Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
ChemSusChem ; : e202401042, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373399

RESUMEN

Today, the agrochemical industry faces enormous challenges to ensure the sustainable supply of high-quality food, efficient water use, low environmental impact, and the growing world population. The shortage of agrochemicals due to consumer perception, changing needs of farmers and ever-changing regulatory requirements is higher than the number of active ingredients that are placed on the market. The introduction of halogen atoms into an active ingredient molecule offers the opportunity to optimize its physico-chemical properties such as molecular lipophilicity. As early as 2010, around four-fifths of modern agrochemicals on the market contained halogen atoms. In addition, it becomes clear that modern agrochemicals have increasingly complex molecular structures with one or more stereogenic centers in the molecule. Today, almost half of modern agrochemicals are chiral molecules (herbicides, insecticides/acaricides/nematicides ≪ fungicides) and most of them consist of mixtures such as racemic mixtures of enantiomers, followed by mixtures of diastereomers and mixtures of pure enantiomers. Therefore, it is important that halogen-containing substituents or stereogenic centers are considered in the structural optimization of the active ingredients to ultimately develop sustainable agrochemicals in terms of efficacy, ecotoxicology, ease of use and cost-effectiveness.

2.
Plants (Basel) ; 13(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273931

RESUMEN

Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.

3.
Insect Biochem Mol Biol ; 174: 104189, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39341259

RESUMEN

Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.

4.
Front Plant Sci ; 15: 1365275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315369

RESUMEN

Bird invasion will reduce the yield of high-value crops, which threatens the healthy development of agricultural economy. Sonic bird repellent has the advantages of large range, no time and geographical restrictions, and low cost, which has attracted people's attention in the field of agriculture. At present, there are few studies on the application of sonic bird repellents in pear orchards to minimize economic losses and prolong the adaptive capacity of birds. In this paper, a sound wave bird repellent system based on computer vision is designed, which combines deep learning target recognition technology to accurately identify birds and drive them away. The neural network model that can recognize birds is first trained and deployed to the server. Live video is captured by an installed webcam, and the sonic bird repellent is powered by an ESP-8266 relay switch. In a pear orchard, two experimental areas were divided into two experimental areas to test the designed sonic bird repellent device, and the number of bad fruits pecked by birds was used as an indicator to evaluate the bird repelling effect. The results showed that the pear pecked fruit rate was 6.03% in the pear orchard area that used the acoustic bird repeller based on computer recognition, 7.29% in the pear orchard area of the control group that used the acoustic bird repeller with continuous operation, and 13.07% in the pear orchard area that did not use any bird repellent device. While acoustic bird repellers based on computer vision can be more effective at repelling birds, they can be used in combination with methods such as fruit bags to reduce the economic damage caused by birds.

5.
Pest Manag Sci ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344983

RESUMEN

As the world's population continues to grow and demand for food increases, the agricultural industry faces the challenge of producing higher yields while ensuring the safety and quality of harvests, operators, and consumers. The emergence of resistance, pest shifts, and stricter regulatory requirements also urgently calls for further advances in crop protection and the discovery of new innovative products for sustainable crop protection. This study reviews recent highlights in innovation as presented at the 15th IUPAC International Congress of Crop Protection Chemistry held in New Delhi, in 2023. The following new products are discussed: the insecticides Indazapyroxamet, Dimpropyridaz and Fenmezoditiaz, the fungicides Mefentrifluconazole and Pyridachlomethyl, the nematicide Cyclobutrifluram, the herbicides Rimisoxafen, Dimesulfazet, and Epyrifenacil as well as the abiotic stress management product Anisiflupurin. In addition, the latest innovative research areas and discovery highlights in all areas of crop protection will be presented, including insecticidal alkyl sulfones and 1,3,4-trisubstituted pyrazoles, fungicidal picolinamides, herbicidal ketoenols, and trifluoromethylpyrazoles, as well as the latest advances in crop enhancement and green pest control research. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
Biomolecules ; 14(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39334922

RESUMEN

Known mycotoxins have been investigated for years. They have been included in legislation and are meticulously controlled in most cereals, cereal-related products, and raw materials of animal origin. However, there are still mycotoxins that need to be addressed by regulations and subsequently are not monitored but can still occur in relatively high concentrations. This research aimed to assess the occurrence of common Fusarium mycotoxins in hulled barley. Samples of hulled barley were treated in the field with two protective treatments, alongside a control sample sans treatment. Furthermore, we aimed to assess the occurrence of Alternaria mycotoxins in the chosen samples. The results have shown that Fusarium mycotoxins were mostly determined by climatic conditions (no mycotoxins in 2020, except siccanol). Most interesting was the appearance of infectopyron, an Alternaria toxin that was detected in all samples in 2019 and in the majority of samples in 2020. The highest concentration was detected in 2019 in hulled barley with 536 µg/kg, while in 2020, the highest concentration of this mycotoxin reached 350 µg/kg. These findings depict the need for further research on food safety regarding mycotoxins, and the need for additional changes in legislation. This investigation shows that fungicide application in rainy years cannot efficiently suppress mycotoxin production. Additionally, even in dry years, some of the mycotoxins not involved in legislation, such as infectopyron and siccanol, do not respond to the application of fungicides.


Asunto(s)
Alternaria , Fusarium , Hordeum , Micotoxinas , Hordeum/metabolismo , Fusarium/metabolismo , Alternaria/metabolismo , Micotoxinas/análisis , Micotoxinas/metabolismo , Contaminación de Alimentos/análisis , Grano Comestible/metabolismo , Grano Comestible/microbiología , Grano Comestible/química
7.
Animals (Basel) ; 14(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39272341

RESUMEN

Wild boars are an opportunistic wildlife species that has successfully colonized the human-modified landscape in Europe. However, the current population boom has negative consequences, which result in a rapid increase in human-wildlife conflicts and disease transmission, including African swine fever (ASF). The increasing frequency of conflicts requires adequate solutions for these issues through various measures. Application of deterrents is a common non-lethal measure whose effects have been insufficiently verified until recently. Thus, this study aims to evaluate the effectiveness of odor fences, often applied as a barrier against wild boar movement. For this purpose, 18 wild boars were marked with GPS collars. After 22 days of initial monitoring, 12 sections of odor fences were installed on their home ranges. The monitored wild boars crossed the area 20.5 ± 9.2 times during the pre-installation period and 19.9 ± 8.4 times after the odor fence installation. Moreover, the average home range varied between 377.9 ± 185.0 ha before and 378.1 ± 142.2 ha after the odor fence installation. Based on GPS telemetry results, we do not support using odor repellent lines for crop protection or for limiting wild boar movement to lessen ASF outbreaks.

8.
Chem Biodivers ; : e202400945, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106337

RESUMEN

Chalcone (E)-1,3-diphenyl-prop-2-en-1-one and a series of 14 methoxylated derivatives have been synthesized via Claisen-Schmidt aldol condensation and characterized by FTIR, CG/MS/DIC, 1D (1H and 13C), 2D (COSY, HSQC, and HMBC) NMR, and EMAR techniques. All molecules were tested at 1 mM concentration for antifungal (Sclerotium sp., Macrophomina phaesolina and Colletotrichum gloeosporioides), antibacterial (Acidovorax citrulli two strains), and antiprotozoal (Phytomonas serpens) activities. Unmodified chalcone (CH0) and derivatives CH1, CH2, CH8 stood out in terms of antifungal activity. CH0 presented IC50 values of 47.3 µM (9.8 µg/mL) for the fungus C. gloeosporioides. In addition, fluorescence microscopy indicated that CH0 promoted loss of hyphal cell membrane integrity. The CH1 and CH2 derivatives promoted the inhibition of Sclerotium sp. with IC50 of 127.5 µM (32.9 µg/mL) and 110.4 µM (29.6 µg/mL), respectively. All molecules showed high activity against the phytoparasite P. serpens with IC50 values of 0.98, 2.40, 10.25, and 3.11 µM for the derivatives CH2, CH3, CH5 and CH14 respectively. The results demonstrated that derivatives methoxylated in both rings (CH2) as well as derivatives with a furan ring associated with the methoxy group in ring A, as well as unmodified chalcone can be promising agricultural fungicides for controlling the fungi studied.

9.
Front Fungal Biol ; 5: 1436759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170729

RESUMEN

Magnaporthiopsis maydis is a maize pathogen that causes severe damage to commercial corn fields in the late growth stages. Late wilt disease (LWD) has spread since its discovery in the 1960s in Egypt and is now reported in about 10 countries. The pathogen has a hidden endophytic lifecycle in resistant corn plants and secondary hosts such as green foxtail, watermelon lupin and cotton. At the same time, it could be an opportunist and hinder the host development under the right conditions. This study uncovered M. maydis interactions with newly identified maize endophytes. To this end, six fungi were isolated from the seeds of three sweet corn cultivars having varying susceptibility to LWD. These isolates were identified using colony morphology and microscopic characterization, universal internal transcribed spacer (ITS) molecular targeting and phylogenetic analysis. Most of them belonged to pathogenic species. Compared to three previously identified bioprotective microorganisms, the new species were tested for their ability to secrete metabolites that repress M. maydis in vitro and to antagonize it in a solid media confront test and a seedlings pathogenicity assay. The opportunistic fungal species Aspergillus flavus (ME1), Aspergillus terreus (PE3) and the reference biocontrol bacteria Bacillus subtilis (R2) achieved the highest M. maydis inhibition degree in the plates tests (74-100% inhibition). The seedlings' pathogenicity assay that predicts the seeds' microflora resistance to M. maydis highlighted the bio-shielding potential of most species (23% or more epicotyl elongation over the infected control). Fusarium sp. (ME2) was the leading species in this measure (43% enhancement), and B. subtilis gave the best protection in terms of seeds' germination (50%) and sprouts' biomass (34%). The results of this study could enhance our understanding of the pathobiome's role in the context of LWD and represent a first step in using the seeds' natural protective microflora to develop novel management strategies.

10.
Pest Manag Sci ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158367

RESUMEN

BACKGROUND: The sustainable control of weed populations is a significant challenge facing farmers around the world. Although various methods for the control of weeds exist, the use of small molecule herbicides remains the most effective and versatile approach. Striving to find novel herbicides that combat resistant weeds via the targeting of plant specific modes of action (MoAs), we further investigated the bicyclic class of acyl-acyl carrier protein (ACP) thioesterase (FAT) inhibitors in an effort to find safe and efficacious lead candidates. RESULTS: Utilizing scaffold hopping and bioisosteric replacements strategies, we explored new bicyclic inhibitors of FAT. Amongst the investigated compounds we identified new structural motifs that showed promising target affinity coupled with good in vivo efficacy against commercially important weed species. We further studied the structure-activity relationship (SAR) of the novel dihydropyranopyridine structural class which showed promise as a new type of FAT inhibiting herbicides. CONCLUSION: The current work presents how scaffold hopping approaches can be implemented to successfully find novel and efficacious herbicidal structures that can be further optimized for potential use in sustainable agricultural practices. The identified dihydropyranopyridine bicyclic class of herbicides were demonstrated to have in vitro inhibitory activity against the plant specific MoA FAT as well as showing promising control of a variety of weed species, particularly grass weeds in greenhouse trials on levels competitive with commercial standards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

11.
Physiol Mol Biol Plants ; 30(8): 1401-1411, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39184563

RESUMEN

Agriculture ecosystems are seriously threatened by lead (Pb) contamination, which impacts plant growth and productivity. In this study, green synthesized manganese oxide nanoparticles (MnO NPs) using citrus peel were used for priming of wheat seeds. For the synthesis of MnO nanoparticles, peel extract of Citrus paradisi and 1 mM solution of manganese acetate were stirred and calcinated at 500 °C. Successful synthesis of MnO NPs was determined using advanced techniques. In Fourier-transform infrared spectroscopy (FTIR), the presence of amines, alkanes, aldehydes, and alcohol molecules, on the surface of MnO NPs, confirmed their stability. X-ray diffraction analysis described their average size (22 nm), while scanning electron microscopy showed tetragonal crystalline shape and nano-flowers structure of MnO NPs. Sharp peaks of energy dispersive x-ray analysis described the presence of oxygen (28.81%) and manganese (71.19%) on MnO NPs. Priming of wheat seeds with synthesized MnO NPs significantly improved the growth attributes of wheat seedlings including the size of leaf, root length, size of shoots, chlorophyll and carotenoid contents, relative water content, decreased relative electrolyte leakage, high proline accumulation and decreased concentration of malondialdehyde. Application of MnO NPs also helped plants to accumulate antioxidant enzymes in their leaves. These results proved that the priming of MnO NPs can greatly reduce lead-induced stress in wheat seedlings and these NPs can also be used for the priming of other crops.

12.
Pest Manag Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148493

RESUMEN

BACKGROUND: RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing. Owing to its high specificity, this technology is being developed for use in dsRNA-based biopesticides for control of pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive. Ryanodine receptors (RyRs) are intracellular calcium channels regulating calcium ion (Ca2+) release. The chemical pesticide class of diamides functions agonistically against lepidopteran RyR, resulting in uncontrolled Ca2+ release, feeding cessation and death. Resistance to diamides has emerged in T. absoluta, derived from RyR point mutations. RESULTS: RNAi was used to target RyR transcripts of T. absoluta. Data presented here demonstrate the systemic use of exogenous T. absoluta RyR-specific (TaRy) dsRNA in tomato plants (Solanum lycopersicum) to significantly downregulate expression of the target gene, resulting in significant insect mortality and reduced leaf damage. Using a leaflet delivery system, daily dosing of 3 µg TaRy dsRNA for 72 h resulted in 50% downregulation of the target gene and 50% reduction in tomato leaf damage. Corrected larval mortality and adult emergence were reduced by 38% and 33%, respectively. TaRy dsRNA demonstrated stability in tomato leaves ≤72 h after dosing. CONCLUSIONS: This work identifies TaRy as a promising target for RNAi control of this widespread crop pest. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Chem Biodivers ; : e202401259, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141524

RESUMEN

Efforts are intensifying to identify bioactive microbial metabolites from biocontrol agents to manage plant pathogens in critical crops. This study examined both volatile organic compounds (VOCs) and non-volatile compounds from Metarhizium carneum and Lecanicillium uredinophilum strains for their antimicrobial effects against various phytopathogens and analyzed their exo-metabolomes. M. carneum VOCs inhibited four bacterial and eight fungal species by up to 45.45%, while L. uredinophilum VOCs inhibited five bacterial and eight fungal species by up to 50.91%. Additionally, n-BuOH extracts from both biocontrol agents effectively targeted three fungi and five bacteria. The exo-metabolomes of M. carneum and L. uredinophilum included 125 and 102 spectrometric features, respectively, primarily consisting of polyketides, alkaloids, lipids, organic aromatic compounds, terpenoids, and peptides. Our findings revealed a correlation between the phylogenetic relationships of M. carneum strains, their bioactivity patterns against phytopathogens, and their metabolomic profiles. Notably, some compounds detected in both fungi previously demonstrated biological activity against plant pathogens, enhancing their biocontrol potential. This study not only evidences the antimicrobial properties of diffusible compounds from M. carneum and L. uredinophilum, but also documents the antimicrobial potential of their VOCs for the first time, supporting their use in sustainable agricultural practices, reducing reliance on chemical inputs.

14.
J Fungi (Basel) ; 10(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39057367

RESUMEN

In this paper, an extensive review of the literature is provided examining the significance of tolerance to fungal diseases in wheat amidst the escalating global demand for wheat and threats from environmental shifts and pathogen movements. The current comprehensive reliance on agrochemicals for disease management poses risks to food safety and the environment, exacerbated by the emergence of fungicide resistance. While resistance traits in wheat can offer some protection, these traits do not guarantee the complete absence of losses during periods of vigorous or moderate disease development. Furthermore, the introduction of individual resistance genes into wheat monoculture exerts selection pressure on pathogen populations. These disadvantages can be addressed or at least mitigated with the cultivation of tolerant varieties of wheat. Research in this area has shown that certain wheat varieties, susceptible to severe infectious diseases, are still capable of achieving high yields. Through the analysis of the existing literature, this paper explores the manifestations and quantification of tolerance in wheat, discussing its implications for integrated disease management and breeding strategies. Additionally, this paper addresses the ecological and evolutionary aspects of tolerance in the pathogen-plant host system, emphasizing its potential to enhance wheat productivity and sustainability.

15.
Indian J Microbiol ; 64(2): 318-327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011019

RESUMEN

In the current scenario of growing world population, limited cultivable land resources, plant diseases, and pandemics are some of the major factors responsible for declining global food security. Along with meeting the food demand, the maintenance of food quality is also required to ensure healthy consumption and marketing. In agricultural fields, pest infestations and bacterial diseases are common causes of crop damage, leading to massive yield losses. Conventionally, antibiotics and several pesticides have been used to manage and control these plant pathogens. However, the overuse of antibiotics and pesticides has led to the emergence of resistant strains of pathogenic bacteria. The bacteriophages are the natural predators of bacteria and are host-specific in their action. Therefore, the use of bacteriophages for the biocontrol of pathogenic bacteria is serving as a sustainable and green solution in crop protection and production. In this review, we have discussed the important plant pathogens and their impact on plant health and yield loss. Further, we have abridged the role of bacteriophages in the protection of crops from bacterial disease by discussing various greenhouse and field trials. Finally, we have discussed the impact of bacteriophages on the plant microbiome, phage resistance, and legal challenges in the registration and commercial production of bacteriophage-based biopesticides. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01204-x.

16.
Pest Manag Sci ; 80(11): 5898-5908, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39032014

RESUMEN

BACKGROUND: Utilizing fungicides to protect crops from diseases is an effective method, and novel eco-friendly plant-derived fungicides with high efficiency and low toxicity are urgent requirements for sustainable crop protection. RESULT: Two series of rosin-based fungicides (totally 35) were designed and synthesized. In vitro fungicidal activity revealed that Compound 6a (Co. 6a) effectively inhibited the growth of Valsa mali [median effective concentration (EC50) = 0.627 µg mL-1], and in vivo fungicidal activity suggested a significant protective efficacy of Co. 6a in protecting both apple branches (35.12% to 75.20%) and apples (75.86% to 90.82%). Quantum chemical calculations (via density functional theory) results indicated that the primary active site of Co. 6a lies in its amide structure. Mycelial morphology and physiology were investigated to elucidate the mode-of-action of Co. 6a, and suggested that Co. 6a produced significant cell membrane damage, accelerated electrolyte leakage, decreased succinate dehydrogenase (SDH) protein activity, and impaired physiological and biochemical functions, culminating in mycelial mortality. Molecular docking analysis revealed a robust binding energy (ΔE = -7.29 kcal mol-1) between Co. 6a and SDH. Subsequently, biosafety evaluations confirmed the environmentally-friendly nature of Co. 6a via the zebrafish model, yet toxicological results indicated that Co. 6a at median lethal concentration [LC50(96)] damaged the gills, liver and intestines of zebrafish. CONCLUSION: The above research offers a theoretical foundation for exploiting eco-friendly rosin-based fungicidal candidates in sustainable crop protection. © 2024 Society of Chemical Industry.


Asunto(s)
Protección de Cultivos , Diseño de Fármacos , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Fungicidas Industriales/farmacología , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Animales , Protección de Cultivos/métodos , Malus , Succinato Deshidrogenasa/metabolismo
17.
Pest Manag Sci ; 80(11): 5887-5897, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39036897

RESUMEN

BACKGROUND: Genetic improvement of crop varieties requires significant investment. Therefore, varieties must be developed to suit a broad range of breeding targets, such as yield and suitability to rainfall zones, farm management practices and quality traits. In the case of breeding for disease resistance, breeders need to consider the value of genetic improvement relative to other disease management strategies and the dynamics of pathogen genetic and phenotypic diversity. This study uses a benefit-cost analysis framework to assess the economic value of fungicide management and crop genetic improvement in disease resistance for Australian chickpea varieties. RESULTS: When assessing the likelihood of growers switching to new crop varieties with improved genetic resistance to disease, the simulation results reveal that adopting these varieties yielded higher net benefit values compared to implementing current fungicide strategies across all rainfall zones. On average, the increase in net benefit varied between 2.6% and 3.5%. Conversely, when we examined the scenario involving modifying the current fungicide strategy, we observed that, on average, switching from the current fungicide management strategy to one which involved additional fungicides was beneficial in about 73% of the cases. CONCLUSION: Our analysis reveals the importance of factors such as commodity prices, production costs, disease-related variables and risk aversion in determining the economic benefits of adopting new crop protection strategies. Furthermore, the research reveals the need for accessible information and reliable data sources when evaluating the benefits of new agricultural technologies. This would assist growers in making informed and sustainable disease management decisions. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ascomicetos , Cicer , Protección de Cultivos , Fungicidas Industriales , Enfermedades de las Plantas , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Australia , Protección de Cultivos/métodos , Protección de Cultivos/economía , Ascomicetos/genética , Ascomicetos/fisiología , Ascomicetos/efectos de los fármacos , Cicer/genética , Análisis Costo-Beneficio , Resistencia a la Enfermedad/genética , Productos Agrícolas/economía , Productos Agrícolas/genética
18.
J Ethnobiol Ethnomed ; 20(1): 71, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085935

RESUMEN

BACKGROUND: Pests and diseases are a major contributor to yield losses in sub-Saharan Africa, prompting smallholder farmers to seek cost-effective, accessible and ecologically friendly alternatives for crop protection. This study explored the management of pests and diseases affecting crops across eight selected villages in Ehlanzeni District, Mpumalanga Province, South Africa. METHODS: A total of 120 smallholder farmers were purposefully selected utilising the snowball technique. Information on the management of plant pests and diseases was collected through interviews and focus group discussions using semi-structured interview schedules. Ethnobotanical indices, including relative frequency of citation (RFC), use-value (UV) and informant consensus factor (Fic), were used to quantify and rank the plants used for crop protection in the study area. RESULTS: Twenty-three plant species (16 naturalised exotics and seven indigenous plants) belonging to 16 families were used for managing pests (vertebrates and invertebrates) and diseases (fungal and bacterial related) affecting crops in the study area. The dominant (100%) crops cultivated by the participants were Allium cepa L., Mangifera indica L., Solanum lycopersicum L. and Zea mays L. The RFC value ranged from 0.08 to 0.83 and the three most popular plants for crop protection were Capsium annuum L. (0.83), A. cepa (0.63) and Dichrostachys cinerea (L.) Wight & Arn. (0.43). In terms of the UV, the five most promising plants used as biocontrol were Tulbaghia violacea (0.13), A. cepa (0.12), C. annuum L. (0.09), Solanum campylacanthum Hochst. Ex A.Rich.(0.09) and Pinus pinaster (0.08). Based on the Fic, four categories were established and dominated by fungal diseases (0.64). Furthermore, T. violacea and A. cepa were the most often mentioned plants used against fungal conditions. Other categories cited were bacterial diseases (0.3), invertebrate pests (0.11) and vertebrate pests (0.14), an indication that smallholder farmers had limited agreement or common knowledge about the plants used for their management. The preparation methods included maceration (38%), decoction (38%) and burning (24%). Foliar application (67%) and soil drenching (33%) were used for administering plant extracts during the management of crop pests and diseases. CONCLUSION: The study highlights the importance of botanicals and associated indigenous knowledge among smallholder farmers in Mpumalanga Province, South Africa. It is pertinent to explore the valorisation of these botanicals by generating empirical data on their biological efficacies and phytochemical profiles.


Asunto(s)
Productos Agrícolas , Etnobotánica , Agricultores , Enfermedades de las Plantas , Sudáfrica , Humanos , Persona de Mediana Edad , Masculino , Femenino , Adulto , Anciano , Control de Plagas/métodos , Agricultura/métodos
19.
Bioresour Technol ; 408: 131149, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053600

RESUMEN

The green microalgae Scenedesmus spp. can grow rapidly and produce significant amounts of protein or lipid. However, frequent microzooplankton contamination leading to reduced biomass productivity has hindered the microalgae commercialization. Here, a comprehensive investigation into harmful microzooplankton species in mass cultures of a commercially promising species Scenedesmus acuminatus were conducted throughout the year. Twenty-five microzooplankton species were identified, with the amoeba Vannella sp. and the ciliate Vorticella convallaria being the most harmful to algal cells. The results indicated that it was the harmful grazers, rather than the overall microzooplankton diversity, led to culture deterioration and reduced biomass yield. Increasing the concentration of algal inoculants or reducing culture temperature during hot summer days were found to be effective in mitigating the impact of these harmful grazers. The findings will contribute to the best management protocol for monitoring and controlling the harmful microzooplankton in mass cultures of S. acuminatus.


Asunto(s)
Biomasa , Scenedesmus , Scenedesmus/crecimiento & desarrollo , Animales , Zooplancton , Microalgas/crecimiento & desarrollo , Estaciones del Año , Temperatura
20.
Heliyon ; 10(12): e32434, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975170

RESUMEN

Our knowledge of fluorine's unique and complex properties has significantly increased over the past 20 years. Consequently, more sophisticated and innovative techniques have emerged to incorporate this feature into the design of potential drug candidates. In recent years, researchers have become interested in synthesizing fluoro-sulphonamide compounds to discover new chemical entities with distinct and unexpected physical, chemical, and biological characteristics. The fluorinated sulphonamide molecules have shown significant biomedical importance. Their potential is not limited to biomedical applications but also includes crop protection. The discovery of novel fluorine and Sulfur compounds has highlighted their importance in the chemical sector, particularly in the agrochemical and medicinal fields. Recently, several fluorinated sulphonamide derivatives have been developed and frequently used by agriculturalists to produce food for the growing global population. These molecules have also exhibited their potential in health by inhibiting various human diseases. In today's world, it is crucial to have a steady supply of innovative pharmaceutical and agrochemical molecules that are highly effective, less harmful to the environment, and affordable. This review summarizes the available information on the activity of Fluorine and Sulphonamide compounds, which have proven active in pharmaceuticals and agrochemicals with excellent environmental and human health approaches. Moreover, it focuses on the current literature on the chemical structures, the application of fluorinated sulphonamide compounds against various pathological conditions, and their effectiveness in crop protection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA