RESUMEN
INTRODUCTION: Immunogenic cell death (ICD) is a unique cell death triggered by chemotherapy. However, studies elucidating the potential therapeutic role of ICD and the underlying mechanism in diabetic nephropathy (DN) are limited. METHODS: WGCNA was conducted on the human kidney biopsy data linked to DN, analyzing gene sets associated with ICD. Gene Set Enrichment Analysis and Gene Set Variation Analysis were utilized to examine the discrepancy in biological function. We used Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes, and the GeneMANIA database to investigate the function of the signature genes. An analysis using the receiver operating characteristic (ROC) was conducted to validate the diagnostic value of hub genes. Additionally, immune infiltration-related analyses were also performed. In conclusion, we examined the association between the glomerular filtration rate, serum creatinine, and hub genes. Hub genes were validated by immunohistochemistry using db/db mice kidneys. RESULTS: WGCNA revealed that the targets in the turquoise unit (1674 genes) exhibited the highest positive correlation with ICD. Furthermore, 4222 statistically significant DEGs were identified when comparing the DN and healthy control groups. Significantly, the KEGG pathway enrichment analysis indicated a connection between ICD and the nuclear factor-kappa B signaling pathway and the synthesis of cytokines (tumor necrosis factor superfamily). ROC analysis revealed that 16 hub genes exhibited strong discriminatory potential as biomarkers for DN. Therefore, immunohistochemical validation, with the potential involvement of chemokines (CCL11, CCR2, CCR7, CX3CR1, CXCL10, CXCL12, and CXCR5) and immune cells (CD3G, CD5, and CD247) may be crucial for the diagnosis and therapy of DN. CONCLUSIONS: DKK3, NR4A1, NR4A2, VEGFA, and DUSP1 may be associated with the development of DN. The pathogenesis of DN may specifically involve chemokines (CCL11, CCR2, CCR7, CX3CR1, CXCL10, CXCL12, and CXCR5) and immune cells (CD3G, CD5, and CD247), with LCP2 playing a significant role.
RESUMEN
OBJECTIVE: To investigate the mechanism of the protective effect of modified Pulsatilla decoction (, MPD) on the mechanical barrier of the ulcerative colitis (UC) intestinal epithelium in vitro and in vivo. METHODS: We established an intestinal epithelial crypt cell line-6 cell barrier injury model by using lipopolysaccharide (LPS). The model was then treated with p38 mitogen-activated protein kinase-myosin light chain kinase (p38MAPK-MLCK) pathway inhibitors, p38MAPK-MLCK pathway silencing genes (si-p38MAPK, si-NF-κB, and si-MLCK), and MPD respectively. Transepithelial electronic resistance (TEER) measurements and permeability assays were performed to assess barrier function. Immunofluorescence staining of tight junctions (TJ) was performed. In in vivo experiment, dextran sodium sulfate-induced colitis rat model was conducted to evaluate the effect of MPD and mesalazine on UC. The rats were scored using the disease activity index based on their clinical symptoms. Transmission electron microscopy and hematoxylin-eosin staining were used to examine morphological changes in UC rats. Western blotting and real-time quantitative polymerase chain reaction were performed to examine the gene and protein expression of significant differential molecules. RESULTS: In in vitro study, LPS-induced intestinal barrier dysfunction was inhibited by p38MAPK-MLCK pathway inhibitors and p38MAPK-MLCK pathway gene silencing. Silencing of p38MAPK-MLCK pathway genes decreased TJ expression. MPD treatment partly restored the LPS-induced decreased in TEER and increase in permeability. MPD increased the gene and protein expression of TJ, while down-regulated the LPS-induced high expression of p-p38MAPK and p-MLC. In UC model rats, MPD could ameliorate body weight loss and disease activity index, relieve colonic pathology, up-regulate TJ expression as well as decrease the expression of p-p38MAPK and p-MLC in UC rat colonic mucosal tissue. CONCLUSIONS: The p38MAPK-MLCK signaling pathway can affect mechanical barrier function and TJ expression in the intestinal epithelium. MPD restores TJ expression and attenuates intestinal epithelial barrier damage by suppressing the p38MAPK-MLCK pathway.
Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Mucosa Intestinal , Quinasa de Cadena Ligera de Miosina , Proteínas Quinasas p38 Activadas por Mitógenos , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Humanos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Línea Celular , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismoRESUMEN
Introduction: The role of immune cells in the pathogenesis and advancement of diabetic nephropathy (DN) is crucial. The objective of this study was to identify immune-cell-related biomarkers that could potentially aid in the diagnosis and management of DN. Methods: The GSE96804 dataset was obtained from the Gene Expression Omnibus (GEO) database. Then, screen for intersections between differentially expressed genes (DEGs) and immune-related genes (IRGs). Identify core genes through protein-protein interaction (PPI) networks and the Cytoscape plugin. Subsequently, functional enrichment analysis was conducted. In addition, ROC analysis is performed to accurately identify diagnostic biomarkers. Apply the CIBERSORT algorithm to evaluate the proportion of immune cell infiltration. Finally, the mRNA, protein, and immunofluorescence expression of the biomarker was validated in the DN rat model. Results: The study yielded 74 shared genes associated with DN. Enrichment analysis indicated significant enrichment of these genes in focal adhesion, the humoral immune response, activation of the immune response, Cytokine-cytokine receptor interaction, and IL-17 signaling pathway. The optimal candidate gene VCAM1 was identified. The presence of VCAM1 in DN was further validated using the ROC curve. Analysis of immune cell infiltration matrices revealed a high abundance of monocytes, naïve B cells, memory B cells, and Macrophages M1/M2 in DN tissues. Correlation analysis identified one hub biomarker associated with immune-infiltrated cells in DN. Furthermore, our findings were validated through in vivo RT qPCR, WB, and IF techniques. Conclusions: Our research indicates that VCAM1 is a signature gene associated with DN and is linked to the progression, treatment, and prognosis of DN. A comprehensive examination of immune infiltration signature genes may offer new perspectives on the clinical diagnosis and management of DN.
Asunto(s)
Biomarcadores , Nefropatías Diabéticas , Molécula 1 de Adhesión Celular Vascular , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/inmunología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Animales , Ratas , Biomarcadores/metabolismo , Biomarcadores/análisis , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Humanos , Masculino , Ratas Sprague-Dawley , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/genéticaRESUMEN
In response to escalating global wastewater issues, particularly from dye contaminants, many studies have begun using hydrochar to adsorb dye from wastewater. However, the relationship between the preparation conditions of hydrochar, the properties of hydrochar, experimental conditions, types of dyes, and equilibrium adsorption capacity (Q) has not yet been fully explored. This study conducted a comprehensive assessment using twelve distinct ML models. The Gradient Boosting Regressor (GBR) model exhibited superior performance with R² (0.9629) and RMSE (0.1166) in the test dataset, marking it as the most effective among the evaluated models. Moreover, this study also proved the feasibility of the GBR model through stability testing and residual analysis. A feature importance analysis prioritized the variables as follows: experimental conditions (41.5 %), properties of hydrochar (26.0 %), preparation conditions (18.1 %), and type of dye (14.4 %). Meanwhile, experimental conditions (C0 > 30 mmol/g, pH > 8, and higher solvent temperatures) and hydrochar properties (the BET surface area > 2000 m²/g, an (O+N)/C molar ratio < 0.6, and an H/C molar ratio of approximately 0.06) show higher Q for dyes. Experimental validation of the GBR model confirmed its practical utility with a suitable predictive accuracy (R² = 0.8704). Moreover, the study developed a Python-based GUI that has integrated the best GBR models to facilitate researchers' ongoing application and improvement of this predictive model. This study not only underscores the efficacy of ML in enhancing the understanding of dye adsorption by hydrochar but also sets a precedent for future research on sustainable contaminants removal through bio-based adsorbents.
RESUMEN
BACKGROUND: The Precancerous Lesion of Gastric Cancer (PLGC) is an early stage in the development of gastric cancer. The clinical application of HPXLD has been found to be effective in treating PLGC, but the mechanism of how HPXLD acts on PLGC is still unclear. OBJECTIVE: The objectives of this study were to reveal the molecular mechanism of how HPXLD can be used to treat PLGC and investigate this mechanism through bioinformatics and experimental validation. METHODS: PLGC-associated target genes were identified through bioinformatics analysis. A rat model of PLGC was induced using N-methyl-N'-nitro-N-nitrosoquanidine (MNNG) in combination with ranitidine, hot saline, ethanol, and intermittent fasting, with interventions by HPXLD. The pathological alterations in gastric mucosa were assessed through Hematoxylin-eosin staining (HE). Immunohistochemistry (IHC) and Western blot analyses were employed to evaluate the changes in expression levels of inflammation-related proteins. RESULTS: After conducting bioinformatics analysis, it was found that there were 23 HPXLDPLGC crossover genes, which were significantly enriched in the IL-17 signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway. The results of HE showed that HPXLD was effective in improving gastric mucosal histopathological changes. Additionally, the IHC results demonstrated that HPXLD was able to downregulate the expression of IL-6, COX-2, MCP- 1, and MMP-9. Furthermore, Western blot analysis revealed that HPXLD was able to downregulate the expressions of IL-6, IL-17RA, ACT1, NF-κB, and TNF-α. CONCLUSION: HPXLD has been shown to improve PLGC by reducing the expression of inflammation- related proteins. This suggests that HPXLD may potentially be a treatment option for PLGC.
RESUMEN
This study aims to investigate the therapeutic effect and mechanism of Panax notoginseng saponins(PNS) on diabetic kidney disease(DKD) based on network pharmacology, molecular docking, animal experiments. Network pharmacology was employed to screen the potential targets, and STRING was employed to build the protein-protein interaction network. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out for the core targets screened out, and a â³components-targets-pathwaysâ³ visualization network was constructed to predict the potential mechanism of PNS in treating DKD. Five active ingredients were screened from PNS, the core targets of which for treating DKD were AKT1, STAT3, ESR1, HSP90AA1, MTOR, et al. The KEGG enrichment analysis showed that the pathways related to PNS for treating DKD included the pathway in cancer, chemical carcinogenesis-receptor activation, and PI3K-AKT signaling pathway. GO analysis revealed that protein binding, homologous protein binding, enzyme binding, and ATP binding were the main biological processes involved in the treatment of DKD with PNS. Male 6-week-old db/db mice were randomized into model, dapagliflozin, and low-dose and high-dose PNS groups, with 10 mice in each group. Ten 6-week-old db/m mice were used as the control group. Mice were administrated with corresponding drugs or distilled water(control and model groups) by gavage once a day for 8 weeks. The body weight, fasting blood glucose, kidney index, microalbuminuria, creatinine, microalbuminuria/creatinine ratio, and urea nitrogen content in the urine of mice were determined. Hematoxylin-eosin(HE) staining, periodic acid-Schiff(PAS) staining, and Masson staining were performed to observe the protective effect of PNS on the renal tissues in db/db mice. The results showed that PNS could significantly reduce the fasting blood glucose level and improve the renal damage in db/db mice. Western blot results showed that PNS down-regulated the protein levels of p-AKT1 and p-STAT3 and decreased the p-AKT1/AKT1 and p-STAT3/STAT3 ratios. In addition, high-dose PNS down-regulated the protein level of PIK3CA. In conclusion, PNS may exert the kidney-protecting effects in DKD by inhibiting STAT3 via the PI3K-AKT signaling pathway.
Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Farmacología en Red , Panax notoginseng , Saponinas , Animales , Panax notoginseng/química , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Saponinas/farmacología , Saponinas/química , Ratones , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular , Humanos , Transducción de Señal/efectos de los fármacos , Mapas de Interacción de Proteínas , Ratones Endogámicos C57BLRESUMEN
Background: Atherosclerosis (AS) is a chronic arterial pathology and a leading cause of vascular disease-related mortality. Fatty streaks in the arterial wall develop into atherosclerosis and characteristic plaques. Clinical interventions typically involve lipid-lowering medications and drugs for stabilizing vulnerable plaques, but no direct therapeutic agent specifically targets atherosclerosis. Garlic, also locally known as DASUAN, is recognized as a widely sold herbal dietary supplement esteemed for its cardiovascular benefits. However, the specific mechanisms of garlic's anti-atherosclerotic effects remain unclear. Aims: This study aims to elucidate the pharmacological mechanisms through which garlic ameliorates atherosclerosis. Methods: The study identified the major active components and targets of garlic by screening the TCMSP, TCM-ID, and, ETCM databases. Atherosclerosis-associated targets were obtained from the DisGeNET, GeneCards, and DiGSeE databases, and garlic intervention targets were determined through intersection. Utilizing the intersected genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using R software. A garlic component-disease target network was constructed using Cytoscape. RNA-seq datasets from the GEO database were utilized to identify differentially expressed genes (DEGs) associated with atherosclerosis. The target genes were intersected with DEGs and the FerrDb (ferroptosis database). Molecular docking predicted the binding interactions between active components and the core targets. In vitro and in vivo experiments validated the identified core targets. Results: The integration of garlic drug targets with atherosclerotic disease targets identified 230 target genes. Intersection with RNA-seq DEGs revealed 15 upregulated genes, including 8 target genes related to ferroptosis. Molecular docking indicated favorable affinities between garlic active components [Sobrol A, (+)-L-Alliin, Benzaldoxime, Allicin] and target genes (DPP4, ALOX5, GPX4). Experimental validation showed that GARLIC reduces the expression of ferroptosis-related genes in AS, suggesting its therapeutic potential through the regulation of ferroptosis. Conclusion: Garlic ameliorates atherosclerosis by targeting intra-plaque ferroptosis and reducing lipid peroxidation. These findings provide novel insights into the pharmacological mechanisms underlying the efficacy of garlic in treating AS.
RESUMEN
BACKGROUND: Oxidative stress (OS) is one of the major causes of ovarian aging and dysfunction. Indole-3-propionic acid (IPA) is an indole compound derived from tryptophan with free radical scavenging and antioxidant properties, and thus may have potential applications in protecting ovarian function, although the exact mechanisms are unknown. This study aims to preliminarily elucidate the potential mechanisms of IPA that benefit ovarian reserve function through network pharmacology, molecular docking, and experimental verification. METHODS: The related protein targets of IPA were searched on SwissTargetPrediction, TargetNet, BATMAN-TCM, and PharmMapper databases. The potential targets of diminished ovarian reserve (DOR) were identified from OMIM, GeneCards, DrugBank, and DisGeNET databases. The common targets were uploaded directly to the STRING database to construct PPI networks. We then performed GO and KEGG enrichment analysis on the targets. Subsequently, molecular docking and molecular dynamics simulation were used to validate the binding conformation of IPA to candidate targets. Furthermore, we carried out in vitro experiments to validate the prediction results of network pharmacology. RESULTS: We identified a total of 61 potential targets for the interaction of IPA with DOR. The PPI network topological parameter analysis yielded 13 hub genes for DOR treatment. The GO biological process enrichment analysis identified 293 entries, mainly enriched in aging, signal transduction, response to hypoxia, negative regulation of apoptotic process, and positive regulation of cell proliferation. The KEGG enrichment analysis mainly included lipid and atherosclerosis, progesterone-mediated oocyte maturation, AGE-RAGE, relaxin, estrogen, and other signaling pathways. The molecular docking further revealed the direct binding of IPA with six hub proteins including NOS3, AKT1, EGFR, PPARA, SRC, and TNF. In vitro experiments showed that IPA pretreatment attenuated H2O2-induced cellular oxidative stress damage, while IPA exerted cytoprotective and antioxidant damage effects by regulating the six hub genes and antioxidant proteins. CONCLUSION: We systematically illustrated the potential protective effects of IPA against DOR through multiple targets and pathways using network pharmacology, and further verified the cytoprotective effect and antioxidant properties of IPA through in vitro experiments. These findings provide new insights into the targets and molecular mechanisms whereby IPA improves DOR.
Asunto(s)
Indoles , Simulación del Acoplamiento Molecular , Farmacología en Red , Humanos , Femenino , Indoles/farmacología , Indoles/química , Reserva Ovárica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/químicaRESUMEN
Rapid urbanization increases the densely built-up blocks, the population and vehicles. Large amounts of particulate matter (PM), especially PM2.5 (PM with an aerodynamic diameter of 2.5µm or less), from vehicle exhaust are critical to human health. In typical street canyons in hot and humid regions, traffic-source PM usually diffuses to the densely built-up blocks through roadside trees. Roadside trees are a double-edged sword, serving as "guards" to absorb PM2.5 while may lead to PM2.5 gathering in street levels, thereby influencing the PM2.5 dispersion in the densely built-up blocks. To quantify the dispersion process, this study proposed traffic-source PM2.5 dynamic dispersion models considering the capture capability of roadside trees and built-up blocks based on the OSPM model. Due to the difficulty in obtaining the adsorption and deposition rate of the proposed models, the numerical simulations by ENVI-met software were used to solve and obtain the relationship between capture capability and characteristic index of roadside trees. Subsequently, The accuracy and effectiveness of the proposed traffic-source PM2.5 dynamic dispersion models were verified through field experimental data. Results show that the calculated PM2.5 concentration significantly linearly increased with the measured values with the determined coefficient (R2) of 0.98, and the first-order coefficient close to 1. It indicates that the proposed traffic-source PM2.5 dispersion model accurately quantified the impact of roadside trees on PM2.5 and its concentration dispersion process to the built-up blocks. This study provides suggestions for designing characteristic indexes of roadside trees and built-up blocks to improve the air quality of urban street canyons.
RESUMEN
Background: Among bone diseases, osteoporosis-like skeleton, such as trabecular thinning, fracture and so on, is the main pathological change of cadmium-induced osteoporosis(Cd-OP), accompanied by brittle bone and increased fracture rate. However, the mechanism underlying cadmium-induced osteoporosis has remained elusive. Compound Lurong Jiangu Capsule (CLJC) is an experienced formula for the treatment of bone diseases, which has the effect of tonifying kidney and strengthening bones, promoting blood circulation and relieving pain. Objective: Network pharmacology and molecular docking technology combined with experiments were used to investigate the potential mechanism of CLJC in treating Cd-OP. Method: The active compounds and corresponding targets of each herb in CLJC were searched in the TCMSP and BATMAN-TCM databases. The DisGeNet, OMIM, and GeneCards databases searched for Cd-OP targets. The relationship between both of them was visualized by establishing an herb-compound-target network using Cytoscape 3.9.1 software. Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed after determining the intersection of the targets from CLJC and Cd-OP. What's more, molecular docking was performed to validate the results. All of them were aim to obtain hud signaling pathways for further study. Finally, BAX, BCL-2, and CASPASE-3 were screened and selected for further experiments, which included bone imaging and reconstruction analysis (Micro-CT), hematoxylin-eosin Staining (HE), and western blot (WB). Results: 106 common targets from CLJC and Cd-OP targets were identified. KEGG pathway analysis suggested that multiple signaling pathways, such as the pathways in cancer, may play roles in treatment. Verification of the molecular docking was successful. Here we showed that Cd-OP displayed Tb.Th and Tb.N significantly reduced and even broke, irregular proliferation of bone cortex, uneven and loose trabecular bone arrangement, changed in apoptosis-related proteins, such as significant upregulation of CASPASE-3, BAX protein and significant downregulation of BCL-2 protein in vivo, while CLJC rescued these phenotypes. Conclusion: This study revealed that CLJC can reduce the expression of apoptosis-related proteins, and multiple components and multiple targets inhibit Cd-OP through apoptosis signaling pathway.
Asunto(s)
Cadmio , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteoporosis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Osteoporosis/patología , Cadmio/toxicidad , Animales , Ratas , Apoptosis/efectos de los fármacos , Femenino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , CápsulasRESUMEN
BACKGROUND: Precancerous Lesions of Gastric Cancer (PLGC) are critical in the secondary prevention of gastric cancer. Despite the notable effects of natural products on PLGC, the specific mechanisms by which compounds, like 6-gingerol, influence these lesions are not fully understood. AIMS: This study aimed to confirm the effect and mechanism of 6-gingerol in the treatment of precancerous lesions of gastric cancer (PLGC). OBJECTIVE: The objective of this study was to elucidate the effects and mechanisms of 6-gingerol against PLGC using network pharmacology and in vitro experiments. METHODS: We employed network pharmacology to identify potential targets and pathways influenced by 6-gingerol, followed by validation through in vitro experiments using a PLGC cell model. RESULTS: Network pharmacology analysis highlighted the PI3K/Akt signaling pathway as significantly influenced by 6-gingerol. In vitro experiments confirmed that 6-gingerol effectively inhibited proliferation, invasion, and metastasis of MC cells, promoted apoptosis, and induced cell cycle arrest, primarily through modulation of the PI3K/Akt pathway. Statistical analysis revealed significant inhibition (p < 0.05) across these cellular processes in a dose-dependent manner. CONCLUSION: This study demonstrated that 6-gingerol acts as an effective agent against PLGC, with clear dose-dependent effects that pave the way for further experimental and clinical exploration.
RESUMEN
This work examines the acoustically actuated motions of artificial flagellated micro-swimmers (AFMSs) and compares the motility of these micro-swimmers with the predictions based on the corrected resistive force theory (RFT) and the bar-joint model proposed in our previous work. The key ingredient in the theory is the introduction of a correction factorKin drag coefficients to correct the conventional RFT so that the dynamics of an acoustically actuated AFMS with rectangular cross-sections can be accurately modeled. Experimentally, such AFMSs can be easily manufactured based on digital light processing of ultra-violet (UV)-curable resins. We first determined the viscoelastic properties of a UV-cured resin through dynamic mechanical analysis. In particular, the high-frequency storage moduli and loss factors were obtained based on the assumption of time-temperature superposition (TTS), which were then applied in theoretical calculations. Though the extrapolation based on the TTS implied the uncertainty of high-frequency material response and there is limited accuracy in determining head oscillation amplitude, the differences between the measured terminal velocities of the AFMSs and the predicted ones are less than 50%, which, to us, is well acceptable. These results indicate that the motions of acoustic AFMS can be predicted, and thus, designed, which pave the way for their long-awaited applications in targeted therapy.
Asunto(s)
Simulación por Computador , Diseño de Equipo , Modelos Biológicos , Natación , Natación/fisiología , Análisis de Falla de Equipo , Materiales Biomiméticos/química , Biomimética/métodos , Robótica/métodos , Robótica/instrumentación , Sonido , Acústica , Diseño Asistido por Computadora , AnimalesRESUMEN
BACKGROUND: Whether Astragalus membranaceus is an effective drug in treatment of ulcerative colitis (UC) and how it exhibit activity effect on UC is unclear. METHODS: TCMSP, GeneCards, String, and DAVID database were used to screening target genes construct PPI network and performed for GO and KEGG pathway enrichment analysis respectively. Molecular docking and animal experiment were performed. The body weight and disease activity index (DAI) of mice were recorded. ELISA kits were used to detect the levels of CAT, SOD, MDA and IL-6, IL-10, TNF-α in the blood of mice. Western blot kits were utilized to measured the expressions of MAPK14, RB1, MAPK1, JUN, ATK1, and IL2 proteins. RESULTS: The active components of Astragalus membranaceus mainly including 7-O-methylisomucronulatol, quercetin, kaempferol, formononetin and isrhamnetin. Astragalus membranaceus may inhibited the expression of TNF-α, IL-6, MDA, and promoted the expression of CAT, SOD, IL-10. The expression levels of MAPK14, RB1, MAPK1, JUN and ATK1 proteins were significantly decreased while IL2 protein increased administrated with Astragalus membranaceus. CONCLUSIONS: Astragalus membranaceus is an effective drug in treatment of UC according to related to above targets that may exhibits the anti-UC effect via its antioxidant pathway and regulating the balance of pro-inflammatory and anti-inflammatory factors.
RESUMEN
Xiaochaihu Decoctionï¼XCHDï¼is a classic prescription for the treatment of fever, but the mechanism is not clear. In this study, We elucidated the mechanism of action through network pharmacology and molecular docking. A rat fever model was established to verify the prediction results of network pharmacology. The analysis revealed that 120 intersection targets existed between XCHD and fever. The TP53, STAT3, RELA, MAPK1, AKT1, TNF and MAPK14 as potential core targets of XCHD in fever treatment. GO and KEGG pathway enrichment analyses indicated that XCHD may act through pathways such as the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway. Molecular docking results demonstrated that quercetin, kaempferol, ß-sitosterol, stigmasterol and baicalein exhibited strong binding activity to key targets. Animal experiments showed that XCHD significantly reduced body temperature and levels of IL-1ß, IL-6, TNF-α, NO, PGE2, and cAMP in rats with fever. Importantly, no significant difference was observed between the XCHD self-emulsifying nano phase plus suspension phase and XCHD group. XCHD exerts its therapeutic effects on fever through a multi-ingredient, multi-target, and multi-pathway approach.
Asunto(s)
Medicamentos Herbarios Chinos , Fiebre , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Ratas , Fiebre/tratamiento farmacológico , Fiebre/metabolismo , Masculino , Simulación de Dinámica Molecular , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacosRESUMEN
Increasing airspace safety is an important challenge, both for unmanned aerial vehicles (UAVs) as well as manned aircraft. Future developments of collision avoidance systems are supposed to utilize information from multiple sensing systems. A compact sensing system could employ a multi-mode multi-port antenna (M 3PA). Their ability to radiate multiple orthogonal patterns simultaneously makes them suitable for communication applications as well as bearing and ranging applications. Furthermore, they can be designed to flexibly originate near-omnidirectional and/or directional radiation patterns. This option of flexibility with respect to the radiation characteristic is desired for antennas integrated in collision avoidance systems. Based on the aforementioned properties, M 3PAs represent a compelling option for aircraft transponders. In this paper, direction-of-arrival (DoA) estimation using an M 3PA designed for aerial applications is put to the test. First, a DoA estimation scheme suitable to be employed with M 3PAs is introduced. Next, the validity of the proposed method is confirmed through numerical simulations. Lastly, practical experiments are conducted in an antenna measurement chamber to verify the numerical results.
RESUMEN
High Intensity Focused Ultrasound (HIFU) is used in clinical practice for thermal ablation of malignant and benign solid tumors located in various organs. One of the reason limiting the wider use of this technology is the long treatment time resulting from i.a. the large difference between the size of the focal volume of the heating beam and the size of the tumor. Therefore, the treatment of large tumors requires scanning their volume with a sequence of single heating beams, the focus of which is moved in the focal plane along a specific trajectory with specific time and distance interval between sonications. To avoid an undesirable increase in the temperature of healthy tissues surrounding the tumor during scanning, the acoustic power and exposure time of each HIFU beam as well as the time intervals between sonications should be selected in such a way as to cover the entire volume of the tumor with necrosis as quickly as possible. This would reduce the costs of treatment. The aim of this study was to quantitatively evaluate the hypothesis that selecting the average acoustic power and exposure time for each individual heating beam, as well as the temporal intervals between sonications, can significantly shorten treatment time. Using 3D numerical simulations, the dependence of the duration of treatment of a tumor with a diameter of 5 mm or 9 mm (requiring multiple exposure to the HIFU beam) on the sonication parameters (acoustic power, exposure time) of each single beam capable of delivering the threshold thermal dose (CEM43 = 240 min) to the treated tissue volume was examined. The treatment duration was determined as the sum of exposure times to individual beams and time intervals between sonications. The tumor was located inside the ex vivo tissue sample at a depth of 12.6 mm. The thickness of the water layer between the HIFU transducer and the tissue was 50 mm. The sonication and scanning parameters selected using the developed algorithm shortened the duration of the ablation procedure by almost 14 times for a 5-mm tumor and 20 times for a 9-mm tumor compared to the duration of the same ablation plan when a HIFU beam was used of a constant acoustic power, constant exposure time (3 s) and constant long time intervals (120 s) between sonications. Results of calculations of the location and size of the necrotic lesion formed were experimentally verified on ex vivo pork loin samples, showing good agreement between them. In this way, it was proven that the proper selection of sonication and scanning parameters for each HIFU beam allows to significantly shorten the time of HIFU therapy.
Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Factores de Tiempo , Neoplasias/diagnóstico por imagen , Animales , Simulación por Computador , HumanosRESUMEN
AIM: Kaempferitrin is an active component in Chenopodium ambrosioides, showing medicinal functions against liver cancer. This study aimed to identify the potential targets and pathways of kaempferitrin against liver cancer using network pharmacology and molecular docking, and verify the essential hub targets and pathway in mice model of SMMC-7721 cells xenografted tumors and SMMC-7721 cells. METHODS: Kaempferitrin therapeutical targets were obtained by searching SwissTargetPrediction, PharmMapper, STITCH, DrugBank, and TTD databases. Liver cancer specific genes were obtained by searching GeneCards, DrugBank, TTD, OMIM, and DisGeNET databases. PPI network of "kaempferitrin-targets-liver cancer" was constructed to screen the hub targets. GO, KEGG pathway and MCODE clustering analyses were performed to identify possible enrichment of genes with specific biological subjects. Molecular docking and molecular dynamics simulation were employed to determine the docking pose, potential and stability of kaempferitrin with hub targets. The potential anti-liver cancer mechanisms of kaempferitrin, as predicted by network pharmacology analyses, were verified by in vitro and in vivo experiments. RESULTS: 228 kaempferitrin targets and 2186 liver cancer specific targets were identified, of which 50 targets were overlapped. 8 hub targets were identified through network topology analysis, and only SIRT1 and TP53 had a potent binding activity with kaempferitrin as indicated by molecular docking and molecular dynamics simulation. MCODE clustering analysis revealed the most significant functional module of PPI network including SIRT1 and TP53 was mainly related to cell apoptosis. GO and KEGG enrichment analyses suggested that kaempferitrin exerted therapeutic effects on liver cancer possibly by promoting apoptosis via p21/Bcl-2/Caspase 3 signaling pathway, which were confirmed by in vivo and in vitro experiments, such as HE staining of tumor tissues, CCK-8, qRT-PCR and Western blot. CONCLUSION: This study provided not only insight into how kaempferitrin could act against liver cancer by identifying hub targets and their associated signaling pathways, but also experimental evidence for the clinical use of kaempferitrin in liver cancer treatment.
Asunto(s)
Quempferoles , Neoplasias Hepáticas , Simulación del Acoplamiento Molecular , Animales , Humanos , Quempferoles/farmacología , Quempferoles/química , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ratones , Línea Celular Tumoral , Farmacología en Red , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Ratones DesnudosRESUMEN
OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.
Asunto(s)
Berberina , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Periodontitis , Humanos , Periodontitis/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Berberina/farmacología , Berberina/uso terapéutico , Coptis chinensis , Rizoma , Interleucina-17/metabolismo , Transducción de Señal/efectos de los fármacos , Técnicas In Vitro , Ensayo de Inmunoadsorción Enzimática , Citometría de FlujoRESUMEN
BACKGROUND: Gushukang (GSK), a traditional Chinese medical prescription, has made a great and extensive contribution to the treatment of different forms of osteoporosis, but polypharmacology studies of its mechanism of action are lacking. This study investigates the pharmacological mechanism of osteoporosis using network pharmacology and molecular docking. Experimental verification was carried out to confirm the efficacy of GSK on RANKLinduced osteoclast differentiation in RAW264.7 cells to verify the network pharmacology studies. METHODS: The effective chemical components and corresponding targets of osteoporosis with oral bioavailability of more than 30% and drug-like properties greater than 0.18 were searched in the TCMSP and TCM-ID databases. DrugBank, GeneCards, OMIM, TTD, and other databases were examined for targets related to osteoporosis. Using Cytoscape software, a network of possible TCM-active ingredient-osteoporosis targets was created. STRING software was used to create the networks of protein-protein interactions. The DAVID program was carried out to conduct GO and KEGG pathway enrichment analyses of the targets. Molecular docking and pattern of action analysis were carried out using software like AutoDock Vina and Discovery Studio Visualizer. The growth media for RAW264.7 cells contained varying doses of GSK serum and 50 ng/mL RANKL. The activity of TRAP was altered. Additionally, genes related to osteoclasts were examined using an RT-PCR assay. RESULTS: Network pharmacological analysis revealed that the primary efficacy targets of osteoporosis were PTGS2, PTGS1, HSP90AA1, NCOA2, ADRB2, ESR1, NCOA1, and AR. The pharmacological targets of osteoporosis may be mediated by substances including quercetin, kaempferol, luteolin, naringenin, icariin, anthocyanin, tanshinone IIA, and cryptotanshinone. GSK markedly inhibited RANKL-induced TRAP activity. qRT-PCR results revealed decreased expression of the PTGS2 and ADRB2 genes upon GSK treatment. CONCLUSION: The findings of network pharmacology, molecular docking, as well as experimental verification provide a new further study for elucidating the pharmacodynamic substance basis and polypharmacology mechanism of GSK in treating osteoporosis.
RESUMEN
Precancerous Lesions of Gastric Cancer (PLGC) are an essential step in the advancement of Gastric cancer (GC). Early intervention represents the most effective strategy to impede the development of PLGC. However, additional research is necessary to comprehend the molecular mechanism of PLGC. YQHXD is originated from Si Wu Decoction, has been utilized as an empirical formula for the treatment of PLGC for several years. In this study, we employed network pharmacology, molecular docking, and experimental validation to examine the inhibitory and ameliorative properties of YQHXD on PLGC. Multiple databases were utilized to gather genetic information on drugs in PLGC and YQHXD, in order to obtain cross-targets. We discovered 142 common targets between YQHXD and PLGC. GO and KEGG enrichment analyses indicate that YQHXD treatment of PLGC might be linked with cellular response to oxygen levels and the HIF-1α signaling pathway. Finally, we performed in vitro experiments, of which the results reveal that YQHXD mitigates gastric mucosal atrophy, intestinalization, and heterogeneous hyperplasia, and reduces the expression of inflammatory factors in rats. Therefore, we considered that YQHXD has the potential to delay the PLGC process by inhibiting the HIF-1α signaling pathway.