Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260331

RESUMEN

Brain development is highly dynamic and asynchronous, marked by the sequential maturation of functional circuits across the brain. The timing and mechanisms driving circuit maturation remain elusive due to an inability to identify and map maturing neuronal populations. Here we create DevATLAS (Developmental Activation Timing-based Longitudinal Acquisition System) to overcome this obstacle. We develop whole-brain mapping methods to construct the first longitudinal, spatiotemporal map of circuit maturation in early postnatal mouse brains. Moreover, we uncover dramatic impairments within the deep cortical layers in a neurodevelopmental disorders (NDDs) model, demonstrating the utility of this resource to pinpoint when and where circuit maturation is disrupted. Using DevATLAS, we reveal that early experiences accelerate the development of hippocampus-dependent learning by increasing the synaptically mature granule cell population in the dentate gyrus. Finally, DevATLAS enables the discovery of molecular mechanisms driving activity-dependent circuit maturation.

2.
J Mol Recognit ; 36(8): e3044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37322568

RESUMEN

Mitochondria are the main sites of oxidative metabolism and energy release of sugars, fats and amino acids in the body. According to studies, malignant tumor occurrence and development have been linked to abnormal mitochondrial energy metabolism (MEM). However, the feasible role of abnormal MEM in colon adenocarcinoma (COAD) is poorly understood. In this work, we obtained COAD patient data from The Cancer Genome Atlas (TCGA) as the training set, and GSE103479 from Gene Expression Omnibus (GEO) as the validation set. Combined with the mitochondrial energy metabolic pathway (MEMP)-related genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) database, a risk prognostic model was constructed by utilizing Cox regression analysis to identify 6 feature genes (CYP4A11, PGM2, PKLR, PPARGC1A, CPT2 and ACAT2) that were significantly associated with MEMP in COAD. By stratifying the samples based on riskscore, two distinct groups, namely the high- and low-risk groups, were identified. The model demonstrated accurate assessment of the prognosis risk in COAD patients and exhibited independent prognostic capability, as evidenced by the survival curve and receiver operating characteristic (ROC) curve analysis. A nomogram was plotted based on clinical information and riskscore. We proved it could predict the survival time of COAD patients effectively combined with the calibration curve of risk prediction. Subsequently, based on the immune evaluation and mutation frequency analysis performed on COAD patients, patients in high-risk group had observably higher immune scores, immune activity and PDCD1 expression level than low-risk group. In general, the prognostic model developed using MEMP-related genes served as a valuable biomarker for forecasting the prognosis of COAD patients, which offered a reference for the prognosis evaluation and clinical cure of COAD patients.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Pronóstico , Relevancia Clínica , Adenocarcinoma/genética , Mitocondrias/genética
3.
Int J Biol Sci ; 12(8): 1010-21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27489504

RESUMEN

Cis-natural antisense transcripts (cis-NATs) are a new class of RNAs identified in various species. However, the biological functions of cis-NATs are largely unknown. In this study, we investigated the transcriptional characteristics and functions of cis-NATs in the muscle tissue of lean Landrace and indigenous fatty Lantang pigs. In total, 3,306 cis-NATs of 2,469 annotated genes were identified in the muscle tissue of pigs. More than 1,300 cis-NATs correlated with their sense genes at the transcriptional level, and approximately 80% of them were co-expressed in the two breeds. Furthermore, over 1,200 differentially expressed cis-NATs were identified during muscle development. Function annotation showed that the cis-NATs participated in muscle development mainly by co-expressing with genes involved in energy metabolic pathways, including citrate cycle (TCA cycle), glycolysis or gluconeogenesis, mitochondrial activation and so on. Moreover, these cis-NATs and their sense genes abruptly increased at the transition from the late fetal stages to the early postnatal stages and then decreased along with muscle development. In conclusion, the cis-NATs in the muscle tissue of pigs were identified and determined to be mainly co-expressed with their sense genes. The co-expressed cis-NATs and their sense gene were primarily related to energy metabolic pathways during muscle development in pigs. Our results offered novel evidence on the roles of cis-NATs during the muscle development of pigs.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Desarrollo de Músculos/fisiología , ARN sin Sentido/genética , Transcriptoma/genética , Animales , ADN Complementario/genética , Exones/genética , Redes y Vías Metabólicas/genética , Desarrollo de Músculos/genética , ARN Interferente Pequeño/genética , Porcinos , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA