RESUMEN
In this work, physicochemical, rheological, and antibacterial properties of chitosan (CS) extracted from white shrimp (WS), giant river prawn (GP), and Antarctic krill (AK) were investigated. The results demonstrated that molecular weight (MW) of commercial chitosan (CCS), WSCS, GPCS, and AKCS were 1175.8, 2130.4, 1293.3, and 1109.3 kDa with the degree of deacetylation (DDA) of 73.5, 74.1, 82.1, and 75.9%, respectively. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscope (SEM) were employed to study the structural differences of CS. Moreover, storage modulus (G') and loss modulus (Gâ³) of AKCS were lower than that of WSCS and GPCS, respectively, but higher than that of CCS. Minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of CS against Escherichia coli and Staphylococcus aureus were investigated at concentration between 0.0125 and 1 mg/mL. These results highlighted that AKCS with low viscoelastic properties had a potential application in food and pharmaceutical application.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Fenómenos Químicos , Quitosano/química , Euphausiacea/química , Reología , Animales , Antibacterianos/aislamiento & purificación , Fraccionamiento Químico , Quitosano/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Solubilidad , Análisis Espectral , ViscosidadRESUMEN
The current increase in the vast amount of marine crustacean shell waste produced by the fish processing industries has led to the need to find new methods for its disposal. Hence, the present study was carried out via marine shell wastes as substrate for protease production. The maximum production (4000.65 U/ml) from Bacillus sp. APCMST-RS3 was noticed in 3:1% shrimp and oyster shell powder (SOSP) as substrate. Purified protease showed 53.22% and 22.66% enzyme yield; 3.48 and 8.49 fold purity with 40 kDa molecular weight; whereas, its Km and Vmax values were 0.6666 g/l, 1111.11 U/ml. This enzyme showed optimum activity at pH 9 and 60 °C temperature. Also, it retained maximum protease activity in the presence of NaCl (2.5 M), surfactants (Tween 20, 40, 60, 80 and SDS) and metal ions (MnCl2, CaCl2, HgCl2 and BaCl2) and solvents. The candidate bacterium effectively deproteinized (84.35%) shrimp shell and its antioxidant potentials.