Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Issues Mol Biol ; 46(3): 2757-2771, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534789

RESUMEN

This study explored the chloroplast (cp) genomes of three Hibiscus syriacus (HS) specimens endemic to Korea possessing unique ornamental and conservation values: the dwarf H. syriacus var. micranthus (HSVM), renowned for its small stature and breeding potential; HS 'Tamra', a cultivar from Korea's southernmost islands, noteworthy for its distinctive beauty; and HS Natural Monument no. 521 (N.M.521), a specimen of significant lifespan and height. Given the scarcity of evolutionary studies on these specimens, we assembled and analyzed their cp genomes. We successfully assembled genomes spanning 160,000 to 160,100 bp and identified intraspecific variants. Among these, a unique ATA 3-mer insertion in the trnL-UAA region was identified in HSVM, highlighting its value as a genetic resource. Leveraging this finding, we developed a novel InDel dCAPS marker, which was validated across 43 cultivars, enhancing our ability to distinguish HSVM and its derivatives from other HS cultivars. Phylogenetic analysis involving 23 Malvaceae species revealed that HSVM forms a clade with woody Hibiscus species, closely associating with N.M.520, which may suggest a shared ancestry or parallel evolutionary paths. This investigation advances our understanding of the genetic diversity in Korean HS and offers robust tools for accurate cultivar identification, aiding conservation and breeding efforts.

2.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887005

RESUMEN

High ploids of the sugarcane nuclear genome limit its genomic studies, whereas its chloroplast genome is small and conserved, which is suitable for phylogenetic studies and molecular marker development. Here, we applied whole genome sequencing technology to sequence and assemble chloroplast genomes of eight species of the 'Saccharum Complex', and elucidated their sequence variations. In total, 19 accessions were sequenced, and 23 chloroplast genomes were assembled, including 6 species of Saccharum (among them, S. robustum, S. sinense, and S. barberi firstly reported in this study) and 2 sugarcane relative species, Tripidium arundinaceum and Narenga porphyrocoma. The plastid phylogenetic signal demonstrated that S. officinarum and S. robustum shared a common ancestor, and that the cytoplasmic origins of S. sinense and S. barberi were much more ancient than the S. offcinarum/S. robustum linage. Overall, 14 markers were developed, including 9 InDel markers for distinguishing Saccharum from its relative species, 4 dCAPS markers for distinguishing S. officinarum from S. robustum, and 1 dCAPS marker for distinguishing S. sinense and S. barberi from other species. The results obtained from our studies will contribute to the understanding of the classification and plastome evolution of Saccharinae, and the molecular markers developed have demonstrated their highly discriminatory power in Saccharum and relative species.


Asunto(s)
Genoma del Cloroplasto , Saccharum , Genómica/métodos , Filogenia , Poaceae/genética , Saccharum/genética
3.
Plant Dis ; 105(7): 1919-1925, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32990521

RESUMEN

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Chinese wheat landrace Guangtoumai (GTM) exhibited a high level of resistance against predominant P. striiformis f. sp. tritici races in China at the adult plant stage. The objective of this research was to identify and map the major locus/loci for stripe rust resistance in GTM. A set of 212 recombinant inbred lines (RILs) was developed from a cross between GTM and Avocet S. The parents and RILs were evaluated in three field tests (2018, 2019, and 2020 at Chongzhou, Sichuan) with the currently predominant P. striiformis f. sp. tritici races for final disease severity and genotyped with the Wheat 55K single nucleotide polymorphism (SNP) array to construct a genetic map with 1,031 SNP markers. A major locus, named QYr.GTM-5DL, was detected on chromosome 5DL in GTM. The locus was mapped in a 2.75-cM interval flanked by SNP markers AX-109855976 and AX-109453419, explaining up to 44.4% of the total phenotypic variation. Since no known Yr genes have been reported on chromosome 5DL, QYr.GTM-5DL is very likely a novel adult plant resistance locus. Haplotype analysis revealed that the resistance allele displayed enhanced levels of stripe rust resistance and is likely present in 5.3% of the 247 surveyed Chinese wheat landraces. The derived cleaved amplified polymorphic sequence (dCAPS) marker dCAPS-5722, converted from a SNP marker tightly linked to QYr.GTM-5DL with 0.3 cM, was validated on a subset of RILs and 48 commercial wheat cultivars developed in Sichuan. The results indicated that QYr.GTM-5DL with its linked dCAPS marker could be used in marker-assisted selection to improve stripe rust resistance in breeding programs, and this quantitative trait locus will provide new and possibly durable resistance to stripe rust.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , China , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Triticum/genética
4.
Plants (Basel) ; 9(9)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937792

RESUMEN

The semi-dwarfing allele, sd1-d, has been widely utilized in developing high-yielding rice cultivars across the world. Originally identified from the rice cultivar Dee-Geo-Woo-Gen (DGWG), sd1-d, derived from a spontaneous mutation, has a 383-bp deletion in the SD1 gene. To date, as many as seven alleles of the SD1 gene have been identified and used in rice improvement, either with a functional single-nucleotide polymorphism (SNP), with insertion-deletions (InDels), or both. Here, we report discovery of a novel SNP in the SD1 gene from the rice genotype, Pusa 1652. Genetic analysis revealed that the inheritance of the semi-dwarfism in Pusa 1652 is monogenic and recessive, but it did not carry the sd1-d allele. However, response to exogenous gibberellic acid (GA3) application and the subsequent bulked segregant and linkage analyses confirmed that the SD1 gene is involved in the plant height reduction in Pusa 1652. Sequencing of the SD1 gene from Pusa 1652 revealed a novel transition in exon 3 (T/A) causing a nonsense mutation at the 300th codon. The stop codon leads to premature termination, resulting in a truncated protein of OsGA20ox2 obstructing the GA3 biosynthesis pathway. This novel recessive allele, named sd1-bm, is derived from Bindli Mutant 34 (BM34), a γ-ray induced mutant of a short-grain aromatic landrace, Bindli. BM34 is the parent of an aromatic semi-dwarf cultivar, Pusa 1176, from which Pusa 1652 is derived. The semi-dwarfing allele, sd1-bm, was further validated by developing a derived cleaved amplified polymorphic sequence (dCAPS) marker, AKS-sd1. This allele provides an alternative to the most widely used sd1-d in rice improvement programs and the functional dCAPS marker will facilitate marker-assisted introgression of the semi-dwarf trait into tall genotypes.

5.
Plant Signal Behav ; 15(2): 1710053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31900036

RESUMEN

Substantial progress had been made in reducing nornicotine accumulation in burley tobacco, as nornicotine is a precursor of the carcinogen N-nitrosonornicotine (NNN). Three members of the CYP82E2 family encoding nicotine N-demethylase (NND) have been reported to be responsible for the majority of nicotine demethylation that forms nornicotine in burley tobacco. We had obtained a nonsense mutant of each NND member in flue-cured tobacco from an ethyl methanesulfonate (EMS)-mutagenized population. In this study, we developed dCAPS markers for each nonsense mutation. Using marker-assisted selection, NND mutants were crossed with each other to generate a triple mutant GP449. In line with previous reports, the triple knockout caused significantly decreased levels of nornicotine and NNN in flue-cured tobacco. With the decreased nornicotine, the nicotine level was expected to accumulate. However, the nicotine level in GP449 was significantly decreased to 72.80% of wild type. Realtime RT-PCR analysis showed that the nicotine reduction was correlated with inhibited expression of nicotine biosynthetic pathway genes. The triple mutant and dCAPS markers can be utilized to develop new flue-cured tobacco varieties with lower levels of nornicotine and NNN.


Asunto(s)
Nicotiana/metabolismo , Nicotina/análogos & derivados , Nitrosaminas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Metanosulfonato de Etilo/metabolismo , Nicotina/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN , Nicotiana/enzimología
6.
Genes (Basel) ; 10(6)2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167507

RESUMEN

Low-alkaloid content is an important breeding target to improve the quality of lupin seeds. An APETALA2/ethylene response transcription factor, RAP2-7, is likely a candidate gene for the major alkaloid locus iucundus, and plays a crucial role in regulation of seed alkaloid content in narrow-leafed lupin (NLL; Lupinus angustifolius L.). Here, we exploited a single-nucleotide polymorphism within RAP2-7 credibly associated with seed alkaloid content, to develop the co-dominant derived cleaved amplified polymorphic sequence (dCAPS) marker iuc_RAP2-7. Marker validation in 202 NLL accessions demonstrated that seed alkaloid content ≥0.9% of the seed dry weight was associated with the high-alkaloid marker band (Iucundus genotypes), whereas alkaloid content up to 0.5% of the seed dry weight was associated with the low-alkaloid marker band (iucundus genotypes). Within a given detection limit, iuc_RAP2-7 unambiguously identified all but three low-alkaloid accessions. The latter accessions apparently have a different regulatory mechanism for seed alkaloid content because the RAP2-7 gene/putative promoter sequence and expression of alkaloid-associated genes in the leaves of the three ambiguous accessions were similar to those of bitter Iucundus lines. We consider the iuc_RAP2-7 marker is a powerful tool that will facilitate NLL marker-assisted selection by rapid rejection of bitter Iucundus genotypes and thus accelerate development of new low-alkaloid cultivars.


Asunto(s)
Alcaloides/genética , Lupinus/genética , Hojas de la Planta/genética , Semillas/genética , Alcaloides/metabolismo , Proteínas de Arabidopsis , Biomarcadores/metabolismo , Amplificación de Genes , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta , Genotipo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lupinus/metabolismo , Desarrollo de la Planta/genética , Hojas de la Planta/metabolismo , Polimorfismo de Nucleótido Simple/genética , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Breed Sci ; 66(5): 742-751, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28163590

RESUMEN

Appearance of rice grain is an important property, affecting its acceptance by consumers. Moreover, appearance is a complex characteristic involving many components, including glossiness and whiteness. The genetic bases for the glossiness of cooked rice and the whiteness of polished rice (WPR) were determined using 133 recombinant inbred lines (RILs) derived from a cross between two closely related cultivars from Hokkaido, Joiku462, with high glossiness and whiteness, and Yukihikari, an ancestor of Joiku462 with low glossiness and whiteness. Analyses identified 167 genome-wide InDel markers, five cleaved amplified polymorphic sequences (CAPS) and eight derived CAPS markers differentiating the parental lines. The glossiness area (GLA) and glossiness strength (GLS) of cooked rice and WPR were determined for RILs in two locations, Pippu and Sapporo, Hokkaido. Four QTLs were detected. qGLA10 and qGLS9 were detected on chromosomes 10 and 9, respectively, with both being significant at both geographic locations. qWPR1 on chromosome 1 was significant at Pippu, and qWPR4 on chromosome 4 was significant at Sapporo. The Joiku462 alleles at all QTLs increased each trait. The PCR-based markers flanking these four QTLs may be useful for improvement of GLA, GLS and WPR.

8.
Breed Sci ; 62(2): 124-32, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23136523

RESUMEN

Pollen-mediated transgene flow is a major concern for the production of genetically modified (GM) rice. Cleistogamy is a useful tool for preventing this form of gene flow. We previously identified the cleistogamous rice mutant superwoman1-cleistogamy (spw1-cls) and determined its molecular genetic mechanism. In the present study, we cultivated spw1-cls over five years to examine effects of cleistogamy on agronomic traits. Simultaneously, we cultivated cleistogamous backcross lines created by continuous backcrossing with "Yumeaoba" (a japonica cultivar) as the recurrent parent and by application of a DNA marker. In these experimental cultivations, spw1-cls and its backcross lines showed almost equal or slightly lower, but acceptable, agronomic traits compared with each control line. We also conducted natural crossing tests in paddy fields to assess the gene containment capability of spw1-cls. In a series of field experiments, there was no natural crossing between spw1-cls (pollen donor) and pollen recipient lines, but the wild-type donor and recipient lines were crossed. Thus, the cleistogamy of the spw1-cls mutation is able to inhibit natural crossing effectively, without significant loss of commercial benefits, such as yield. We conclude that spw1-cls cleistogamy is a practical tool for gene containment in GM rice cultivation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA