Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancers (Basel) ; 15(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37509409

RESUMEN

mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclodextrin-based polymer to increase mRNA delivery in both in vitro and in vivo melanoma cancer. We found that the transfection efficacy of the mRNA-EGFP-loaded Ppoly system was significantly higher than that of lipofectamine and free mRNA in both 2D and 3D melanoma cancer cells; also, this delivery system did not show cytotoxicity. In addition, the biodistribution results revealed time-dependent and significantly higher mEGFP expression in complexes with Ppoly compared to free mRNA. We then checked the anti-tumour effect of intratumourally injected free mRNA-OVA, a foreign antigen, and loaded Ppoly; the results showed a considerable decrease in both tumour size and weight in the group treated with OVA-mRNA in loaded Ppoly compared to other formulations with an efficient adaptive immune response by dramatically increasing most leukocyte subtypes and OVA-specific CD8+ T cells in both the spleen and tumour tissues. Collectively, our findings suggest that the local delivery of cationic cyclodextrin-based polymer complexes containing foreign mRNA antigens might be a good and reliable concept for cancer immunotherapy.

2.
Molecules ; 28(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110716

RESUMEN

A significant portion of the protein in food waste will contaminate the water. The chitosan/modified ß-cyclodextrin (CS/ß-CDP) composite membranes were prepared for the adsorption of bovine serum albumin (BSA) in this work to solve the problem of poor adsorption protein performance and easy disintegration by a pure chitosan membrane. A thorough investigation was conducted into the effects of the preparation conditions (the mass ratio of CS and ß-CDP, preparation temperature, and glutaraldehyde addition) and adsorption conditions (temperature and pH) on the created CS/ß-CDP composite membrane. The physical and chemical properties of pure CS membrane and CS/ß-CDP composite membrane were investigated. The results showed that CS/ß-CDP composite membrane has better tensile strength, elongation at break, Young's modulus, contact angle properties, and lower swelling degree. The physicochemical and morphological attributes of composite membranes before and after the adsorption of BSA were characterized by SEM, FT-IR, and XRD. The results showed that the CS/ß-CDP composite membrane adsorbed BSA by both physical and chemical mechanisms, and the adsorption isotherm, kinetics, and thermodynamic experiments further confirmed its adsorption mechanism. As a result, the CS/ß-CDP composite membrane of absorbing BSA was successfully fabricated, demonstrating the potential application prospect in environmental protection.


Asunto(s)
Quitosano , Eliminación de Residuos , Contaminantes Químicos del Agua , beta-Ciclodextrinas , Quitosano/química , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Alimentos , beta-Ciclodextrinas/química , Cinética , Albúmina Sérica Bovina , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
3.
Biosensors (Basel) ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34562896

RESUMEN

Owing to poor aqueous solubility and low delivery efficiency, most of anti-cancer chemodrugs depend on various smart drug delivery platforms to enhance the treatment efficacy. Herein, a stimuli-responsive supramolecular drug delivery system (SDDS) is developed based on polymeric cyclodextrins (PCD) which crosslinked by stimuli-cleavable drug dimers via host-guest interaction. PEGylated PCD was precisely controlled synthesized by ring-opening polymerization and azide-alkyne click chemistry, and two doxorubicins (DOX) were linked with a disulfide bond to form a drug dimer (ss-DOX). They then co-assembled into supramolecular micelles. Drug dimers were utilized as cross-linkers to stabilize the micelles. The drug loading efficiency was very high that could be up to 98%. The size and morphology were measured by DLS and TEM. Owing to the disulfide bonds of drug dimers, these supramolecular micelles were dissociated by treating with dithiothreitol (DTT). In the meanwhile, the free DOXs were recovered and released from cavities of cyclodextrins because of dynamic equilibrium and hydrophilicity changes. The release profile was studied under mimic physiological conditions. Furthermore, in vitro cytotoxicity study showed excellent anti-cancer efficacy of reduced-responsive supramolecular polymeric micelles. Therefore, it can be served as a safe and stimuli-responsive SDDS for cancer therapy.


Asunto(s)
Ciclodextrinas , Dapsona/análogos & derivados , Micelas , Disulfuros , Sistemas de Liberación de Medicamentos , Polímeros
4.
Pharmaceutics ; 13(2)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33671975

RESUMEN

Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic ß-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV-VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 ± 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.

5.
Molecules ; 23(7)2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29997364

RESUMEN

Electrospun beta-cyclodextrin (ßCD)-based polymers can combine a high surface-to-volume ratio and a high loading/controlled-release-system potential. In this work, pyromellitic dianhydride (PMDA)/ßCD-based nanosponge microfibers were used to study the capability to host a common insect repellent (N,N-diethyl-3-toluamide (DEET)) and to monitor its release over time. Fibrous samples characterized by an average fibrous diameter of 2.8 ± 0.8 µm were obtained and subsequently loaded with DEET, starting from a 10 g/L diethyl ether (DEET) solution. The loading capacity of the system was assessed via HPLC/UV⁻Vis analysis and resulted in 130 mg/g. The releasing behavior was followed by leaving fibrous DEET-loaded nanosponge samples in air at room temperature for a period of between 24 h and 2 weeks. The releasing rate and the amount were calculated by thermogravimetric analysis (TGA), and the release of the repellent was found to last for over 2 weeks. Eventually, both the chemical composition and sample morphology were proven to play a key role for the high sample loading capacity, determining the microfibers' capability to be applied as an effective controlled-release system.


Asunto(s)
Benzoatos/química , Celulosa/química , Ciclodextrinas/química , DEET/química , Éter/química , Preparaciones de Acción Retardada , Termogravimetría
6.
J Hazard Mater ; 299: 412-6, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26164704

RESUMEN

An assay for the determination of diclofenac concentration, in the micromolar range in water, was developed. It is based on the use of a recently developed cyclodextrin-based polymer that possesses an inherent affinity for the target pharmaceutical. This competitive assay is exploiting the possibility to displace a fluorescent dye, adsorbed in the cyclodextrin-based polymer, by the target drug. This displacement is followed by measuring the increase in fluorescence polarization of the dye released in solution. The assay was successfully tested on a real wastewater sample with a limit of detection of 1 µM.


Asunto(s)
Antiinflamatorios no Esteroideos/análisis , Ciclodextrinas/química , Diclofenaco/análisis , Polímeros/química , Contaminantes Químicos del Agua/análisis , Polarización de Fluorescencia , Cinética
7.
ACS Appl Mater Interfaces ; 7(23): 12882-93, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-25992843

RESUMEN

In the field of implantable titanium-based biomaterials, infections and inflammations are the most common forms of postoperative complications. The controlled local delivery of therapeutics from implants through polyelectrolyte multilayers (PEMs) has recently emerged as a versatile technique that has shown great promise in the transformation of a classical medical implant into a drug delivery system. Herein, we report the design and the elaboration of new biodegradable multidrug-eluting titanium platforms based on a polyelectrolyte multilayer bioactive coating that target infections. These systems were built up in mild conditions according to the layer-by-layer (L-b-L) assembly and incorporate two biocompatible polysaccharides held together through electrostatic interactions. A synthetic, negatively charged ß-cyclodextrin-based polymer (PCD), well-known for forming stable and reversible complexes with hydrophobic therapeutic agents, was exploited as a multidrug reservoir, and chitosan (CHT), a naturally occurring, positively charged polyelectrolyte, was used as a barrier for controlling the drug delivery rate. These polyelectrolyte multilayer films were strongly attached to the titanium surface through a bioinspired polydopamine (PDA) film acting as an adhesive first layer and promoting the robust anchorage of PEMs onto the biomaterials. Prior to the multilayer film deposition, the interactions between both oppositely charged polyelectrolytes, as well the multilayer growth, were monitored by employing surface plasmon resonance (SPR). Several PEMs integrating 5, 10, and 15 bilayers were engineered using the dip coating strategy, and the polyelectrolyte surface densities were estimated by colorimetric titrations and gravimetric analyses. The morphologies of these multilayer systems, as well as their naturally occurring degradation in a physiological medium, were investigated by scanning electron microscopy (SEM), and their thicknesses were measured by means of profilometry and ellipsometry studies. Finally, the ability of the coated titanium multilayer devices to act as a drug-eluting system and to treat infections was validated with gentamicin, a relevant water-soluble antibiotic commonly used in medicine due to its broad bactericidal spectrum.


Asunto(s)
Antibacterianos/química , Quitosano/química , Materiales Biocompatibles Revestidos/química , Portadores de Fármacos/química , Titanio/química , beta-Ciclodextrinas/química , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Gentamicinas/química , Gentamicinas/farmacocinética , Gentamicinas/farmacología , Indoles , Viabilidad Microbiana/efectos de los fármacos , Polímeros , Staphylococcus aureus/efectos de los fármacos , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA