudinal increase in cortical thickness was observed in the insular cluster in these patients (p = 0.015). Increased anterior cingulate cortex thickness was also reported in TaU + MIND group (p-FWE = 0.02). CONCLUSIONS: Increased SN-insular connectivity might modulate chronic pain perception and the management of negative emotions. Enhanced SN-sensorimotor connectivity could reflect improved body-awareness of painful sensations. Expanded cingulate cortex thickness might sustain improved cognitive processing of nociceptive information. Our findings unveil the therapeutic potential of mindfulness and the underlying neural mechanisms in CM-MOH patients. TRIAL REGISTRATION: Name of Registry; MIND-CM study; Registration Number ClinicalTrials.gov identifier: NCT0367168; Registration Date: 14/09/2018.


Asunto(s)
Cefaleas Secundarias , Atención Plena , Humanos , Atención Plena/métodos , Cefaleas Secundarias/terapia , Cefaleas Secundarias/psicología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Estudios Longitudinales , Método Simple Ciego , Imagen por Resonancia Magnética , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA