Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Pharm ; 664: 124584, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142465

RESUMEN

Arbutin, a typical optical isomer, has garnered widespread acclaim in the whitening cosmetics for its favorable efficacy and safety. However, the molecular mechanisms underlying α-arbutin and ß-arbutin permeating across the skin have not elucidated clearly yet. Herein we aimed to unveil how α-arbutin and ß-arbutin interacted with keratin or SC lipids, further demonstrating their relationship with their drug permeability. We found that α-arbutin displayed significantly higher drug accumulation into the porcine skin than ß-arbutin within 24 h through in vitro permeation test. Moreover, α-arbutin predominantly induced the alternations of secondary structure of amide II during the drug permeation, which was favorable for α-arbutin permeation. On the contrary, ß-arbutin exhibited an observable effect on the stretching vibration of SC lipids, possessing a significantly stronger mixing energy, binding energy and compatibility with ceramide (Cer) than that of α-arbutin, which ultimately restricted its permeation. Interestingly, free fatty acids and ceramides of the SC lipids specifically utilized its oxygen atom of carboxyl group to dock the arbutin molecules, enhancing their affinity with ß-arbutin, as confirmed by molecular simulation and 13Carbon Nuclear Magnetic Resonance. Nevertheless, a favorable compatibility between α-arbutin and keratin was observed. It was emphasized that the distinct spatial configuration and opposite optical rotation of arbutin was the leading factor impacting the intermolecular force between arbutin and the SC, and resulted in a diverse drug permeation. In cellular and in vivo skin pharmacokinetic studies, α-arbutin also possessed a higher cellular uptake and topical bioavailability than ß-arbutin. This study revealed the transdermal permeation mechanisms of optical isomer arbutin at the molecular levels, providing methodological reference for the investigations of permeation behaviors of other isomers with similar spatial configuration.

2.
In Vitro Cell Dev Biol Anim ; 60(6): 569-582, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38995526

RESUMEN

Personal lubricants intended for local or systemic delivery via the vaginal route can induce vaginal irritation, damage the vaginal epithelial barrier which can enhance microbial entry, induce inflammation, and alter the microbiome of the vaginal ecosystem. Therefore, manufacturers of personal lubricants and medical devices are required to show biocompatibility and safety assessment data to support regulatory decision-making within a specified context of use. Furthermore, due to ethical concerns and the introduction of the 7th amendment of the European Council Directive which bans animal testing for cosmetic ingredients and products coupled with the Food and Drug Administration modernization Act 2.0 guidelines, there is a wave of drive to develop alternative test methods to predict human responses to chemical or formulation exposure. In this framework, there is a potential to use three-dimensional organotypic human vaginal-ectocervical tissue models as a screening tool to predict the vaginal irritation potential of personal lubricants and medicaments. To be physiologically relevant, the in vitro tissue models need to be reconstructed using primary epithelial cells of the specific organ or tissue and produce organ-like structure and functionality that recapitulate the in vivo-like responses. Through the years, progress has been made and vaginal tissue models are manufactured under controlled conditions with a specified performance criterion, which leads to a high level of reproducibility and reliability. The utility of vaginal tissue models has been accelerated in the last 20 years with an expanded portfolio of applications ranging from toxicity, inflammation, infection to drug safety, and efficacy studies. This article provides an overview of the state of the art of diversified applications of reconstructed vaginal tissue models and highlights their utility as a tool to predict vaginal irritation potential of feminine care products.


Asunto(s)
Vagina , Humanos , Vagina/efectos de los fármacos , Femenino , Irritantes/toxicidad , Técnicas de Cultivo de Tejidos/métodos , Modelos Biológicos , Animales , Lubricantes
3.
Gels ; 10(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38920910

RESUMEN

Nanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two different cryoprotectants, D-(+)-trehalose (NPs-TRE) and polyethylene glycol 3350 (NPs-PEG), sterilized by gamma (γ) irradiation, and gelled with Sepigel® 305. Nanocomposite gels with FB-NPs-TRE and FB-NPs-PEG were physiochemically characterized in terms of appearance, pH, morphological studies, porosity, swelling, degradation, extensibility, and rheological behavior. The drug release profile and kinetics were assessed, as well as, the ex vivo permeation of FB was assessed in human, porcine and bovine skin. In vivo studies in healthy human volunteers were tested without FB to assess the tolerance of the gels with nanoparticles. Physicochemical studies demonstrated the suitability of the gel formulations. The ex vivo skin permeation capacity of FB-NPs nanocomposite gels with different cryoprotectants allowed us to conclude that these formulations are suitable topical delivery systems for human and veterinary medicine. However, there were statistically significant differences in the permeation of each formulation depending on the skin. Results suggested that FB-NPs-PEG nanocomposite gel was most suitable for human and porcine skin, and the FB-NPs-TRE nanocomposite gel was most suitable for bovine skin.

4.
Eur J Pharm Biopharm ; 199: 114311, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710374

RESUMEN

The field of machine learning (ML) is advancing to a larger extent and finding its applications across numerous fields. ML has the potential to optimize the development process of microneedle patch by predicting the drug release pattern prior to its fabrication and production. The early predictions could not only assist the in-vitro and in-vivo experimentation of drug release but also conserve materials, reduce cost, and save time. In this work, we have used a dataset gleaned from the literature to train and evaluate different ML models, such as stacking regressor, artificial neural network (ANN) model, and voting regressor model. In this study, models were developed to improve prediction accuracy of the in-vitro drug release amount from the hydrogel-type microneedle patch and the in-vitro drug permeation amount through the micropores created by solid microneedles on the skin. We compared the performance of these models using various metrics, including R-squared score (R2 score), root mean squared error (RMSE), and mean absolute error (MAE). Voting regressor model performed better with drug permeation percentage as an outcome feature having RMSE value of 3.24. In comparison, stacking regressor have a RMSE value of 16.54, and ANN model has shown a RMSE value of 14. The value of permeation amount calculated from the predicted percentage is found to be more accurate with RMSE of 654.94 than direct amount prediction, having a RMSE of 669.69. All our models have performed far better than the previously developed model before this research, which had a RMSE of 4447.23. We then optimized voting regressor model's hyperparameter and cross validated its performance. Furthermore, it was deployed in a webapp using Flask framework, showing a way to develop an application to allow other users to easily predict drug permeation amount from the microneedle patch at a particular time period. This project demonstrates the potential of ML to facilitate the development of microneedle patch and other drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Aprendizaje Automático , Agujas , Redes Neurales de la Computación , Permeabilidad , Absorción Cutánea , Piel , Absorción Cutánea/fisiología , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Administración Cutánea , Liberación de Fármacos , Parche Transdérmico , Animales , Microinyecciones/métodos , Microinyecciones/instrumentación
5.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38399392

RESUMEN

The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.

6.
Eur J Pharm Sci ; 194: 106702, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218203

RESUMEN

Colonic mucus is a key factor in the colonic environment because it may affect drug absorption. Due to the similarity of human and canine gastrointestinal physiology, dogs are an established preclinical species for the assessment of controlled release formulations. Here we report the development of an artificial colonic mucus model to mimic the native canine one. In vitro models of the canine colonic environment can provide insights for early stages of drug development and contribute to the implementation of the 3Rs (refinement, reduction, and replacement) of animal usage in the drug development process. Our artificial colonic mucus could predict diffusion trends observed in native mucus and was successfully implemented in microscopic and macroscopic assays to study macromolecular permeation through the mucus. The traditional Transwell set up was optimized with the addition of a nylon filter to ensure homogenous representation of the mucus barrier in vitro. In conclusion, the canine artificial colonic mucus can be used to study drug permeation across the mucus and its flexibility allows its use in various set ups depending on the nature of the compound under investigation and equipment availability.


Asunto(s)
Colon , Moco , Perros , Animales , Humanos , Difusión , Desarrollo de Medicamentos
7.
Pharmaceutics ; 15(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37765162

RESUMEN

To assess the probability of bioequivalence (BE) between orally disintegrating tablets (ODTs) taken without water and conventional tablets (CTs) taken with water, an in vitro biorelevant methodology was developed using the BE Checker, which reproduces fluid shifts in the gastrointestinal tract and drug permeation. In addition to the fluid shift from the stomach to the small intestine, the process of ODT disintegration in a small amount of fluid in the oral cavity and the difference in gastric emptying caused by differences in water intake were incorporated into the evaluation protocol. Assuming a longer time to maximum plasma concentration after oral administration of ODTs taken without water than for CTs taken with water due to a delay in gastric emptying, the fluid shift in the donor chamber of the BE Checker without water was set longer than that taken with water. In the case of naftopidil ODTs and CTs, the values of the f2 function, representing the similarity of the permeation profiles, were 50 or higher when the fluid shift in ODTs taken without water was set at 1.5 or 2 times longer than that of the CTs taken with water. The values of the f2 function in permeation profiles of pitavastatin and memantine ODTs were both 62 when the optimized experimental settings for naftopidil formulations were applied. This methodology can be useful in formulation studies for estimating the BE probability between ODTs and CTs.

8.
Pharmaceutics ; 15(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37765214

RESUMEN

In recent years, there has been a significant increase in the registration of drugs for nasal application with systemic effects. Previous preclinical in vitro test systems for transmucosal drug absorption studies have mostly been based on primary cells or on tumor cell lines such as RPMI 2650, but both approaches have disadvantages. Therefore, the aim of this study was to establish and characterize a novel immortalized nasal epithelial cell line as the basis for an improved 3D cell culture model of the nasal mucosa. First, porcine primary cells were isolated and transfected. The P1 cell line obtained from this process was characterized in terms of its expression of tissue-specific properties, namely, mucus expression, cilia formation, and epithelial barrier formation. Using air-liquid interface cultivation, it was possible to achieve both high mucus formation and the development of functional cilia. Epithelial integrity was expressed as both transepithelial electrical resistance and mucosal permeability, which was determined for sodium fluorescein, rhodamine B, and FITC-dextran 4000. We noted a high comparability of the novel cell culture model with native excised nasal mucosa in terms of these measures. Thus, this novel cell line seems to offer a promising approach for developing 3D nasal mucosa tissues that exhibit favorable characteristics to be used as an in vitro system for testing drug delivery systems.

9.
Adv Healthc Mater ; 12(32): e2301472, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758297

RESUMEN

Gingiva plays a crucial barrier role at the interface of teeth, tooth-supporting structures, microbiome, and external agents. To mimic this complex microenvironment, an in vitro microphysiological platform and biofabricated full-thickness gingival equivalents (gingiva-on-chip) within a vertically stacked microfluidic device is developed. This design allowed long-term and air-liquid interface culture, and host-material interactions under flow conditions. Compared to static cultures, dynamic cultures on-chip enabled the biofabrication of gingival equivalents with stable mucosal matrix, improved epithelial morphogenesis, and barrier features. Additionally, a diseased state with disrupted barrier function representative of gingival/oral mucosal ulcers is modeled. The apical flow feature is utilized to emulate the mechanical action of mouth rinse and integrate the assessment of host-material interactions and transmucosal permeation of oral-care formulations in both healthy and diseased states. Although the gingiva-on-chip cultures have thicker and more mature epithelium, the flow of oral-care formulations induced increased tissue disruption and cytotoxic features compared to static conditions. The realistic emulation of mouth rinsing action facilitated a more physiological assessment of mucosal irritation potential. Overall, this microphysiological system enables biofabrication of human gingiva equivalents in intact and ulcerated states, providing a miniaturized and integrated platform for downstream host-material and host-microbiome applications in gingival and oral mucosa research.


Asunto(s)
Encía , Microbiota , Humanos , Mucosa Bucal
10.
Mar Drugs ; 21(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623719

RESUMEN

Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly profitable as a nanostructured material for drug delivery applications. Despite this, the studies reported so far in the literature are generally limited to the development of biohybrid systems for drug delivery by oral or parenteral administration. Here we demonstrate the suitability of diatomaceous earth properly functionalized on the surface with n-octyl chains as an efficient system for local drug delivery to skin tissues. Naproxen was selected as a non-steroidal anti-inflammatory model drug for experiments performed both in vitro by immersion of the drug-loaded DE in an artificial sweat solution and, for the first time, by trans-epidermal drug permeation through a 3D-organotypic tissue that better mimics the in vivo permeation mechanism of drugs in human skin tissues. Octyl chains were demonstrated to both favour the DE adhesion onto porcine skin tissues and to control the gradual release and the trans-epidermal permeation of Naproxen within 24 h of the beginning of experiments. The evidence of the viability of human epithelial cells after permeation of the drug released from diatomaceous earth, also confirmed the biocompatibility with human skin of both Naproxen and mesoporous biosilica from diatom microalgae, disclosing promising applications of these drug-delivery systems for therapies of skin diseases.


Asunto(s)
Diatomeas , Microalgas , Humanos , Animales , Porcinos , Naproxeno , Tierra de Diatomeas , Sistemas de Liberación de Medicamentos , Antiinflamatorios no Esteroideos
11.
Pharmaceutics ; 15(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37376136

RESUMEN

The blood-brain barrier (BBB) is the bottleneck in the development of new drugs to reach the brain. Due to the BBB, toxic substances cannot enter the brain, but promising drug candidates also pass the BBB poorly. Suitable in vitro BBB models are therefore of particular importance during the preclinical development process, as they can not only reduce animal testing but also enable new drugs to be developed more quickly. The aim of this study was to isolate cerebral endothelial cells, pericytes, and astrocytes from the porcine brain to produce a primary model of the BBB. Additionally, as primary cells are well suited by their properties but the isolation is complex and better reproducibility with immortalized cells must be ensured, there is a high demand for immortalized cells with suitable properties for use as a BBB model. Thus, isolated primary cells can also serve as the basis for a suitable immortalization technique to generate new cell lines. In this work, cerebral endothelial cells, pericytes, and astrocytes were successfully isolated and expanded using a mechanical/enzymatic method. Furthermore, in a triple coculture model, the cells showed a significant increase in barrier integrity compared with endothelial cell monoculture, as determined by transendothelial electrical resistance measurement and permeation studies using sodium fluorescein. The results demonstrate the opportunity to obtain all three cell types significantly involved in BBB formation from one species, thus providing a suitable tool for testing the permeation properties of new drug candidates. In addition, the protocols are a promising starting point to generate new cell lines of BBB-forming cells as a novel approach for BBB in vitro models.

12.
Pharmaceutics ; 15(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37242755

RESUMEN

Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the correct cell differentiation and tissue architecture, simulating the in vivo conditions better than monolayer cultures or animal tissues. The aim of this work was to develop OME to be used as a membrane for drug permeation studies. We developed both full-thickness (i.e., connective plus epithelial tissue) and split-thickness (i.e., only epithelial tissue) OME using non-tumor-derived human keratinocytes OKF6 TERT-2 obtained from the floor of the mouth. All the OME developed here presented similar transepithelial electrical resistance (TEER) values, comparable to the commercial EpiOral™. Using eletriptan hydrobromide as a model drug, we found that the full-thickness OME had similar drug flux to EpiOral™ (28.8 vs. 29.6 µg/cm2/h), suggesting that the model had the same permeation barrier properties. Furthermore, full-thickness OME showed an increase in ceramide content together with a decrease in phospholipids in comparison to the monolayer culture, indicating that lipid differentiation occurred due to the tissue-engineering protocols. The split-thickness mucosal model resulted in 4-5 cell layers with basal cells still undergoing mitosis. The optimum period at the air-liquid interface for this model was twenty-one days; after longer times, signs of apoptosis appeared. Following the 3R principles, we found that the addition of Ca2+, retinoic acid, linoleic acid, epidermal growth factor and bovine pituitary extract was important but not sufficient to fully replace the fetal bovine serum. Finally, the OME models presented here offer a longer shelf-life than the pre-existing models, which paves the way for the further investigation of broader pharmaceutical applications (i.e., long-term drug exposure, effect on the keratinocytes' differentiation and inflammatory conditions, etc.).

13.
Pharm Res ; 40(5): 1249-1258, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37095369

RESUMEN

PURPOSE: Application of external heat using a heating pad over buprenorphine transdermal system, Butrans® has been shown to increase systemic levels of buprenorphine in human volunteers. The purpose of this study was to perform in vitro permeation studies at normal as well as elevated temperature conditions to evaluate the correlation of in vitro data with the existing in vivo data. METHODS: In vitro permeation tests (IVPT) were performed on human skin from four donors. The IVPT study design was harmonized to a previously published clinical study design and skin temperature was maintained at either 32 ± 1 °C or 42 ± 1 °C to mimic normal and elevated skin temperature conditions, respectively. RESULTS: IVPT studies on human skin were able to demonstrate heat induced enhancement in flux and cumulative amount of drug permeated from Butrans® which was reasonably consistent with the corresponding enhancement observed in vivo. Level A in vitro-in vivo correlation (IVIVC) was established using unit impulse response (UIR) based deconvolution method for both baseline and heat arms of the study. The percent prediction error (%PE) calculated for AUC and Cmax values was less than 20%. CONCLUSIONS: The studies indicated that IVPT studies performed under the same conditions as those of interest in vivo may be useful for comparative evaluation of the effect of external heat on transdermal delivery system (TDS). Further research may be warranted to evaluate factors, beyond cutaneous bioavailability (BA) assessed using an IVPT study, that can influence plasma exposure in vivo for a given drug product.


Asunto(s)
Buprenorfina , Absorción Cutánea , Humanos , Temperatura Cutánea , Buprenorfina/metabolismo , Buprenorfina/farmacología , Piel/metabolismo , Administración Cutánea , Parche Transdérmico , Permeabilidad , Sistemas de Liberación de Medicamentos/métodos
14.
Front Cell Neurosci ; 17: 1125109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998270

RESUMEN

Diverse neurological symptoms have been reported in patients with SARS-CoV-2 disease (COVID-19), including stroke, ataxia, meningitis, encephalitis, and cognitive impairment. These alterations can cause serious sequelae or death and are associated with the entry of SARS-CoV-2 into the Central Nervous System (CNS). This mini-review discusses the main proposed mechanisms by which SARS-CoV-2 interacts with the blood-brain barrier (BBB) and its involvement in the passage of drugs into the CNS. We performed a search in PubMed with the terms "COVID-19" or "SARS-CoV-2" and "blood-brain barrier injury" or "brain injury" from the year 2019 to 2022. We found proposed evidence that SARS-CoV-2 infects neurovascular cells and increases BBB permeability by increasing the expression of matrix metalloproteinase-9 that degrades type IV collagen in the basement membrane and through activating RhoA, which induces restructuring of the cytoskeleton and alters the integrity of the barrier. The breakdown of the BBB triggers a severe inflammatory response, causing the cytokine storm (release of IL-1ß, IL-6, TNF-α, etc.) characteristic of the severe phase of COVID-19, which includes the recruitment of macrophages and lymphocytes and the activation of astrocytes and microglia. We conclude that the increased permeability of the BBB would allow the passage of drugs that would not reach the brain in a normal physiological state, thus enhancing certain drugs' beneficial or adverse effects. We hope this article will encourage research on the impact of drugs on patients with COVID-19 and recovered patients with sequelae, focusing mainly on possible dose adjustments and changes in pharmacokinetic parameters.

15.
AAPS PharmSciTech ; 24(2): 54, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725790

RESUMEN

In this study, we sought to investigate the effect of dermaplaning, a popular cosmeceutical skin rejuvenation technique on the permeation of drugs. Baclofen and diclofenac were used as hydrophilic and hydrophobic model drugs, respectively. A specific area of skin was treated with 4 strokes of a dermaplane device. Interindividual variability was assessed by having multiple users operate the device for the study. Dermaplaned skin was histologically evaluated and characterized for resistance drop and the depletion of the stratum corneum (SC). The effect of dermaplaning on drug permeation was investigated via in vitro permeation studies. Histology studies depicted the removal of SC and some parts of viable epidermis by dermaplaning. A significant drop in electrical resistance post skin dermaplaning was observed for all treatment groups, signifying the depletion of barrier properties of SC (p < 0.05). Consequently, significant drug flux and permeation were observed over 24 h for the model drugs across dermaplaned skin. However, varied absorption profile was observed in vitro for both drugs across dermaplaned skin. Dermaplaning displayed a better suitability for significantly enhancing the permeation of the hydrophilic drug, baclofen. Evidence of variation in results post dermaplaning was observed amidst multiple users as well (p < 0.05).


Asunto(s)
Baclofeno , Absorción Cutánea , Administración Cutánea , Baclofeno/análisis , Baclofeno/metabolismo , Baclofeno/farmacología , Piel/metabolismo , Epidermis/metabolismo
16.
Eur J Pharm Biopharm ; 184: 181-188, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36740104

RESUMEN

The retinal pigment epithelial (RPE) cell monolayer forms the outer blood-retinal barrier and has a crucial role in ocular pharmacokinetics. Although several RPE cell models are available, there have been no systematic comparisons of their barrier properties with respect to drug permeability. We compared the barrier properties of RPE secondary cell lines (ARPE19, and ARPE19mel) and both primary (hfRPE) and stem-cell derived RPE (hESC-RPE) cells by investigating the permeability of nine drugs (aztreonam, ciprofloxacin, dexamethasone, fluconazole, ganciclovir, ketorolac, methotrexate, voriconazole, and quinidine) across cell monolayers. ARPE19, ARPE19mel, and hfRPE cells displayed a narrow Papp value range, with relatively high permeation rates (5.2-26 × 10-6 cm/s). In contrast, hESC-RPE cells efficiently restricted the drug flux, and displayed even lower Papp values than those reported for bovine RPE-choroid, with the range of 0.4-32 cm-6/s. Therefore, ARPE19, ARPE19mel, and hfRPE cells failed to form a tight barrier, whereas hESC-RPE cells restricted the drug flux to a similar extent as bovine RPE-choroid. Therefore, hESC-RPE cells are valuable tools in ocular drug discovery.


Asunto(s)
Barrera Hematorretinal , Epitelio Pigmentado de la Retina , Humanos , Animales , Bovinos , Barrera Hematorretinal/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Células Madre , Coroides , Células Cultivadas
17.
Eur J Pharm Biopharm ; 184: 170-180, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731755

RESUMEN

Skin pharmacokinetics (SPK) of permeation enhancers can answer the question of why enhancement effects different at the kinetic level. Herein, SPK of permeation enhancers were classified into two categories, namely, lateral elimination (elimination to surrounding stratum corneum (SC)) and longitudinal elimination (elimination to deep epidermal (EP)). They were evaluated with a specific parameter for permeation enhancers, diffusion ratio (DRSC-EP), according to results of tissue-distribution test, molecular dynamic (MD) simulation, and confocal laser scanning microscopy (CLSM). The linear relationship between ke-enahcer and Δ Cmax-drug (R2 = 0.92), MRTenhancer and Δ Tmax-drug (R2 = 0.97), AUCt-enhancer and Δ AUCt-drug (R2 = 0.90) suggesting that SPK of permeation enhancers precisely controlled dynamic process of drug permeation in vivo. The molecular mechanisms of the dynamic effect of SPK process on drug transdermal behaviors were characterized by modulated-temperature differential scanning calorimetry (MTDSC), dielectric spectroscopy, small-angle X-ray scattering (SAXS), solid-state NMR. Permeation enhancers with high molecular weight (M.W.) and high polar surface area (P.S.A.) had good compatibility and strong interaction strength with SC, leading their lateral-elimination behavior, causing their low DRSC-EP and resulting in low ke-enhancer, long MRTenhancer, and large AUCt-enhancer. Consequently, skin barrier can be rapidly opened fast and to a great extent. In summary, compared with SPK of permeation enhancers with longitudinal elimination, SPK of permeation enhancers with lateral elimination can enable more sustainable and greater drug permeation. The information about SPK of permeation enhancers offered a criterion to estimate its permeation-enhancement effect on the drug and its subsequent application in transdermal formulations.


Asunto(s)
Absorción Cutánea , Piel , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Piel/metabolismo , Administración Cutánea , Permeabilidad
18.
Antimicrob Agents Chemother ; 67(2): e0137722, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36715507

RESUMEN

Gram-negative bacteria are notoriously more resistant to antibiotics than Gram-positive bacteria, primarily due to the presence of the outer membrane and a plethora of active efflux pumps. However, the potency of antibiotics also varies dramatically between different Gram-negative pathogens, suggesting major mechanistic differences in how antibiotics penetrate permeability barriers. Two approaches are used broadly to analyze how permeability barriers affect intracellular accumulation of antibiotics. One compares the antibacterial activities of compounds, while the other measures the total intracellular concentrations of compounds in nongrowing cells, with both approaches using strains harboring wild-type or genetically modified efflux systems and permeability barriers. Whether the two assays provide similar mechanistic insights remains unclear. In this study, we analyzed the intracellular accumulation and antibacterial activities of antibiotics representative of major clinical classes in three Gram-negative pathogens of high clinical importance, Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii. We found that both assays are informative about properties of permeability barriers, but there is no quantitative agreement between the assays. Our results show that the three pathogens differ dramatically in their permeability barriers, with the outer membrane playing the dominant role in E. coli and P. aeruginosa but efflux dominating in A. baumannii. However, even compounds of the same chemotype may use different permeation pathways depending on small chemical modifications. Accordingly, a classification analysis revealed limited conservation of molecular properties that define compound penetration into the three bacteria.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transporte Biológico , Bacterias Gramnegativas/metabolismo , Permeabilidad , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/metabolismo
19.
Drug Discov Today ; 28(1): 103387, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184017

RESUMEN

Proteolysis targeting chimeras (PROTACs) have been extensively explored for targeted proteasomal degradation of disease-related proteins with enormous potential in the treatment of intractable diseases. However, PROTACs are poorly soluble and permeable bulky molecules facing several bioavailability challenges irrespective of the route of administration. Our review lays out crucial challenges in the delivery of target protein degraders and nanoformulation approaches to overcome physicochemical and biological hurdles that can aid in transporting these target-protein degraders to the disease site. We have elaborated on the current formulation approaches and further highlighted the prospective delivery strategies that could be probed for disease-specific targeted delivery of PROTACs.


Asunto(s)
Proteínas , Quimera Dirigida a la Proteólisis , Proteolisis , Estudios Prospectivos , Proteínas/metabolismo
20.
Pharm Nanotechnol ; 11(1): 34-43, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36278458

RESUMEN

BACKGROUND: Various types of nano-formulations are being developed and tested for the delivery of the ocular drug. They also have anatomical and physiological limitations, such as tear turnover, nasal lachrymal waste, reflex squinting, and visual static and dynamic hindrances, which pose challenges and delay ocular drug permeation. As a result of these limitations, less than 5% of the dose can reach the ocular tissues. OBJECTIVE: The basic purpose of designing these formulations is that they provide prolonged retention for a longer period and can also increase the course time. METHODS: To address the aforementioned issues, many forms of polymeric micelles were developed. Direct dissolving, dialysis, oil-in-water emulsion, solvent evaporation, co-solvent evaporation, and freeze-drying are some of the methods used to make polymeric nano micelles. RESULTS: Their stability is also very good and also possesses reversible drug loading capacity. When the drug is given through the topical route, then it has very low ocular bioavailability. CONCLUSION: The definition and preparation process of polymeric micelles and anti-inflammatory drugs used in uveitis and the relation between uveitis and micelles are illustrated in detail.


Asunto(s)
Micelas , Uveítis , Humanos , Portadores de Fármacos , Polímeros , Uveítis/tratamiento farmacológico , Solventes , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA