Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Sci Pollut Res Int ; 31(44): 56377-56386, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39266878

RESUMEN

Current human risk assessments often rely on animal toxicity data to establish point of departure (POD) values, followed by the application of uncertainty factors. Consequently, there is growing interest in alternative toxicity testing methods that reduce reliance on animal models. In this study, we propose a novel approach for inhalation toxicity risk assessment that integrates in silico and in vitro methods. Human primary alveolar epithelial cells were exposed to aerosolized didecyldimethylammonium chloride (DDAC) to assess cytotoxicity. This was followed by transcriptome analysis and biological pathway investigation, utilizing adverse outcome pathway (AOP), to calculate the POD. Additionally, human DDAC exposure was simulated using a multiple-path particle dosimetry (MPPD) model to predict exposure levels in the human alveolar region via inhalation. The results from in silico and in vitro studies were then compared, and a comprehensive risk assessment was performed. The POD for AOP 452 key events-oxidative stress, inflammation, epithelial-mesenchymal transition (EMT), apoptosis, and autophagy-was found to range between 19.0 and 23.89 ng/cm2, according to benchmark dose calculation tools. The estimated human exposure to DDAC in the alveolar region under actual exposure conditions was 0.164 ng/cm2/day, resulting in a margin of exposure (MOE) ranging from 121 to 145, suggesting caution regarding DDAC inhalation exposure. This study presents a novel risk assessment method that compares estimated human inhalation exposure values to in vitro results, applying the human equivalent concentration concept. Our findings demonstrate the potential for conducting human risk assessments using both in silico and in vitro methods as alternatives to traditional in vivo studies.


Asunto(s)
Compuestos de Amonio Cuaternario , Humanos , Medición de Riesgo , Compuestos de Amonio Cuaternario/toxicidad , Pulmón/efectos de los fármacos , Exposición por Inhalación
2.
Bioengineering (Basel) ; 11(8)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39199773

RESUMEN

During adaptive laboratory evolution experiments, any unexpected interruption in data monitoring or control could lead to the loss of valuable experimental data and compromise the integrity of the entire experiment. Most homemade mini-bioreactors are built employing microcontrollers such as Arduino. Although affordable, these platforms lack the robustness of the programmable logic controller (PLC), which enhances the safety and robustness of the control process. Here, we describe the design and validation of a PLC-controlled morbidostat, an innovative automated continuous-culture mini-bioreactor specifically created to study the evolutionary pathways to drug resistance in microorganisms. This morbidostat includes several improvements, both at the hardware and software level, for better online monitoring and a more robust operation. The device was validated employing Escherichia coli, exploring its adaptive evolution in the presence of didecyldimethylammonium chloride (DDAC), a quaternary ammonium compound widely used for its antimicrobial properties. E. coli was subjected to increasing concentrations of DDAC over 3 days. Our results demonstrated a significant increase in DDAC susceptibility, with evolved populations exhibiting substantial changes in their growth after exposure.

3.
Microb Drug Resist ; 30(9): 385-390, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39082183

RESUMEN

Emerging resistance of Gram-negative bacteria, including Pseudomonas aeruginosa, to commonly used detergents and disinfectant is encountering us with hazard. Inappropriate use of disinfectants has forced bacteria to gain resistance. The ability of bacteria to extrude substrates from the cellular interior to the external environment has enabled them to persist in exposure to toxic compounds, which is due to existence of transport proteins. Efflux pumps, in Gram-negative bacteria, are proteins responsible for exporting molecules outside of the cell, by crossing the two membranes. In this study, 40 P. aeruginosa strains from hospitals, clinics, and burn center laundries and 40 P. aeruginosa strains from urban laundries were collected. This study evaluated the minimum inhibitory concentration (MIC) level of sodium dodecyl sulfate (SDS), didecyldimethylammonium chloride (DDAC), and octenidine dihydrochloride (Od) in P. aeruginosa strains. The real-time PCR was carried out to evaluate the expression of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux system. The obtained results indicated a higher MIC level for SDS, DDAC, and Od in medical laundries. The sub-MIC level of DDAC and Od increased the expression level of MexAB-OprM, MexCD-OprJ, and MexXY-OprM in P. aeruginosa strains, suggesting that efflux pumps contribute to disinfectant resistance in P. aeruginosa.


Asunto(s)
Antibacterianos , Iminas , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Piridinas , Compuestos de Amonio Cuaternario , Dodecil Sulfato de Sodio , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Dodecil Sulfato de Sodio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Iminas/farmacología , Piridinas/farmacología , Desinfectantes/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
4.
Foods ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928773

RESUMEN

Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.

5.
EFSA J ; 21(5): e08019, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37260451

RESUMEN

In compliance with Article 31 of Regulation (EC) No 178/2002, EFSA received a mandate from the European Commission to prepare a statement on the risk assessment related to the presence of benzalkonium chloride (mixture of alkylbenzyldimethylammonium chlorides with alkyl chain lengths of C8, C10, C12, C14, C16 and C18) (BAC), didecyldimethylammonium chloride (mixture of alkyl-quaternary ammonium salts with alkyl chain lengths of C8, C10 and C12) (DDAC) and chlorates in fish and fish products. Within EFSA's annual chemical data collection, EFSA collected monitoring data for the residues of BAC, DDAC and chlorates from EU Member States, Iceland and Norway performed a statistical evaluation, providing estimated residue values for each substance in/on fish and fish products, at the percentile appropriate for the number of the available samples. Based on the information collected, EFSA performed an acute and chronic exposure assessment for EU consumers for BAC, DDAC and chlorates at the lower-bound, medium-bound and upper-bound scenarios resulting from the consumption of fish and fish products. EFSA did not identify potential consumer health risks associated to residues of the substances found in fish and fish products.

6.
Front Microbiol ; 14: 1187751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032880

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2022.758237.].

7.
Materials (Basel) ; 16(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770253

RESUMEN

The reuse of decontaminated disposable medical face masks can contribute to reducing the environmental burden of discarded masks. This research is focused on the effect of household and laboratory washing at 50 °C on the quality and functionality of the nonwoven structure of polypropylene medical masks by varying the washing procedure, bath composition, disinfectant agent, and number of washing cycles as a basis for reusability. The barrier properties of the medical mask were analyzed before and after the first and fifth washing cycle indirectly by measuring the contact angle of the liquid droplets with the front and back surface of the mask, further by measuring air permeability and determining antimicrobial resistance. Additional analysis included FTIR, pH of the material surface and aqueous extract, as well as the determination of residual substances-surfactants-in the aqueous extract of washed versus unwashed medical masks, while their aesthetic aspect was examined by measuring their spectral characteristics. The results showed that household washing had a stronger impact on the change of some functional properties, primarily air permeability, than laboratory washing. The addition of the disinfectant agent, didecyldimethylammonium chloride, contributes to the protective ability and supports the idea that washing of medical masks under controlled conditions can preserve barrier properties and enable reusability.

8.
Pharmaceutics ; 14(12)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36559284

RESUMEN

In response to the COVID-19 and monkeypox outbreaks, we present the development of a universal disinfectant to avoid the spread of infectious viral diseases through contact with contaminated surfaces. The sanitizer, based on didecyldimethylammonium chloride (DDAC), N,N-bis(3-aminopropyl)dodecylamine (APDA) and γ-cyclodextrin (γ-CD), shows synergistic effects against non-enveloped viruses (poliovirus type 1 and murine norovirus) according to the EN 14476 standard (≥99.99% reduction of virus titer). When a disinfectant product is effective against them, it can be considered that it will be effective against all types of viruses, including enveloped viruses. Consequently, "general virucidal activity" can be claimed. Moreover, we have extended this synergistic action to bacteria (P. aeruginosa, EN 13727). Based on physicochemical investigations, we have proposed two independent mechanisms of action against bacteria and non-enveloped viruses, operating at sub- and super-micellar concentrations, respectively. This synergistic mixture could then be highly helpful as a universal disinfectant to avoid the spread of infectious viral or bacterial diseases in community settings, including COVID-19 and monkeypox (caused by enveloped viruses).

9.
Biology (Basel) ; 11(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36138811

RESUMEN

Toxic shock caused by the discharge of biocide-contaminated fecal sludge (FS) from chemical toilets to conventional wastewater treatment plants (WWTP) can be a major problem in activated sludge operation. It is necessary to develop new environmental approaches to mitigate the toxicity of biocides in order to avoid degrading the performance of WWTP. "Latrina", a chemical toilet additive containing didecyldimethylammonium chloride and polyhexamethylene guanidine, is widely used in environmentally safe toilet complexes (ESTC) on Russian railway trains to deodorize FS and control microbial activity. In this work, seven biocide-resistant bacterial strains were isolated and identified from the FS of ESTC. The values of the minimum inhibitory and bactericidal concentrations of biocides for the isolated strains were 4.5-10 times higher than for the collection microorganisms. The bacterium Alcaligenes faecalis DOS7 was found to be particularly resistant to "Latrina", the minimum inhibitory concentration of which was almost 30 times higher than recommended for ESTC. Biological products based on isolated bacterial strains proved to be effective for FS biodegradation under both aerobic and anaerobic conditions. The results of the biochemical oxygen demand test and the newly developed disk-diffusion bioassay confirmed that isolated strains contribute to reducing toxicity of biocidal agents in FS. Hyper-resistance, non-pathogenicity, and potential plant growth-promoting ability make A. faecalis DOS7 promising for use in various biological products for wastewater treatment and bioremediation of soils contaminated with biocides, as well as in agriculture to increase plant productivity.

10.
Front Microbiol ; 13: 864576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663878

RESUMEN

The foodborne pathogen, Listeria monocytogenes, (Lm), frequently undergoes selection pressure associated with the extensive use of disinfectants, such as quaternary ammonium compounds, which are widely used in food processing plants. The repeated exposure to sub-inhibitory biocide concentrations can induce increased tolerance to these compounds, but can also trigger the development of antibiotic resistance, and both increase the risk of food contamination and persistence in food production environments. Although the acquisition of genes can explain biocide tolerance, the genetic mechanisms underlying the adaptive cross-resistance to antibiotics remain unclear. We previously showed that repeated exposure to benzalkonium chloride (BC) and didecyldimethyl ammonium chloride (DDAC) led to reduced susceptibility to ciprofloxacin in Lm strains from diverse sources. Here, we compared the genomes of 16 biocide-adapted and 10 parental strains to identify the molecular mechanisms of fluoroquinolone cross-resistance. A core genome SNP analysis identified various mutations in the transcriptional regulator fepR (lmo2088) for 94% of the adapted strains and mutations in other effectors at a lower frequency. FepR is a local repressor of the MATE fluoroquinolone efflux pump FepA. The impact of the mutations on the structure and function of the protein was assessed by performing in silico prediction and protein homology modeling. Our results show that 75% of the missense mutations observed in fepR are located in the HTH domain of the protein, within the DNA interaction site. These mutations are predicted to reduce the activity of the regulator, leading to the overexpression of the efflux pump responsible for the ciprofloxacin-enhanced resistance.

11.
Front Microbiol ; 13: 758237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464917

RESUMEN

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are standard indexes for determining disinfection effectiveness. Nevertheless, they are static values disregarding the kinetics at sub-MIC concentrations where adaptation, growth, stationary, and death phases can be observed. The understanding of these dynamic mechanisms is crucial to designing effective disinfection strategies. In this study, we studied the 48 h kinetics of Bacillus cereus and Escherichia coli cells exposed to sub-MIC concentrations of didecyldimethylammonium chloride (DDAC). Two mathematical models were employed to reproduce the experiments: the only-growth classical logistic model and a mechanistic model including growth and death dynamics. Although both models reproduce the lag, exponential and stationary phases, only the mechanistic model is able to reproduce the death phase and reveals the concentration dependence of the bactericidal/bacteriostatic activity of DDAC. This model could potentially be extended to study other antimicrobials and reproduce changes in optical density (OD) and colony-forming units (CFUs) with the same parameters and mechanisms of action.

12.
Sci Total Environ ; 832: 155090, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398118

RESUMEN

The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.


Asunto(s)
COVID-19 , Desinfectantes , Desinfectantes/toxicidad , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Humanos , Pruebas de Sensibilidad Microbiana , Pandemias , Compuestos de Amonio Cuaternario/farmacología
13.
Front Public Health ; 10: 820816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284381

RESUMEN

Cars with air conditioning systems have become the norm, but these systems can be dangerous for human health as a result of the accumulation of different microorganisms, including pathogenic ones, causing severe allergy or inflammation problems. The novel purpose of this study is 2-fold: on the one hand, to test different disinfection agents on a new area, that is, automobile cabins, and on the other, to compare activity in the gas phase of these agents for disinfection of car air conditioning and cabin surfaces. This study shown that tested disinfectant agents dedicated for decontamination medical areas (agent based on peracetic acid and an agent containing didecyldimethylammonium chloride, 2-phenoxyethanol with cinnamaldehyde) can be successfully used for disinfection car air conditioning and cabin surfaces. Both disinfectants were examined in comparison to a commercial "ready-to-use" spray from a local supermarket dedicated to car air conditioning disinfection. Our research found that very effective agents in this regard were acid stabilized by hydrogen peroxide applied by fumigator, and a combination of didecyldimethylammonium chloride, 2-phenoxyethanol, and cinnamaldehyde applied by atomizer. Tested disinfection procedures of car air conditioning significantly influence the quality of cabin air and surfaces by reducing the amount of microorganisms. The comparison of disinfection properties studied agents in the gas phase reveal statistically significant differences between it effect for disinfection car air conditioning and cabin surfaces. Our research found that very effective agents in this regard were acid stabilized by hydrogen peroxide applied by fumigator, and a combination of didecyldimethylammonium chloride, 2-phenoxyethanol, and cinnamaldehyde applied by atomizer. Tested disinfection procedures of car air conditioning significantly influence the quality of cabin air and surfaces by reducing the amount of microorganisms.


Asunto(s)
Desinfectantes , Desinfección , Desinfectantes/farmacología , Desinfección/métodos , Humanos , Peróxido de Hidrógeno , Ácido Peracético
15.
J Anal Appl Pyrolysis ; 162: 105447, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35068626

RESUMEN

The use of quaternary ammonium compounds (QACs) as disinfectants has increased tremendously in the COVID-10 pandemic to inactivate Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV2). Dialkyldimethylammonium halides represent a frequently used type among QACs. Different halide anions, each ionically linked to the same quaternary ammonium cation, show clear differences in biocidal activity, toxicity and allergic potential. Likewise, the alkyl chain length at the ammonium cation induces different biocidal efficacy and toxicology. Therefore, the object of this research was to develop a rapid and reliable method for the detection of ammonium cation and halide anion in a single analytical run. For that purpose, a gas chromatography mass spectrometry (GC/MS) method was developed for QACs of the dialkyldimethylammonium type. Pyrolytic conversion of the QACs in the injector port of the gas chromatograph into volatile molecule species allows fast and reliable subsequent GC/MS analysis. The developed method is suited for the determination of both the quaternary ammonium cation and the corresponding halide anion in a single gas chromatographic run. The application of this method to bulk material and standard material of explicitly specified didecyldimethylammonium chloride revealed deviations from the manufacturer's specifications in a range up to four-fifths. Furthermore, didecyldimethylammonium chloride was detected in a disinfectant that does not comply with the labeling requirement for biocidal ingredients. With the method presented, results can be obtained for disinfectants with minimum effort within seven minutes.

16.
Biology (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36671737

RESUMEN

Didecyldimethylammonium chloride (DDAC) and polyhexamethylene guanidine (PHMG) exhibit high antimicrobial activity and are widely used as biocidal agents in chemical toilet additives for the management of fecal sludge (FS). Disposal of such biocide-treated FS to a wastewater treatment plant (WWTP) is a major environmental problem. It is possible to reduce environmental damage through the use of biocidal agents, which easily decompose after performing their main biocidal functions. In this work, it is proposed to use the fact of a gradual increase in pH of FS from the initial 7.5 to 9.0-10.0 due to the decomposition of urea. Six biocidal compounds were selected that are capable of rapidly degrading in an alkaline environment and one that naturally degrades upon prolonged incubation. Four of them: bronopol (30 mg/L), DBNPA (500 mg/L), Sharomix (500 mg/L), and sodium percarbonate (6000 mg/L) have shown promise for environmentally friendly management of FS. In selected dosage, they successfully reduced microbial activity under both aerobic and anaerobic conditions and are cost-effective. After 10 days of incubation, degradation of the biocide occurred as measured by biological oxygen demand (BOD5) in biocide-treated FS. Such FS can be discharged to WWTP without severe damage to the activated sludge process, the need for dilution and additional procedures to neutralize toxicity.

18.
Contact Dermatitis ; 85(2): 211-214, 2021 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-33763911

RESUMEN

BACKGROUND: The use of disinfectants is part of the everyday life of people, especially in the medical profession. During the coronavirus disease 2019 (COVID-19) pandemic, the use of disinfectants continues to increase and is of fundamental importance in infection control. OBJECTIVES: To determine the frequency of sensitization and the value of patch testing to didecyldimethylammonium chloride (DDAC) and the alcohols ethanol, 1-propanol, and isopropanol. METHODS: Clinical patch test data of 145 patients with suspected contact allergy to disinfectants were retrospective analysed. RESULTS: Among the 145 patients patch tested with the different alcohols, only one nurse was detected with a possible allergy to 1-propanol. Additional patch testing in 84 patients with DDAC 0.05% resulted in five patients with weakly positive reactions only, without clinical relevance. Patch testing with DDAC 0.03% showed no positive reactions at all on day 3 readings. CONCLUSIONS: DDAC and alcohols are rarely responsible for allergic contact dermatitis. The accused products of the patients should be checked for other allergens and further additives with skin-irritating properties. Individual susceptibility and mishandling of the disinfectants should be considered.

19.
Toxicol Appl Pharmacol ; 404: 115182, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763356

RESUMEN

Due to the pandemic of coronavirus disease 2019, the use of disinfectants is rapidly increasing worldwide. Didecyldimethylammonium chloride (DDAC) is an EPA-registered disinfectant, it was also a component in humidifier disinfectants that had caused idiopathic pulmonary diseases in Korea. In this study, we identified the possible pulmonary toxic response and mechanism using human bronchial epithelial (BEAS-2B) cells and mice. First, cell viability decreased sharply at a 4 µg/mL of concentration. The volume of intracellular organelles and the ROS level reduced, leading to the formation of apoptotic bodies and an increase of the LDH release. Secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and matrix metalloproteinase-1 also significantly increased. More importantly, lamellar body-like structures were formed in both the cells and mice exposed to DDAC, and the expression of both the indicator proteins for lamellar body (ABCA3 and Rab11a) and surfactant proteins (A, B, and D) was clearly enhanced. In addition, chronic fibrotic pulmonary lesions were notably observed in mice instilled twice (weekly) with DDAC (500 µg), ultimately resulting in death. Taken together, we suggest that disruption of pulmonary surfactant homeostasis may contribute to DDAC-induced cell death and subsequent pathophysiology and that the formation of lamellar body-like structures may play a role as the trigger. In addition, we propose that the cause of sudden death of mice exposed to DDAC should be clearly elucidated for the safe application of DDAC.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Compuestos de Amonio Cuaternario/toxicidad , Animales , Apoptosis/efectos de los fármacos , COVID-19 , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Compuestos de Amonio Cuaternario/administración & dosificación , SARS-CoV-2
20.
Microorganisms ; 8(3)2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32121333

RESUMEN

Staphylococcus epidermidis cleanroom strains are often exposed to sub-inhibitory concentrations of disinfectants, including didecyldimethylammonium chloride (DDAC). Consequently, they can adapt or even become tolerant to them. RNA-sequencing was used to investigate adaptation and tolerance mechanisms of S. epidermidis cleanroom strains (SE11, SE18), with S. epidermidis SE11Ad adapted and S. epidermidis SE18To tolerant to DDAC. Adaptation to DDAC was identified with up-regulation of genes mainly involved in transport (thioredoxin reductase [pstS], the arsenic efflux pump [gene ID, SE0334], sugar phosphate antiporter [uhpT]), while down-regulation was seen for the Agr system (agrA, arC, agrD, psm, SE1543), for enhanced biofilm formation. Tolerance to DDAC revealed the up-regulation of genes associated with transporters (L-cysteine transport [tcyB]; uracil permease [SE0875]; multidrug transporter [lmrP]; arsenic efflux pump [arsB]); the down-regulation of genes involved in amino-acid biosynthesis (lysine [dapE]; histidine [hisA]; methionine [metC]), and an enzyme involved in peptidoglycan, and therefore cell wall modifications (alanine racemase [SE1079]). We show for the first time the differentially expressed genes in DDAC-adapted and DDAC-tolerant S. epidermidis strains, which highlight the complexity of the responses through the involvement of different mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA