Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Anal Bioanal Chem ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264463

RESUMEN

A column-free immunoaffinity purification (CFIP) technique for sample preparation of aflatoxin B1 (AFB1) was developed using an AFB1-specific nanobody (named G8) and an elastin-like polypeptide (ELP). The reversible phase transition between liquid and solid in response to temperature changes was exhibited by the ELP which was derived from human elastin. The G8 was tagged with ELPs of various lengths (20, 40, 60, and 80 repeat units) at the C-terminus using recursive directional ligation (RDL). Coding sequences were then subcloned into pET30a at the multiple cloning sites. Bioactive recombinant proteins were produced by expressing them as inclusion bodies in Escherichia coli BL21 (DE3), then dissolved and refolded. Analysis by indirect competitive enzyme-linked immunosorbent assay (icELISA) and transition temperature (Tt) measurement confirmed that the refolded G8-ELPs preserved the ability to recognize AFB1 as well as phase transition when the temperature rose above Tt. To establish the optimal conditions for cleaning AFB1, the effects of various parameters on recovery were investigated. The recovery in ELISA tests was 95 ± 3.67% under the optimized CFIP workflow. Furthermore, the CFIP-prepared samples were applied for high-performance liquid chromatography (HPLC) detection. The recovery in the CFIP-HPLC test ranged from 54 ± 1.86% to 98 ± 3.58% for maize, rice, soy sauce, and vegetable oil samples. To the best of our knowledge, this is the first report combining the function of both nanobody and ELP to develop a cleanup technique for small molecules in a complex matrix. The CFIP for the sample pretreatment was easy to use and inexpensive. In contrast to conventional immunosensitivity materials, the reagent utilized in the CFIP was entirely biosynthesized without any chemical coupling reactions. This suggests that the nanobody-ELP may serve as a useful dual-functional reagent for the development of sample cleaning or purification methods.

2.
Int J Biol Macromol ; 279(Pt 4): 135414, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245124

RESUMEN

The proliferation of nano-plastic particles (NPs) poses severe environmental hazards, urgently requiring effective biodegradation methods. Herein, a novel method was developed for degrading nano-PET (polyethylene terephthalate) using immobilized cutinases. Nano-PET particles were prepared using a straightforward method, and biocompatible elastin-like polypeptide-magnetic nanoparticles (ELPs-MNPs) were obtained as magnetic cores via biomimetic mineralization. Using one-pot synthesis with the cost-effective precursor tetraethoxysilane (TEOS), silica-coated magnetically immobilized ELPs-tagged cutinase (ET-C@SiO2@MNPs) were produced. ET-C@SiO2@MNPs showed rapid magnetic separation within 30 s, simplifying recovery and reuse. ET-C@SiO2@MNPs retained 86 % of their initial activity after 11 cycles and exhibited superior hydrolytic capabilities for nano-PET, producing 0.515 mM TPA after 2 h of hydrolysis, which was 96.6 % that of free enzymes. Leveraging ELPs biomimetic mineralization, this approach offers a sustainable and eco-friendly solution for PET-nanoplastic degradation, highlighting the potential of ET-C@SiO2@MNPs in effective nanoplastic waste management and contributing to environmental protection and sustainable development.

3.
Biomacromolecules ; 25(9): 5729-5744, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39185801

RESUMEN

Nucleic acid (NA)-based therapies are revolutionizing biomedical research through their ability to control cellular functions at the genetic level. This work demonstrates a versatile elastin-like polypeptide (ELP) carrier system using a layer-by-layer (LbL) formulation approach that delivers NA cargos ranging in size from siRNA to plasmids. The components of the system can be reconfigured to modulate the biochemical and biophysical characteristics of the carrier for engaging the unique features of the biological target. We show the physical characterization and biological performance of LbL ELP nucleic acid nanoparticles (LENNs) in murine and human bladder tumor cell lines. Targeting bladder tumors is difficult owing to the constant influx of urine into the bladder, leading to low contact times (typically <2 h) for therapeutic agents delivered via intravesical instillation. LENN complexes bind to bladder tumor cells within 30 min and become rapidly internalized to release their NA cargo within 60 min. Our data show that a readily adaptable NA-delivery system has been created that is flexible in its targeting ability, cargo size, and disassembly kinetics. This approach provides an alternative path to either lipid nanoparticle formulations that suffer from inefficiency and physicochemical instability or viral vectors that are plagued by manufacturing and immune rejection challenges. This agile ELP-based nanocarrier provides an alternative route for nucleic acid delivery using a biomanufacturable, biodegradable, biocompatible, and highly tunable vehicle capable of targeting cells via engagement with overexpressed cell surface receptors.


Asunto(s)
Elastina , Nanopartículas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Humanos , Elastina/química , Ratones , Animales , Nanopartículas/química , Línea Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/genética , Péptidos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Polipéptidos Similares a Elastina
4.
ACS Appl Bio Mater ; 7(8): 5158-5170, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39038169

RESUMEN

Traumatic brain injury (TBI) and spinal cord injury (SCI) are neurological conditions that result from immediate mechanical injury, as well as delayed injury caused by local inflammation. Furthermore, TBI and SCI often lead to secondary complications, including pressure wounds of the skin, which can heal slowly and are prone to infection. Pressure wounds are localized areas of damaged tissue caused by prolonged pressure on the skin due to immobility and loss of neurological sensation. With the aim to ameliorate these symptoms, we investigated whether fibroblast growth factors 2 (FGF-2) could contribute to recovery. FGF-2 plays a significant role in both neurogenesis and skin wound healing. We developed a recombinant fusion protein containing FGF-2 linked to elastin-like polypeptides (FGF-ELP) that spontaneously self-assembles into nanoparticles at around 33 °C. The nanoparticle's size was ranging between 220 and 250 nm in diameter at 2 µM. We tested this construct for its ability to address neuronal and skin cell injuries. Hydrogen peroxide was used to induce oxidant-mediated injury on cultured neuronal cells to mimic the impact of reactive oxidants released during the inflammatory response in vivo. We found that FGF-ELP nanoparticles protected against hydrogen peroxide-mediated injury and promoted neurite outgrowth. In the skin cell models, cells were depleted from serum to mimic the reduced levels of nutrients and growth factors in chronic skin wounds. FGF-ELP increased the proliferation and migration of human keratinocytes, fibroblasts, and endothelial cells. FGF-ELP is, therefore, a potentially useful agent to provide both neuroprotection and promotion of cellular processes involved in skin wound healing.


Asunto(s)
Nanopartículas , Neuronas , Piel , Animales , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Peróxido de Hidrógeno/farmacología , Ensayo de Materiales , Nanopartículas/química , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Oxidantes/química , Oxidantes/farmacología , Tamaño de la Partícula , Piel/patología , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
5.
Adv Healthc Mater ; 13(18): e2303765, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38651610

RESUMEN

Despite progress in bone tissue engineering, reconstruction of large bone defects remains an important clinical challenge. Here, a biomaterial designed to recruit bone cells, endothelial cells, and neuronal fibers within the same matrix is developed, enabling bone tissue regeneration. The bioactive matrix is based on modified elastin-like polypeptides (ELPs) grafted with laminin-derived adhesion peptides IKVAV and YIGSR, and the SNA15 peptide for retention of hydroxyapatite (HA) particles. The composite matrix shows suitable porosity, interconnectivity, biocompatibility for endothelial cells, and the ability to support neurites outgrowth by sensory neurons. Subcutaneous implantation leads to the formation of osteoid tissue, characterized by the presence of bone cells, vascular networks, and neuronal structures, while minimizing inflammation. Using a rat femoral condyle defect model, longitudinal micro-CT analysis is performed, which demonstrates a significant increase in the volume of mineralized tissue when using the ELP-based matrix compared to empty defects and a commercially available control (Collapat). Furthermore, visible blood vessel networks and nerve fibers are observed within the lesions after a period of two weeks. By incorporating multiple key components that support cell growth, mineralization, and tissue integration, this ELP-based composite matrix provides a holistic and versatile solution to enhance bone tissue regeneration.


Asunto(s)
Regeneración Ósea , Elastina , Ingeniería de Tejidos , Animales , Elastina/química , Ratas , Ingeniería de Tejidos/métodos , Regeneración Ósea/efectos de los fármacos , Humanos , Andamios del Tejido/química , Durapatita/química , Durapatita/farmacología , Huesos , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Microtomografía por Rayos X
6.
Protein Sci ; 33(2): e4878, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147468

RESUMEN

The incorporation of unnatural amino acids (uAAs) into protein-based polymers has emerged as a powerful methodology to expand their chemical repertoire. Recently, we demonstrated that incorporating uAAs into two temperature-responsive protein-based polymers-namely resilin- and elastin-like polypeptides (RLPs and ELPs, respectively)-can alter their properties. In this study, we incorporated aromatic uAAs into the protein sequence of RLP-ELP diblocks to yield new and diverse assemblies from a single DNA template. Specifically, we show that incorporating aromatic uAAs can modulate the phase-transition behaviors and self-assembly of the diblocks into various morphologies, including spherical and cylindrical micelles and single- and double-layered vesicles, with some constructs also demonstrating a temperature-responsive shape-shifting behavior. Next, we evaluated the ability of the RLP-ELP assemblies to encapsulate a chemotherapeutic drug, doxorubicin, and show how the identity of the incorporated uAAs and the morphology of the nanostructure affect the encapsulation efficiency. Taken together, our findings demonstrate that the multi-site incorporation of uAAs into temperature-responsive, amphiphilic protein-based diblock copolymers is a promising approach for the functionalization and tuning of self-assembled nanostructures.


Asunto(s)
Aminoácidos , Péptidos , Temperatura , Péptidos/química , Secuencia de Aminoácidos , Polímeros , Elastina/química , Elastina/genética
7.
ACS Synth Biol ; 12(10): 2802-2811, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37714526

RESUMEN

The rational design of light-responsive proteins and protein-based polymers requires both a photoswitch with suitable light-responsive properties and the ability to incorporate it at (multiple) defined positions in the protein chain. This Letter describes the evolution of high-performance aminoacyl-tRNA synthetases for recognizing a photoswitchable arylazopyrazole-bearing unnatural amino acid (AAP-uAA), which we then incorporated at multiple sites within elastin-like polypeptides (ELPs). The incorporation of AAP-uAA into ELPs yielded proteins capable of an isothermal, reversible, and robust light-mediated soluble-to-insoluble phase transition, which occurred faster (after only 1 min of light irradiation) and demonstrated a larger transition temperature difference (up to a 45 °C difference in the ELP transition temperature upon a cis to trans AAP isomerization) than similar azobenzene-containing ELPs. The evolved translation machinery can be used for the multisite incorporation of AAP at the polypeptide level; moreover, it constitutes a general methodology for designing light-responsive proteins and protein-based polymers with robust light-responsive behavior, made possible by the superior photoswitchable properties of AAP.


Asunto(s)
Elastina , Péptidos , Elastina/genética , Elastina/química , Temperatura , Péptidos/genética , Péptidos/química , Transición de Fase , Temperatura de Transición
8.
ACS Appl Mater Interfaces ; 15(38): 45336-45344, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37707425

RESUMEN

Biomolecular condensates are macromolecular complexes formed by liquid-liquid phase separation. They regulate key biological functions by reversibly compartmentalizing molecules in cells, in a stimulus-dependent manner. Designing stimuli-responsive synthetic condensates is crucial for engineering compartmentalized synthetic cells that are able to mimic spatiotemporal control over the biochemical reactions. Here, we design and test a family of condensate-forming, pH-responsive elastin-like polypeptides (ELPs) that form condensates above critical pH values ranging between 4 and 7, for temperatures between 20 and at 37 °C. We show that the condensation occurs rapidly, in sharp pH intervals (ΔpH < 0.3). For eventual applications in engineering synthetic cell compartments, we demonstrate that multiple types of pH-responsive ELPs can form mixed condensates inside micron-sized vesicles. When genetically fused with enzymes, receptors, and signaling molecules, these pH-responsive ELPs could be potentially used as pH-switchable functional condensates for spatially controlling biochemistry in engineered synthetic cells.


Asunto(s)
Elastina , Péptidos , Elastina/genética , Elastina/química , Péptidos/química , Temperatura , Concentración de Iones de Hidrógeno
9.
Biotechnol Prog ; 39(6): e3381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37531360

RESUMEN

Elastin-like polypeptides (ELPs) are peptide-based biomaterials with residue sequence (VPGXG)n where X is any residue except proline. ELPs are a useful modality for delivering biologically active proteins (growth factors, protease inhibitors, anti-inflammatory peptides, etc.) as fusion proteins (ELP-FP). ELP-FPs are particularly cost-effective because they can be rapidly purified using Inverse Temperature Cycling (ITC) via the reversible formation and precipitation of entropically driven aggregates above a transition temperature (Tt ). When ELP fusion proteins (ELP-FPs) contain significant charge density at physiological pH, electrostatic repulsion between them severely inhibits aggregate formation. The literature does not currently describe methods for purifying ELP-FPs containing charged proteins on either side of the ELP sequence as fusion partners without organic solvents. Here, the isoelectric point (pI) of ELP-FPs is discussed as a means of neutralizing surface charges on ELP-FPs and increasing ITC yield to dramatically high levels. We use pI-based phase separation (pI-BPS) to purify ELP-FPs containing cationic and anionic fusion proteins. We report a dramatic increase in protein yield when using pI-BPS for purification of ELP-FPs. Proteins purified by this method also retain the functional activity of the protein present in the ELP-FP. Techniques developed here enable significant diversification of possible fusion proteins delivered by ELPs as ELP-FPs by allowing them to be produced and purified at higher quantities and yields.


Asunto(s)
Polipéptidos Similares a Elastina , Elastina , Punto Isoeléctrico , Elastina/química , Separación de Fases , Péptidos/química , Proteínas Recombinantes de Fusión/genética
10.
Biomedicines ; 11(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37509529

RESUMEN

The regeneration of articular cartilage remains a serious problem in various pathological conditions such as osteoarthritis, due to the tissue's low self-healing capacity. The latest therapeutic approaches focus on the construction of biomaterials that induce cartilage repair. This research describes the design, synthesis, and investigation of a safe, "smart", fibrous scaffold containing a genetically incorporated active peptide for chondrogenic induction. While possessing specific sequences and the respective mechanical properties from natural fibrous proteins, the fibers also incorporate a Transforming Growth Factor-ß1 (TGF-ß1)-derived peptide (YYVGRKPK) that can promote chondrogenesis. The scaffold formed stable porous networks with shear-thinning properties at 37 °C, as shown by SEM imaging and rheological characterization, and were proven to be non-toxic to human dental pulp stem cells (hDPSCs). Its chondrogenic capacity was evidenced by a strong increase in the expression of specific chondrogenesis gene markers SOX9, COL2, ACAN, TGFBR1A, and TGFBR2 in cells cultured on "scaffold-TGFß1" for 21 days and by increased phosphorylation of intracellular signaling proteins Smad-2 and Erk-1/2. Additionally, intense staining of glycosaminoglycans was observed in these cells. According to our results, "scaffold-TGFß1" is proposed for clinical studies as a safe, injectable treatment for cartilage degeneration.

11.
Adv Mater ; 35(33): e2301856, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37149761

RESUMEN

In response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid-liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo-responsive elastin-like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self-assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells' interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp ) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress-induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine-tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.


Asunto(s)
Fenómenos Fisiológicos Celulares , Péptidos , Presión Osmótica , Péptidos/química , Peroxidasa de Rábano Silvestre , Orgánulos , Agua
12.
Biotechnol Bioeng ; 120(2): 323-332, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349439

RESUMEN

In recent years, antimicrobial peptides (AMPs) have become a promising alternative to the use of conventional and chemically synthesized antibiotics, especially after the emergence of multidrug-resistant organisms. Thus, this review aims to provide an updated overview of the state-of-the-art for producing antimicrobial peptides fused or conjugated with the elastin-like (ELP) peculiar carriers, and that are mostly intended for biomedical application. The elastin-like biopolymers are thermosensitive proteins with unique properties. Due to the flexibility of their modular structure, their features can be tuned and customized to improve the production of the antimicrobial domain while reducing their toxic effects on the host cells. Both fields of research faced a huge rise in interest in the last decade, as witnessed by the increasing number of publications on these topics, and several recombinant fusion proteins made of these two domains have been already described but they still present a limited variability. Herein, the approaches described to recombinantly fuse and chemically conjugate diverse AMPs with ELPs are reviewed, and the nature of the AMPs and the ELPs used, as well as the main features of the expression and production systems are summarized.


Asunto(s)
Elastina , Péptidos , Elastina/química , Péptidos/química , Péptidos Antimicrobianos , Biopolímeros/química , Proteínas Recombinantes de Fusión/metabolismo
13.
J Control Release ; 353: 713-726, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526018

RESUMEN

New and improved nanomaterials are constantly being developed for biomedical purposes. Nanomaterials based on elastin-like polypeptides (ELPs) have increasingly shown potential over the past two decades. These polymers are artificial proteins of which the design is based on human tropoelastin. Due to this similarity, ELP-based nanomaterials are biodegradable and therefore well suited to drug delivery. The assembly of ELP molecules into nanoparticles spontaneously occurs at temperatures above a transition temperature (Tt). The ELP sequence influences both the Tt and the physicochemical properties of the assembled nanomaterial. Nanoparticles with desired properties can hence be designed by choosing the appropriate sequence. A promising class of ELP nanoparticles are micelles assembled from amphiphilic ELP diblock copolymers. Such micelles are generally uniform and well defined. Furthermore, site-specific attachment of cargo to the hydrophobic block results in micelles with the cargo shielded inside their core, while conjugation to the hydrophilic block causes the cargo to reside in the corona where it is available for interactions. Such control over particle design is one of the main contributing factors for the potential of ELP-based micelles as a drug delivery system. Additionally, the micelles are easily loaded with protein or peptide-based cargo by expressing it as a fusion protein. Small molecule drugs and other cargo types can be either covalently conjugated to ELP domains or physically entrapped inside the micelle core. This review aims to give an overview of ELP-based micelles and their applications in nanomedicine.


Asunto(s)
Elastina , Micelas , Humanos , Elastina/química , Nanomedicina , Péptidos/química , Sistemas de Liberación de Medicamentos
14.
Front Mol Biosci ; 9: 992748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353730

RESUMEN

Across scales, many biological phenomena, such as protein folding or bioadhesion and cohesion, rely on synergistic effects of different amino acid side chains at multiple positions in the protein sequence. These are often fine-tuned by post-translational modifications that introduce additional chemical properties. Several PTMs can now be genetically encoded and precisely installed at single and multiple sites by genetic code expansion. Protein nitration is a PTM of particular interest because it has been associated with several diseases. However, even when these nitro groups are directly incorporated into proteins, they are often physiologically reduced during or shortly after protein production. We have solved this problem by using an engineered Escherichia coli host strain. Six genes that are associated with nitroreductase activity were removed from the genome in a simple and robust manner. The result is a bacterial expression host that can stably produce proteins and peptides containing nitro groups, especially when these are amenable to modification. To demonstrate the applicability of this strain, we used this host for several applications. One of these was the multisite incorporation of a photocaged 3,4-dihydroxyphenylalanine derivative into Elastin-Like Polypeptides. For this non-canonical amino acid and several other photocaged ncAAs, the nitro group is critical for photocleavability. Accordingly, our approach also enhances the production of biomolecules containing photocaged tyrosine in the form of ortho-nitrobenzyl-tyrosine. We envision our engineered host as an efficient tool for the production of custom designed proteins, peptides or biomaterials for various applications ranging from research in cell biology to large-scale production in biotechnology.

15.
Biomaterials ; 291: 121864, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343608

RESUMEN

Exosome-based regenerative therapies are potentially easier to manufacture and safer to apply compared to cell-based therapies. However, many questions remain about how to bio-manufacture reproducible and potent exosomes using animal-free reagents. Here we evaluate the hypothesis that designer biomaterial substrates can be used to alter the potency of exosomes secreted by human induced pluripotent stem cells (iPSCs). Two animal-free designer matrices were fabricated based on recombinant elastin-like polypeptides (ELPs): one including a cell-adhesive RGD ligand and a second with a non-adhesive RDG peptide. While iPSCs cultured on these two substrates and Matrigel-coated controls had similar levels of proliferation, the RDG-ELP substrate significantly increased protein expression of stemness markers OCT4 and SOX2 and suppressed spontaneous differentiation compared to those on RGD-ELP. The pro-survival potency of iPSC-derived exosomes was evaluated using three distinct stress tests: serum starvation in murine fibroblasts, hypoxia in human endothelial cells, and hyperosmolarity in canine kidney cells. In all three cases, exosomes produced by iPSCs grown on RDG-ELP substrates had similar pro-survival effects to those produced using iPSCs grown on Matrigel, while use of RGD-ELP substrates led to significantly reduced exosome potency. These data demonstrate that recombinant substrates can be designed for the robust bio-manufacturing of iPSC-derived, pro-survival exosomes.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Humanos , Animales , Perros , Ratones , Elastina/metabolismo , Exosomas/metabolismo , Células Endoteliales , Péptidos/farmacología , Péptidos/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo
16.
Adv Drug Deliv Rev ; 191: 114589, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323382

RESUMEN

Nature is an everlasting source of inspiration for chemical and polymer scientists seeking to develop ever more innovative materials with greater performances. Natural structural proteins are particularly scrutinized to design biomimetic materials. Often characterized by repeat peptide sequences, that together interact by inter- and intramolecular interactions and form a 3D skeleton, they contribute to the mechanical properties of individual cells, tissues, organs, and whole organisms. (Numata, K. Polymer Journal 2020, 52, 1043-1056) Among them elastin, and its main repeat sequences, have been a source of intense studies for more than 50 years resulting in the specific research field dedicated to elastin-like polypeptides (ELPs). These are currently widely investigated in different applications, namely protein purification, tissue engineering, and drug delivery, and some technologies based on ELPs are currently explored by several start-up companies. In the present review, we have summarized pioneering contributions on ELPs, progress made in their genetic engineering, and understanding of their thermal behavior and self-assembly properties. Considered as intrinsically disordered protein polymers, we have finally focused on the works where ELPs have been conjugated to other synthetic macromolecules as covalent hybrid, statistical, graft, or block copolymers, highlighting the huge opportunities that have still not been explored so far.


Asunto(s)
Elastina , Péptidos , Humanos , Elastina/química , Péptidos/química , Secuencia de Aminoácidos , Sistemas de Liberación de Medicamentos
17.
Adv Drug Deliv Rev ; 188: 114441, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817213

RESUMEN

Hybrid or recombinant protein-polymers, peptide-based biomaterials, and antibody-targeted therapeutics are widely explored for various ocular conditions and vision correction. They have been noted for their potential biocompatibility, potency, adaptability, and opportunities for sustained drug delivery. Unique to peptide and protein therapeutics, their production by cellular translation allows their precise modification through genetic engineering. To a greater extent than drug delivery to other systems, delivery to the eye can benefit from the combination of locally-targeted administration and protein-based specificity. Consequently, a range of delivery platforms and administration methods have been exploited to address the ocular delivery of peptide and protein biomaterials. This review discusses a sample of preclinical and clinical opportunities for peptide-based drug delivery to the eye.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Materiales Biocompatibles/metabolismo , Ojo/metabolismo , Humanos , Péptidos/metabolismo , Proteínas Recombinantes
18.
Biotechnol Bioeng ; 119(9): 2505-2517, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689353

RESUMEN

Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.


Asunto(s)
Elastina , Nicotiana , Células CACO-2 , Elastina/química , Humanos , Fragmentos de Inmunoglobulinas , Péptidos/química , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
19.
Front Bioeng Biotechnol ; 10: 913057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711629

RESUMEN

The incorporation of non-canonical amino acids (ncAAs) using engineered aminoacyl-tRNA synthetases (aaRSs) has emerged as a powerful methodology to expand the chemical repertoire of proteins. However, the low efficiencies of typical aaRS variants limit the incorporation of ncAAs to only one or a few sites within a protein chain, hindering the design of protein-based polymers (PBPs) in which multi-site ncAA incorporation can be used to impart new properties and functions. Here, we determined the substrate specificities of 11 recently developed high-performance aaRS variants and identified those that enable an efficient multi-site incorporation of 15 different aromatic ncAAs. We used these aaRS variants to produce libraries of two temperature-responsive PBPs-elastin- and resilin-like polypeptides (ELPs and RLPs, respectively)-that bear multiple instances of each ncAA. We show that incorporating such aromatic ncAAs into the protein structure of ELPs and RLPs can affect their temperature responsiveness, secondary structure, and self-assembly propensity, yielding new and diverse families of ELPs and RLPs, each from a single DNA template. Finally, using a molecular model, we demonstrate that the temperature-responsive behavior of RLPs is strongly affected by both the hydrophobicity and the size of the unnatural aromatic side-chain. The ability to efficiently incorporate multiple instances of diverse ncAAs alongside the 20 natural amino acids can help to elucidate the effect of ncAA incorporation on these and many other PBPs, with the aim of designing additional precise and chemically diverse polymers with new or improved properties.

20.
Carbohydr Polym ; 288: 119398, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35450651

RESUMEN

Here a versatile fusion tag composed of His-tag, intein, and elastin-like polypeptide (ELP) tag was prepared for the first time to be fused with levansucrase SacB to construct a recombinant His-ELP-intein-SacB (HEIS) protein to realize nonchromatographic purification of SacB. The efficient biomimetic mineralization of CaHPO4 and HEIS-based hybrid-hydrangea (CaHPO4-HEIS-HH) with good reusability, excellent storage stability and 254.3% improved relative levan yield was prepared with the biomimetic mineralization method. Additionally, the CaHPO4-HEIS-HH showed outstanding operation activity when catalyzing sucrose in solution and up to 75% sucrose conversion rate in fruit juices. The mechanism of biomimetic mineralization was analyzed to show that the HEIS protein might serve as a "binder" to assemble the nanoflakes during biomimetic mineralization. The CaHPO4-HEIS-HH was applicable for efficient production of the levan-type prebiotic polysaccharides, and this approach should be highly valuable for nonchromatographic purification and convenient preparation of various encapsulated enzymes for more efficient catalysis.


Asunto(s)
Elastina , Inteínas , Biomimética , Elastina/química , Elastina/metabolismo , Fructanos , Péptidos/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Sacarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA